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Abstract—In this paper, we propose a novel sparse array
design for direction-of-arrival estimation based on the fourth-
order statistics of the received signals. The utilization of fourth-
order statistics provides a higher number of degrees of freedom
and flexibility as compared to the commonly used covariance-
based methods. The proposed sparse array design scheme yields
the fourth-order difference co-array which offers a significant
increment in the number of consecutive lags as compared to the
existing sparse array structures used by fourth-order cumulant-
based direction-of-arrival estimation methods. Moreover, the
proposed array is designed in such a way that the resulting
difference co-array does not contain any holes. Simulation results
verify the effectiveness of the proposed array structure.

keywords: Sparse array, direction-of-arrival estimation,
fourth-order difference co-array.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation plays an important
role in radar, sonar, wireless communications, radio surveil-
lance, and several other applications [1, 2]. While subspace-
based methods that use second-order (SO) statistics are com-
monly used for DOA estimation, the exploitation of higher-
order statistics (HOS) for DOA estimation offers a higher
number of degrees of freedom (DOF) so that the DOAs
of more sources than the number of array sensors can be
determined. In this context, the cumulant-based virtual array
concept and its variants have received broad interests [3–5].
Because Gaussian random variables have zero HOS, HOS-
based DOA estimation methods also provide the capability
of eliminating Gaussian random components, such as thermal
noise, so as to enhance signals that exhibit non-Gaussian
characteristics [6].

Detection of more sources than the number of sensors can
also be achieved by using a sparse array in the context of co-
arrays [7]. The minimum redundancy array (MRA) [8] is a well
known linear sparse array structure that achieves the maximum
number of consecutive lags in the yielding difference co-
array. The minimum hole array (MHA) [9] is another sparse
array configuration which minimizes the number of holes in
the difference co-array which is a highly desired property.
However, as the array configurations of MRA and MHA
structures cannot be analytically expressed, systematic design
and precise DOF analysis become difficult. Recently, great
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efforts have been paid to develop sparse array structures that
can be systematically designed and analyzed. Two notable
sparse array configurations of this type include the nested
array (NA) [10] and the co-prime array (CPA) [11]. The NA
configuration uses two uniform linear sub-arrays such that
one of the sub-arrays has unit inter-element spacing. On the
other hand, CPA utilizes two linear sub-arrays such that the
number of elements in each sub-array is a coprime pair and
the inter-element spacing of each sub-array is proportional to
the number of elements in the other sub-array. The achievable
number of DOFs in terms of the consecutive and unique lags
of these arrays and the generalized array structures have been
well studied [12]. These efforts exploit the improved array
aperture and DOFs offered by the difference co-arrays so
as to resolve more sources and achieve improved estimation
accuracy. Various DOA estimation methods were applied to
such sparse arrays based on subspace and compressive sensing
techniques [11–17].

The application of fourth-order cumulant (FOC) sparse
sensor arrays for DOA estimation has recently attracted great
attention as it provides further DOF increment to resolve even
more sources. For example, the extension of four-level (4-L)
and three-level (3-L) NA concept to the case of FOC was
investigated in [18] and [19], respectively. Moreover, 3-L FOC-
based difference co-array of CPA was discussed in [20]. The
focus of these approaches was mainly the extension of array
aperture and DOFs by increasing the number of sub-arrays.
It is noted that, in these FOC-based sparse array processing,
little attention has been paid towards the optimization of the
inter–sub-array and inter-element spacings. While the inter–
sub-array and inter-element spacings have been analyzed and
optimized in generalized co-prime arrays under the SO statis-
tics [12], vital changes in the array structure are required in
the FOC-based array processing because there is a significant
difference between SO and fourth-order (FO) statistics based
formation of difference co-arrays. As such, the array design
should be thoroughly re-investigated to reduce the number
of holes and to increase the number of unique as well as
consecutive lags in the resultant difference co-arrays.

In this paper, we propose a novel two-level (2-L) NA
structure for FOC-based DOA estimation which results in a
hole-free FO difference co-array, i.e., the resulting difference
co-array will consist of virtual sensors such that there is no
gap to break the consecutiveness of the co-array. The proposed
sparse array structure effectively utilizes the inter-element and
inter–sub-array spacings for the underlying 2-L NA for the



case of FO statistics. For a practical scenario utilizing a small
number of sensors, the proposed 2-L nested array structure
provides a significantly higher number of consecutive lags
compared to the existing 3-L and 4-L sparse array structures
when FO statistics are exploited. Moreover, the promising
no-hole feature in the resulting difference co-array makes
the proposed structure an ideal one for a wide variety of
DOA estimation algorithms. Simulation results illustrate the
effectiveness of the proposed array structure.

II. PROBLEM FORMULATION

A. Signal Model

Consider Q narrowband uncorrelated non-Gaussian station-
ary signals impinging on a P -sensor sparse linear array from
angles θ1, θ2, . . . , θQ. The P × 1 received signal vector x(t)
at the sensor array is expressed as:

x(t) = As(t) + n(t), (1)

where A is the P ×Q array manifold matrix, s(t) represents
the Q×1 signal vector impinging on the antenna array, n(t) is
the P×1 noise vector that follows the complex white Gaussian
distribution with zero mean and covariance matrix σ2

nI, and I
is the P × P identity matrix.

B. Fourth-Order Statistics

Several definitions of FOCs exist in literature. In this paper,
we utilize the following definition for the calculation of FOC:
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where xq1 , xq2 , xq3 and xq4 denote the received signals at the
q1-th, q2-th, q3-th, and q4-th array sensors, respectively, cum(·)
is the cumulant operator, (·)∗ is the conjugate operator, and
l = q2 + q4 − q1 − q3. Note that the mixed use of conjugated
and unconjugated elements in FOC computation yields both
sum co-array and difference co-array sensors in the resultant
virtual array.

Denoting K as the number of positive lags obtained from
the FOC computation. The (K+1)×(K+1) cumulant matrix
C can be computed using the vector of 2K + 1 consecutive
lags estimated using Eq. (2) as follows:

C =

⎡
⎢⎢⎣

c(0) c(1) · · · c(K)
c(−1) c(0) · · · c(K − 1)

...
...

. . .

c(−K) c(−K + 1) · · · c(0)

⎤
⎥⎥⎦ . (3)

Since the cumulants for Gaussian noise are zero, from Eqs.
(2) and (3), we have:

C = ÃSÃH . (4)

Here, Ã is (K + 1)×Q extended array manifold matrix and
S = diag {γ1, γ2, . . . , γQ}, where γk is the kurtosis of the kth
source signal.
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Fig. 1. The proposed sparse array configuration

III. PROPOSED ARRAY STRUCTURE

A. Notations

Consider a sparse linear array consisting of two uniform
linear sub-arrays as shown in Fig. 1, and let set S contain the
individual locations of each array sensor that are physically
present. Assume that the first sub-array consists of N sensors
with an inter-element spacing of d = λ/2, where λ denotes
the wavelength, whereas the second sub-array consists of M
sensors with an inter-element spacing of D such that M ≥ N .
The linear displacement between the two sub-arrays (inter–
sub-array spacing) is set as L. Moreover, we assume that both
D and L are integer multiples of d.

The locations of sensors in sub-array 1 and sub-array 2 can
be represented by the sets of locations J and K, respectively,
such that:

J = {l|l = kd, 0 ≤ k ≤ N − 1} , (5)

and
K = {l|l = kD + L2, 0 ≤ k ≤M − 1} , (6)

where L2 = (N − 1)d+ L.

Our objective is to design a sparse array such that the
resulting FO difference co-array has a high number of con-
secutive lags and, at the same time, contains no holes. For
this purpose, we derive the mathematical relationships between
parameters D,L and the maximum achievable number of lags.

B. Determination of Parameters D and L

Let us consider the FO co-arrays resulting from the array
geometry under consideration. We start with the SO difference
co-array of J . Denote � and ⊕, respectively, as the SO dif-
ference and sum co-array operators, respectively [7]. From Eq.
(5), the SO difference and sum co-arrays of J , respectively,
can be written as follows:

J � J = {l|l = kd,−(N − 1) ≤ k ≤ N − 1} , (7a)

J ⊕ J = {l|l = kd, 0 ≤ k ≤ 2(N − 1)} . (7b)

From Eqs. (5) and (7), the third-order and FO difference co-
arrays of J have the virtual sensors positioned at:

J � J � J = {l|l = kd,−2(N − 1) ≤ k ≤ N − 1} , (8)

J �J ⊕J �J = {l|l = kd,−2(N − 1) ≤ k ≤ 2(N − 1)} .
(9)

From Eq. (9), the FO difference co-array of J results in 4N−3
consecutive elements with an inter-element spacing of d. It
can be observed in Eqs. (6) and (8) that, if the inter-element
spacing is set as D = (3N − 2)d, then K � J ⊕ J � J will
result in a uniform linear array with sensors in J ⊕ J � J
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Fig. 2. A step-wise illustration of non-negative co-array lags for the proposed
array design (N = 2,M = 3).

wrapped around each element of sub-array 2. However, this
choice of D will result in holes at other locations in the FO
difference co-array.

In the following, we consider the optimal selection of
parameters D and L such that the resulting FO difference co-
array does not contain any holes. For notational simplicity, we
will consider in the sequel only the non-negative portion of the
difference co-arrays due to their conjugate-symmetry property.
The virtual sensors in the SO difference co-array of the second
sub-array K are located at:

K �K = {l|l = kD, 0 ≤ k ≤M − 1} , (10)

which expresses the difference co-array due to the difference
in the location of elements in the sub-array 2. If the actual
sensor positions are also included as the SO difference co-
array between K and the first sensor (located at origin J0) of
sub-array J , we can write:

(K �K)† = {l|l = kD, 0 ≤ k ≤M − 1} ∪ K. (11)

On the other hand, the elements in the sum co-array of sub-
array 2 has the following locations:

K ⊕K = {l|l = kD + 2L2, 0 ≤ k ≤ 2 (M − 1)} , (12)

which is the set of co-array locations due to the sum in the
location of elements in sub-array 2. Similarly, if the actual

elements of K are included as the SO sum co-array between
K and the 0th sensor of sub-array J , we have:

(K ⊕K)† = {l|l = kD + 2L2, 0 ≤ k ≤ 2 (M − 1)} ∪ K.
(13)

If D = (2N − 1)d, from Eqs. (7) and (11), it can be
observed that:

(K�K)† ⊕J �J = {l|l = k1d} ∪ {l|l = L2 + k2d} , (14)

where 0 ≤ k1 ≤ (M − 1)(2N − 1) +N − 1 and −N + 1 ≤
k2 ≤ (M − 1)(2N − 1) +N − 1. Similarly,

(K⊕K)†�J �J = {l|l = k1d+ L2}∪ {l|l = 2L2 + k2d} ,
(15)

where 2N − 1 ≤ k1 ≤ (M − 1)(2N − 1) and −2(N −
1) ≤ k2 ≤ 2(M − 1)(2N − 1). Analyzing Eqs. (14) and (15),
it is clear that the two co-arrays (K � K)† ⊕ J � J and
(K⊕K)† �J �J have the holes in the positive half only at
two locations which are from (2N − 1)(M − 1) + N − 1 to
L2− (2N −1) and from L2+2(N −1)M to 2L2−2(N −1).
(K⊕K)†�K�J can be used to fill these gaps; however, this
co-array consists of several sub-arrays of length N such that
we can only use one N -element patch from this co-array at
each of the above-mentioned gaps and we can fill these gaps
perfectly if and only if the following relation is held:

L = (2MN +N −M)d. (16)

This completes our objective of no-hole two-level sparse array
with the value of D determined as

D = (2N − 1)d. (17)

C. Determination of Number of Lags

Let us re-write Eq. (6) in terms of the newly determined
values of parameters D and L, i.e.,

K = {l|l = (2MNd+ 2(k + 1)N −M − k − 1)d}, (18)

where 0 ≤ k ≤M−1 and the last element of K should be
at location (4MN − 2M)d. Let S = J ∪K denote the entire
sensor array location set. The virtual elements in the FOC
difference co-array of S will have the locations at S�S⊕S�S .
Now, from Eq. (18), the last element of the FO difference co-
array of the entire array structure (S � S ⊕ S � S) should be
at location (8MN − 4M)d. Since the resulting FO difference
co-array is symmetric and does not contain any hole, the total
number of elements in the FO difference array S�S⊕S�S is
16MN−8M+1. Fig. 2 shows one such array configuration for
M = 3 and N = 2 and the corresponding sum and difference
co-arrays.

Table I illustrates the comparison of different sparse ar-
ray structures and the total number of consecutive lags for
the corresponding FO difference co-arrays, whereas Table II
compares the number of consecutive lags for each co-array
structure where the total number of physical sensors is chosen
to be 5, 9, 11, and 12. It can be observed that the proposed
array structure yields the greatest number of consecutive lags
for M + N < 12. It is important to note that [18, 19] and
[20] mainly focus on increasing the number of sub-arrays
while ignoring the DOF provided by the effective utilization of



TABLE I. COMPARISON OF DIFFERENT SPARSE ARRAY STRUCTURES

FOR FOC-BASED DOA ESTIMATION

Array structure No. of sensors No. of consecutive lags

4-L FO-NA [18]
∑4

i=1 Mi + 1
2
∏4

i=1 (Mi + 1) +
2
∏3

i=1 (Mi + 1)− 1

3-L FO-NA [19]
∑3

i=1 Mi
2(3M3 + 2)M2(M1 +

1)− 4M3 − 3

3-L FO-CPA [20]
∑3

i=1 Mi − 1
4M1M2M3 + 3M1M2 +
2M1M3 − 2M2M3 +
M1 − 2M2 + 2M3 − 1

Proposed 2-L FO-NA M + N 16MN − 8M + 1

inter-element and inter–sub-array spacings. However, we have
used the optimized inter-element and inter–sub-array spacings
which result in an increased DOF for a small number of
sensors for the case of a 2-L NA structure. Moreover, for
the sparse array with 11 sensors, the proposed array structure
provides 441 consecutive lags, greater than the consecutive
lags provided by any of the other structures, which is sufficient
for many practical applications.

Since we have 16MN−8M+1 consecutive lags in the FO
difference co-array for the sparse array design considered in
Fig. 1, Eq. (3) provides the cumulant matrix of order (K+1)×
(K+1), where K = 8MN−4M+1. After the calculation of
the cumulant matrix, subspace based methods like MUSIC can
be readily exploited for efficient DOA estimation. The MUSIC
spectrum can be calculated using:

PMUSIC(θk) =
1

aH(θk)VVHa(θ)
, (19)

where V is the noise subspace consisting of K − Q eigen-
vectors of C corresponding to its K − Q least significant
eigenvalues and a(θ) is the steering vector in the direction
of angle θk.

IV. SIMULATION RESULTS

In this section, we present simulation results to demonstrate
the performance of the proposed array structure and compare
it with existing methods. We consider 40 independent sources,
uniformly distributed between −60o and 60o, impinging on the
sparse linear array consisting of 7 sensors (M = 3, N = 4).

TABLE II. NUMBER OF CO-ARRAY LAGS ACHIEVED BY DIFFERENT

SPARSE ARRAY STRUCTURES FOR FOC-BASED DOA ESTIMATION

Array Structure
No. of
sensors

Configuration
No. of

consecutive
lags

4-L FO-NA [18] 5 (1, 1, 1, 1) 47
3-L FO-NA [19] 5 (1, 2, 2) 53
Proposed 2-L FO-NA 5 (2, 3) 81

4-L FO-NA [18] 9 (2, 2, 2, 2) 215
3-L FO-NA [19] 9 (3, 3, 3) 249
3-L FO-CPA [20] 9 (4, 3, 3) 189
Proposed 2-L FO-NA 9 (4, 5) 289

4-L FO-NA [18] 11 (3, 3, 2, 2) 383
3-L FO-NA [19] 11 (4, 3, 4) 401
2-L FO-CPA [20] 11 (4, 3, 5) 293

Proposed 2-L FO-NA 11 (5, 6) 441

4-L FO-NA [18] 12 (3, 3, 3, 2) 511
3-L FO-NA [19] 12 (4, 4, 4) 541
3-L FO-CPA [20] 12 (6, 4, 3) 375

Proposed 2-L FO-NA 12 (6, 6) 529
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(d) MUSIC spectrum of the proposed 2-L nested array

Fig. 3. Normalized MUSIC spectrum for the proposed and existing DOA
estimation techniques [18–20] (DOA = 40 sources uniformly distributed from
−60o to 60o, 500,000 snapshots, noise-free).



Noise-free conditions are considered and 500, 000 snapshots
are used for DOA estimation. The FO difference co-arrays
used in [18–20] and the proposed structure were considered
having 107, 133, 85 and 169 consecutive lags, respectively. For
DOA estimation, only consecutive lags are considered and the
MUSIC algorithm has been applied to the resulting spatial
smoothing matrix of estimated cumulants.

It can be observed from Fig. 3 that, by using the existing
array designs, we are not able to resolve all the 40 sources.
On the other hand, all the sources are successfully resolved
if the proposed sparse array structure is used. This illustrates
the improved resolution capability and higher number of DOFs
offered by the proposed 2-L nested array structure.

V. CONCLUSION

In this paper, we have presented a novel two-level nested
sparse array configuration for the case of fourth-order cumu-
lants based DOA estimation which utilizes the optimized inter-
element and inter–sub-array spacings. The array is designed
to yield a non-hole co-array with the maximum number of
virtual sensors. Simulation results show that the proposed array
configuration outperforms the existing array configurations by
resolving more sources in the case of less number of sensors.
Moreover, the absence of any holes in the difference co-array
makes the proposed configuration attractive for a variety of
DOA estimation algorithms.
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