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Abstract—Sparse arrays, such as nested arrays and coprime
arrays, can achieve a high number of degrees of freedom (DOFs)
for direction of arrival (DOA) estimation with a reduced number
of antennas. On the other hand, the compressive measurement
method provides an effective way to reduce the number of front-
end circuit chains. In this paper, we generalized current works on
the two categories of methods to a compressed sparse array (CSA)
scheme which combines the compressive measurement method
and the sparse array together to significantly reduce the system
complexity. After introducing the proposed scheme, the Cramér-
Rao bound (CRB) of the proposed CSA scheme is derived. We
then determine the corresponding existing conditions of the CRB,
based on which the number of DOFs is derived and examined
for the first time. It is proved that, for a CSA which compressed
the output of an L-element sparse array to M < L chains, a
higher number of DOFs is obtained as compared to that of the
M -element array with the same sparse structure. Furthermore,
the DOA estimation accuracy using the M -chain CSA is higher
than that using the M -element sparse array due to the extended
array aperture. Numerical simulations verify the superiority of
the proposed CSA scheme.

Index Terms—Compressive sensing, Cramér-Rao bound, DOA
estimation, information theory, sparse array.

I. INTRODUCTION

D IRECTION of arrival (DOA) estimation is an important
field in array signal processing, and uniform linear array

(ULA) is a popular array structure for this purpose [1], [2].
It is well known that, in order to achieve a high DOA
estimation accuracy, a large ULA aperture is required. In this
case, the number of the array elements and, subsequently, the
number of front-end circuit chains that are connected with
the antennas, also increase, thus leading to a high system
hardware complexity and cost. Two categories of methods have
been proposed to overcome the drawbacks involved in ULA,
namely, the sparse array structure [3], [4], [5], [6], [7] and the
compression matrix method [8], [9], [10].

Sparse array structures, such as nested arrays [3] and cop-
rime arrays [4], [5], [6], are attractive because they provide ef-
fective means to estimate the direction of O(L2) sources with
only O(L) antennas. The auto-correlation information of the
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received signal vector is treated as a virtual received signal on
the difference coarray in sparse array-based DOA estimation
methods. In this case, DOA estimation based on sparse arrays
is similar to the estimation of DOAs of coherent sources,
which yields a rank-deficient covariance matrix. As such, for
subspace-based DOA estimation algorithms, such as multiple
signal classification (MUSIC) [11] and estimation of signal
parameters via rotational invariance techniques (ESPRIT) [12],
it is essential to exploit the spatial smoothing technique in
order to recover the rank of the covariance matrix of the
coarray [13], [14]. Furthermore, for some sparse arrays, such
as coprime arrays, there exist holes in the coarray. Because
only the consecutive lags in the coarray can be exploited to
perform spatial smoothing, the number of degrees of freedom
(DOFs) is decreased due to the existence of these holes. To
address this drawback, several coarray interpolation methods
have been proposed [15], [16], [17]. Another simple and
effective way to estimate DOAs is using the algorithms based
on compressive sensing (CS) [18]. CS-based DOA estimation
algorithms can utilize the full DOFs offered by all unique
auto-correlation lags without performing spatial smoothing or
coarray interpolation.

The compression matrix method, first proposed in [8], [9],
is a more general approach to reduce the system complexity.
It introduces a complex compression matrix Φ ∈ CM×L
at the antenna outputs, where M is the number of circuit
chains and L is the number of antennas with M < L.
For an arbitrary compression matrix Φ, the multiplication
of Φ with the received signal vector is essentially a linear
combination which effectively reduces the dimension of the
signal vector from L to M . The compression matrix Φ is
commonly designed by choosing its entries from independent
and identically distributed (i.i.d.) random entries. In addition,
Φ is a time-invariant matrix, which means that Φ keeps
unchanged during an estimation period. In this case, however,
the compression operation results in a loss in the Fisher
information matrix (FIM). When a ULA is used as the receive
antenna array, such loss can be characterized by a factor of
(L − M)/L [19]. To avoid the information loss, optimized
design for the compression matrix Φ has been proposed [10],
[20], [21], where a ULA is used as the receive antenna
array. In this case, to obtain a high estimation accuracy, a
massive number of physical antennas is still need. As such, the
complexity and cost of the antenna part remain high, although
the number of front-end circuit chains is effectively reduced.
To solve the problem, the coprime array was exploited as
the receive antenna array in [22]. However, reference [22]
only proposed the basic configuration of using the coprime
array as the receive array. Some strict assumptions were
made and the corresponding performance was not analyzed. In
addition, the compression matrix Φ is randomly drawn from
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a Gaussian distribution, thus resulting in a degradation on the
estimation accuracy. Moreover, the switched-element system
proposed in [23] introduced a similar structure but with a
time-variant binary selection matrix to reduce the number of
circuit chains. There are two key differences between [23]
and the compression method. First, the selection matrix in
[23] consists of binary integers (1 and 0) to switch on and
off the antennas, whereas the compression matrix used in our
method generally has full complex-valued entries. Second, the
selection matrix is time-variant based on the different subarray
structures, whereas the compression matrix keeps unchanged
during each estimation period.

In this paper, we develop a general compressive measu-
rement scheme, referred to as the compressed sparse array
(CSA), which combines the compression matrix and the sparse
array together. The CSA takes an arbitrary sparse array as
the receive antenna array, and then exploits a combining
network to compress the dimension of the received signal
vector from L to M where M < L. Hence, the numbers
of both the physical antennas and the front-end circuit chains
are significantly reduced. We also propose an improved CS-
based DOA estimation approach by which, unlike the approach
proposed in [22], the knowledge on the noise power is no
longer required. In addition, Φ is optimized in this paper
by maximizing the Shannon mutual information between the
compressed measurements and the DOAs when the a prior
probability distribution of the DOAs is available. The Cramér-
Rao bound (CRB) for DOA estimation using CSA and the
corresponding existing conditions are derived to analyze the
performance and determine the number of DOFs acquired by
the CSA. An interesting result is that, for a given number of
circuit chains, the proposed CSA scheme involves a higher
number of receive antennas than the classical sparse array
structure. As a result, the proposed CSA scheme can obtain a
higher number of DOFs and a better DOA estimation accuracy
than the classical sparse array structure.

To clearly show the contributions of this paper, the diffe-
rence between [22] and this paper is highlighted as follows.
a) The most important difference is that the performance of

CSA in terms of the CRB and the corresponding existence
conditions are analyzed in this paper. Based on the CRB
existence conditions, the number of the achieved DOFs is
analyzed for the first time.

b) In [22], only the coprime array is considered, while in this
paper we consider a general class of sparse linear array
structures. Furthermore, we compare the performance when
different sparse array configurations are used.

c) The compression matrix Φ is randomly selected from
Gaussian distribution in [22], thus causing a relatively
high information loss in the compression operation. In this
paper, Φ is optimized based on the a prior probability dis-
tribution, thereby improving the DOA estimation accuracy.

d) The noise power is assumed to be known for the DOA
estimation approach proposed in [22], whereas in this
paper, this assumption is not necessary for the proposed
DOA estimation approach.

e) In [22], the compression operation is assumed to be noise-
free, which is a strict assumption. In practice, the com-

pression operation is realized by introducing a combining
network which is often implemented in analog circuits
consisting of phase shifters and summators. Additional
noise will occur when the signals go through the combining
network. Thus, the model proposed in this paper is more
general.

This paper is organized as follows. In Section II, we
introduce the system model of the CSA and review a high-
resolution DOA estimation approach. The proposed CS-based
DOA estimation approach and the optimization of the com-
pression matrix Φ are described in Section III. Some prelimi-
naries for the CRB are reviewed in Section IV. Then, in Section
V, we derive the expression of the CRB for the normalized
spatial frequencies based on the proposed CSA scheme and the
corresponding conditions under which the CRB exists, and the
number of DOFs is analyzed based on the existence conditions.
Simulation results are presented in Section VI to examine the
effectiveness. Section VII concludes this paper.

Notations: we use the lower-case letter (e.g., a), lower-case
bold letter (e.g., a), and upper-case bold letter (e.g., A) to
represent the scalars, vectors and matrices, respectively. The
superscripts ∗, T and H denote the complex conjugate, the
transpose and the complex conjugate transpose, respectively.
In addition, vec(·) and E(·) are used to represent the vectori-
zation and expectation operations. The diagonal matrix whose
diagonal entries are given in a is expressed by diag(a). More-
over, tr(A) means the trace of matrix A. j =

√
−1 is the unit

imaginary, and IL is the L×L identity matrix.⊗ and ◦ are used
to represent the Kronecker product and Khatri-Rao product
(column-wise Kronecker product). For instance, the Khatri-
Rao product between two matrices A = [a1, · · · ,ac] and
B = [b1, · · · ,bc] is given as A◦B = [a1⊗b1, · · · ,ac⊗bc].
bac means the maximum integer that is lower than or equal
to a. We use the triangle bracket 〈xS〉n to represent the
value corresponding to the support n ∈ S. For example,
let xS = {2, 3, 4} and S = {−1, 0, 1}. Then, we have
〈xS〉−1 = 2, 〈xS〉0 = 3 and 〈xS〉1 = 4.

II. THE PROPOSED CSA SCHEME

The proposed CSA scheme is introduced in this section.
First, the system model of the CSA is set up. Then, based
on this system model, we review a high resolution DOA
estimation approach, named compressive sensing minimum
variance distortionless response (CS-MVDR), which has been
proposed in [22].

A. System Model

Consider Q uncorrelated far-field narrowband sources with
directions θ = [θ1, θ2, · · · , θQ]T impinging on a sparse
array consisting of L omni-directional antennas with locations
{d1d0, d2d0, · · · , dLd0}, where d0 = λ/2 is the unit
inter-element spacing with λ denoting the wavelength of the
sources. In addition, S = {d1, d2, · · · , dL} is an integer
set indicating the physical antenna positions in terms of d0.
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Fig. 1. System model.

Without loss of generality, we set d1 = 0. Then, the received
signal vector xS(t) ∈ CL is expressed as

xS(t) = [aS(ω1), · · · ,aS(ωQ)]s(t) + v(t)

= ASs(t) + v(t),
(1)

where aS(ωq) = [ej2πd1ωq , · · · , ej2πdLωq ]T is the steering
vector of the q-th source and ωq = (d0/λ) sin θq is the spatial
frequency of the q-th source with q = 1, 2, · · · , Q. AS is
referred to as the manifold matrix of S, and s(t) is the complex
amplitude vector of the sources. In addition, t is the time
index and v(t) ∈ CL, referred as the signal noise, is the
white Gaussian noise vector involved in the received signals.
It is noted that v(t) is assumed to be uncorrelated at different
antennas, and the yielding covariance matrix of v(t) is thus
diagonal.

Define the difference coarray corresponding to S as

D = {µ− ν|µ, ν ∈ S}. (2)

Then, the corresponding manifold matrix of the difference
coarray is

AD = [aD(ω1), · · · ,aD(ωQ)]. (3)

Denote {d(D)
1 , · · · , d(D)

|D| } as the lags in coarray D in the
ascent order, where |D| represents the cardinality of D. Then,
aD(ωq) = [ej2πd

(D)
1 ωq , · · · , ej2πd

(D)
|D|ωq ]T is the steering vector

of the coarray associated with the q-th source. As demonstrated
in [24], the relationship between AS and AD is expressed as

A∗S ◦AS = JAD, (4)

where J is the binary matrix as defined in Definition 1.

Definition 1. [24] Denote B as the binary set which consists
of 0 and 1. The i-th column of J ∈ B|S|2×|D| is defined as

〈J〉:,i = vec (I (i)) , i ∈ D,

where I (i) is given by

〈I (i)〉n1,n2
=

{
1 if n1 − n2 = i,
0 otherwise,

where n1, n2 ∈ S.

As proposed in [8], [9], a combining network is inserted
after the antenna outputs to decrease the number of required
front-end circuit chains, thus reducing the hardware complex-
ity and cost. The system model is depicted in Fig. 1. While
it is similar to that in [10], it is noted that, reference [10]
assumed a ULA, whereas the receive antenna array in Fig.
1 is a sparse array. The function of the combining network
can be described as a compression matrix Φ ∈ CM×L. Then,
the output signal vector of the combining network, denoted as
y(t) ∈ CM , is expressed as

y(t) = ΦxS(t) + w(t)

= ΦASs(t) + n(t),
(5)

where w(t) ∈ CM is the white Gaussian measurement
noise vector induced by the combining network, and n(t) =
Φv(t) + w(t) is the total noise.

Assume that the sources follow a stochastic model [25] and
are uncorrelated to each other. In addition, v(t) and w(t) are
assumed to be mutually independent white Gaussian noise,
which are also independent of the sources, with mean zero
and covariance matrices pvIL and pwIM , respectively. Then,
we can express the covariance matrix of y(t) as

Ryy = E[y(t)yH(t)]

= ΦASRssA
H
S ΦH + pvΦΦH + pwIM ,

(6)

where Rss = diag([p1, p2, · · · , pQ]) is the covariance matrix
of the sources with pq denoting the power of the q-th source.

In practice, Ryy is estimated using a finite number of
snapshots. In this case, the sample covariance matrix R̃yy is
expressed as

R̃yy =
1

T

T∑
t=1

y(t)yH(t), (7)

where T is the number of snapshots.

B. High Resolution DOA Estimation Approach

The CS-MVDR beamformer was proposed in [21] to
achieve high-resolution DOA estimation with a reduced num-
ber of front-end circuit chains. In this section, we briefly
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introduce the CS-MVDR algorithm. It is noted that coarrays
are not used in CS-MVDR. More specifically, the CS-MVDR
algorithm estimates the DOAs by directly applying the covari-
ance matrix of received signal vector. Thus, CS-MVDR does
not take the advantages of coarrays to increase the number of
DOFs.

Given T samples of the compressed received signal, we first
compute the corresponding covariance matrix R̃yy using (7).
Then, the source DOAs can be estimated by searching the
peaks of the following spatial spectrum [21]:

PCS−MVDR(ω) =
1

L

(ΦaS(ω))
H

(ΦaS(ω))

(ΦaS(ω))
H

R̃−1
yy (ΦaS(ω))

. (8)

The values of ω corresponding to the first Q peaks of
PCS−MVDR(ω) indicate the estimated spatial frequencies,
which are uniquely associated with the DOAs.

When compression is not performed, i.e., Φ is an identity
matrix, (8) is simplified as

PCS−MVDR(ω) =
1

aHS (ω)R̃−1
yyaS(ω)

, (9)

where the fact that aHS (ω)aS(ω) = L is utilized. In this case,
the CS-MVDR degenerates to the standard MVDR algorithm.

III. IMPROVED APPROACHES FOR DOA ESTIMATION

In this section, we first propose the CS-based DOA estima-
tion approach with improved DOF, where the assumption on
the noise power is no longer required. Then, the optimization
procedure of the compression matrix Φ for the CSA scheme
is proposed, where the maximum mutual information criterion
is utilized.

A. DOA Estimation Approach with Improved DOF

The approach proposed in this subsection is based on the
coarray approach, and the CS method is used to resolve more
sources than the number of antennas. Vectorizing (6), we
obtain

ryy = vec(Ryy)

= (Φ∗ ⊗Φ)(A∗S ◦AS)p

+ pv(Φ
∗ ⊗Φ)vec(IL) + pwvec(IM ),

(10)

where the property vec(AXB) = (AT ⊗ B)vec(X) is
utilized [26]. Denote Ψ = [(Φ∗ ⊗ Φ)(A∗S ◦ AS), (Φ∗ ⊗
Φ)vec(IL), vec(IM )] and b = [pT , pv, pw]T , where p =
[p1, p2, · · · , pQ]T denotes the source power vector. Then, (10)
can be rewritten as

ryy = Ψb. (11)

By dividing the entire spatial domain into a grid denoted
by ω(g) = [ω

(g)
1 , · · · , ω(g)

G ]T , where G � Q, we can obtain
a sparse vector p◦ consisting of G entries, in which only the
Q entries corresponding to the true DOAs are non-zero. Thus,
the corresponding sensing matrix Ψ(g) and the sparse vector
b◦ are given by Ψ(g) = [(Φ∗ ⊗ Φ)((A

(g)
S )∗ ◦A

(g)
S ), (Φ∗ ⊗

Φ)vec(IL), vec(IM )] and b◦ = [p◦T , pv, pw]T , respectively,
where A

(g)
S = [aS(ω

(g)
1 ), · · · ,aS(ω

(g)
G )] is the manifold matrix

with respect to ω(g). Thus, b◦ can be recovered by solving
the following constrained minimization problem

b̃◦ = arg min
b◦
‖b◦‖0 s.t. ‖ryy −Ψ(g)b◦‖2 < ε, (12)

where ‖b◦‖0 is the l0 norm of b◦, namely, the number of non-
zero entries in b◦, and ε is the user-defined parameter which
is determined mainly based on the error between the sample
covariance matrix and real covariance matrix. Eq. (12) is a
typical CS problem and many existing CS algorithms can be
applied to obtain the optimal b̃◦. In this paper, we use the least
absolute shrinkage and selection operator (LASSO) algorithm
[27], whose objective function is given by

b̃◦ = arg min
b◦

[
1

2
‖ryy −Ψ(g)b◦‖2 + η‖b◦‖1

]
, (13)

where ‖·‖1 and ‖·‖2 represent the l1 and l2 norms, respectively,
and η is the regularization parameter to balance the error and
the sparsity. Hence, the DOAs can be estimated by exploiting
the support of the first G entries in the obtained optimal
solution b̃◦. Different from the approach proposed in [22],
the noise powers are combined with the source powers here.
Hence, the noise powers are not required to be known in this
approach.

B. Optimization of Compression Matrix

In [22], each entry of the compression matrix Φ is drawn
from an i.i.d. random Gaussian distribution CN (0, 1/(M +
L− 1)). As pointed out in [19], randomly selecting Φ results
in information loss. In many scenarios, on the other hand,
the prior knowledge of the DOA distribution is known, thus
making it possible to optimize Φ to obtain a more accurate
estimation. Hereby, we optimize the compression matrix Φ
based on the maximum mutual information criterion [20],
[21] for the proposed CSA scheme. For simplicity, only
the stochastic signal model, where the source signals are
assumed to follow Gaussian distribution, is considered in the
following optimization. However, as demonstrated in [20], the
compression matrix Φ under both deterministic and stochastic
signal models can be optimized based on the maximum mutual
information criterion.

Note that generally the prior distribution is with respect to
the DOA θ rather than to ω = (d0/λ) sin θ. Thus, we use θ
to optimize the compression matrix in this subsection. Denote
f(θ) as the probability density function (pdf) of θ. Discretize
the spatial domain into K equally divided bins with a width
of ∆θ̄, and let p�k = f(θ̄k)∆θ̄, where

∑
k∈K p

�
k = 1 and

K = {1, 2, · · · ,K}. In addition, θ̄k is the nominal angle
corresponding to the k-th bin. Then, the pdf of the compressed
measurement vector is approximated as [21]

f(y) ≈
∑
k∈K

p�kf(y|θ̄k). (14)

For the k-th angular bin at θ̄k, the compressed measurement
vector is

y(t)|θ=θ̄k = Φ[aS(θ̄k)s(t) + v(t)] + w(t). (15)



IEEE TRANSACTIONS ON SIGNAL PROCESSING 5

Since the source signal s(t) follows the Gaussian distri-
bution CN (0, ps) whereas v(t) and w(t) are white Gaus-
sian, y(t)|θ=θ̄k also follows the Gaussian distribution with
CN (0,Ryy|θ̄k), where Ryy|θ̄k is expressed as

Ryy|θ̄k = Φ(psaS(θ̄k)aHS (θ̄k) + pvIL)ΦH + pwIM . (16)

The gradient of the Shannon mutual information I(y; θ)
between the compressed measurement vector y(t) and the
DOA θ with respect to the compression matrix Φ is defined
as

∇ΦI(y; θ) = ∇Φh(y)−∇Φh(y|θ), (17)

where ∇Φ{·} represents the gradient with respect to Φ.
In addition, h(y) = −E{log[f(y)]} and h(y|θ) =
−E{log[f(y|θ)]} represent the differential entropy and the
conditional differential entropy, respectively, of the compres-
sed measurement vector y(t).

Following the derivations in [21] and using (16), we obtain
the gradient ∇ΦI(y; θ) as shown in (18), where | · | means
the determinant of the matrix.

Once the gradient is obtained, we search the optimal
compression matrix Φ by iteratively updating the following
formulation,

Φ(ξ+1) = Φ(ξ) + κ∇Φ(ξ)I(y; θ), (19)

where ξ represents the ξ-th iteration and κ > 0 is the step
size. It is noted that, as a gradient-based algorithm, the above
iteration may fall into local optima. This problem may be
effectively avoided by using several initial values and then
selecting the best result.

IV. PRELIMINARIES ON THE CRB

The CRB for the parameters to be estimated is of great
importance in evaluating the performance of a system in
general, since the covariance of any unbiased estimator under
the same system model is lower bounded by the CRB. For a
random vector x with an arbitrary pdf p(x,α), where α is a
real-valued parameter vector, the FIM is defined as [28]

FIM(α) = −E
{
∂2lnp(x,α)

∂α∂αT

}
. (20)

The FIM is guaranteed to be positive semidefinite [29]. If
the FIM is positive definite, i.e., FIM is invertible, the CRB
is defined as the inverse matrix of FIM:

CRB(α) = FIM−1(α). (21)

Furthermore, for a random vector x that follows a complex
Gaussian distribution with mean zero and covariance matrix
C, the (m,n)-th entry of the FIM can be expressed as [28]

[FIM(α)]m,n = tr

(
C−1 ∂C

∂αm
C−1 ∂C

∂αn

)
. (22)

From the system model, we define the following real-valued
parameter vector,

α =
[
ωT ρT pv pw

]T
, (23)

where ω = [ω1, · · · , ωQ]T and ρ = [p1, · · · , pQ]T . Under
the previous assumptions, each snapshot of the signal vector
y(t) follows the Gaussian distribution with mean zero and
covariance matrix Ryy. By stacking the snapshots on top of
the other, we have the following complex Gaussian distribution

[
y(1)T ,y(2)T , · · · ,y(T )T

]T ∼ CN (0, IT ⊗Ryy) . (24)

Substituting (24) into (22), the (m,n)-th entry of the FIM
exploiting the T i.i.d. measurement vectors is expressed as

[FIM(α)]m,n = T tr

(
R−1

yy

∂Ryy

∂αm
R−1

yy

∂Ryy

∂αn

)
. (25)

Given the following properties [26]

tr(XY) = (vec(X)H)Hvec(Y),

vec(XYZ) = (ZT ⊗X)vec(Y),
(26)

(25) can be further simplified as

[FIM(α)]m,n=T

[
vec

(
∂Ryy

∂αm

)]H(
R−Tyy ⊗R−1

yy

)
vec

(
∂Ryy

∂αn

)
= T

[(
RT

yy ⊗Ryy

)− 1
2
∂ryy

∂αm

]H [(
RT

yy ⊗Ryy

)− 1
2
∂ryy

∂αn

]
,

(27)

where ryy is defined in (10). Since the DOAs are the para-
meters of interest, the parameter vector α can be devided into[
ωT | ρT pv pw

]T
. Thus, (27) is rewritten as

FIM(α) = T

[
GH

∆H

] [
G ∆

]
, (28)

where G and ∆ are defined as

G =
(
RT

yy ⊗Ryy

)− 1
2

[
∂ryy

∂ω1
, · · · , ∂ryy

∂ωQ

]
, (29)

∇ΦI(y; θ) ≈

∑
k∈K

p�k

∣∣∣∣Ryy|θ̄k
pv

∣∣∣∣−1[Ryy|θ̄k
pv

]−1

Φ

(
ps
pv

aS(θ̄k)aHS (θ̄k) + IL

)
∑
k∈K

p�k

∣∣∣∣Ryy|θ̄k
pv

∣∣∣∣−1 −
∑
k∈K

p�k

[
Ryy|θ̄k
pv

]−1

Φ

(
ps
pv

aS(θ̄k)aHS (θ̄k) + IL

)
,

(18)
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∆ =
(
RT

yy ⊗Ryy

)− 1
2

[
∂ryy

∂p1
, · · · , ∂ryy

∂pQ
,
∂ryy

∂pv
,
∂ryy

∂pw

]
.

(30)
If the FIM is invertible, the CRB for ω = [ω1, · · · , ωQ]T

can be given as the inverse of the Schur complement of the
block ∆H∆ of the FIM [30]

CRB(ω) =
1

T

(
GHΠ⊥∆G

)−1
, (31)

where Π⊥∆ = I−∆(∆H∆)−1∆H .

V. PERFORMANCE ANALYSIS OF THE PROPOSED CSA
SCHEME

In this section, we first give the existence conditions of the
CRB based on the proposed CSA scheme and analyze the
number of DOFs of the proposed CSA. Then, the improvement
of the CSA on the number of DOFs is intuitively demonstrated
by using different sparse arrays as the receive array. Finally,
the CRB expression is derived.

A. Analysis on the Number of DOFs

From (31), we observe that the existence of the CRB, i.e.,
the nonsingularity of the FIM, is equivalent to the nonsigula-
rity of ∆H∆ and GHΠ⊥∆G (Lemma 1 in [24]). To obtain
the condition under which the CRB exists, we propose the
following two lemmas. Note that J is a binary matrix defined
in Definition 1.

Lemma 1. Let V0 = Φ∗ ⊗ Φ and WD =
[V0JAD,V0Je0, vec(IM )] with e0 satisfying vec(IL) = Je0.
If rank(WD) = Q+ 2, then ∆H∆ is nonsingular.

Proof. See Appendix A.

Lemma 2. Define the augmented coarray manifold matrix as
VD = [V0Jdiag(D)AD,WD]. If VD is full column rank, i.e.,
rank(VD) = 2Q+ 2, then GHΠ⊥∆G is nonsingular.

Proof. See Appendix B.

It is clear that Lemma 1 always holds when Lemma 2
is satisfied. Hence, Lemma 2 is the rank condition for the
existence of the CRB based on CSA. From Lemma 2, we
can find that the rank condition depends on the following
factors: the compressive matrix Φ, the coarray lags D, the
spatial frequencies ω, e0, and vec(IM ). Thus, we have the
following corollaries on the rank condition.

Corollary 1. If M2 > |D|, then, for any choice of Q distinct
DOAs, rank(VD) < 2Q + 2, i.e., the FIM is singular, when
Q > (|D| − 1)/2.

If M2 ≤ |D|, then, for any choice of Q distinct DOAs,
rank(VD) < 2Q + 2, i.e., the FIM is singular, when Q >
b(M2 − 2)/2c.

Proof. See Appendix C.

Corollary 1 gives the maximum number of DOFs that the
CSA can achieve. It is worth noting that, for some values of
Q distinct DOAs, the FIM is nonsingular when Q approaches

(|D|−1)/2 with M2 > |D| or b(M2−2)/2c with M2 ≤ |D|. In
contrast, for some other values of the DOAs, the FIM may be
singular before Q achieves the number of DOFs in Corollary
1. To show the superiority of the CSA in terms of the number
of DOFs, we provide the following theorem.

Theorem 1. Consider a CSA with M front-end circuit chains
based on an L-element sparse array with an arbitrary linear
configuration, where L > M . Let N be the number of
overlapping lags. If N > 2, the CSA can obtain a higher
number of DOFs than the M -element sparse array with the
same configuration.

Proof. See Appendix D.

We will explain the meaning of ”the same configuration”
in next subsection by taking some sparse arrays with nested
structure as instance. From Theorem 1, we can straightfor-
wardly have the following corollary.

Corollary 2. If the number of front-end circuit chains M is
higher than 3 and L > M , then, for any sparse linear array
configuration, the number of DOFs of the M -chain CSA is
always higher than that of the M -element sparse array with
the same configuration.

Proof. For sparse arrays, the number of overlapping lags in
the 0-th position is M − 1. Thus, if M > 3, we have N > 2.
According to Theorem 1, if L > M , the number of DOFs
for CSA is always higher than that of the M -element sparse
array.

From the previous corollaries, we can find that the impro-
vement on the number of DOFs of the CSA is closely related to
the number of unique lags in the coarray, i.e., the redundancy
of the sparse array. A better improvement can be obtained
when the array structure has a higher redundancy. However, it
does not mean that a higher number of DOFs can be obtained
by using sparse arrays which have higher redundancy. The
reason is that the number of DOFs of a CSA also depends on
the number of DOFs of the sparse array before compression
as indicated by Corollary 1.

B. Examples of Sparse Arrays with Nested Structure

The sparse array with nested structure has a hole-free
coarray, which is an important aspect in designing a sparse
array structure. In addition, unlike the minimum redundancy
array (MRA) [31], the nested sparse array structures have a
closed-form expression on the antenna positions. Thus, we
show the superiority of the proposed CSA scheme on the
number of DOFs by considering the ULA and the following
three nested structures, i.e., the nested coprime array with
compressed inter-element spacing (N-CACIS) [6], the nested
coprime array with displaced subarrays (N-CADiS) [6], and
the nested array [3]. The corresponding array configurations
are depicted in Fig. 2. To maximum the number of DOFs, the
values of N1 and N2 are selected as{

N1 = L/2, N2 = L/2, for even L,
N1 = (L− 1)/2, N2 = (L+ 1)/2, for odd L, (32)
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0 1 1 1N 2 1N0 1

subarray 1 subarray 2

1 01N d

(c)

Fig. 2. Array configurations of (a) N-CACIS, (b) N-CADiS, and (c) nested array.

where L ≥ 3. Note that, when L = 2, all the sparse array
configurations are same, namely, two antennas with unit inter-
element spacing. As mentioned before, the sparse array with
the same configuration means that, for example, if N-CACIS
is exploited, then, the number of antennas in each subarray of
both the L-element N-CACIS and the M -element N-CACIS
is determined as indicated in (32) and the antennas are placed
under the N-CACIS configuration as shown in Fig. 2(a).

To quantitatively illustrate the superiority of the proposed
CSA, we summarize the improvement on the number of DOFs
of a CSA based on the N-CACIS, N-CADiS, nested array,
and ULA for odd and even values of L in Table I and Table
II, respectively, where L ≥ 3 is the total number of physical
antennas. Note that the redundancy for all array configurations
is 1 when L = 2. Fig. 3 gives the redundancy versus L for 2 ≤
L ≤ 14. It is clear that the ULA has the highest redundancy.
When L is even, the N-CADiS has lowest redundancy, whereas
when L is odd, the N-CADiS and nested arrays have the same
lowest redundancy.

To show the improvement more clearly, we plot in Fig. 4
the number of DOFs for the ULA and the N-CADiS, with
different values of M ranging from 2 to 14. The ULA-based
M -chain CSA and N-CADiS-based M -chain CSA exploit the
ULA and N-CADiS with 14 antennas as the receive array,
respectively. It is observed that the M -chain CSA can obtain
a higher number of DOFs than the M -element sparse array.
For the ULA, its DOFs are not lost even when the number of
chains is compressed from 14 to 6 while for the N-CADiS, the
number of DOFs is limited by M when M ≤ 10. However,
in this case, the CSA based on the N-CADiS still obtains the
highest number of DOFs.

2 4 6 8 10 12 14

L

0

20

40

60

80

100

120

140

160

180

R
ed
u
n
d
a
n
cy

N-CACIS

N-CADiS

Nested array

ULA

Fig. 3. Redundancy versus L.

C. The CRB Expression

From Lemma 1 and Lemma 2, we can obtain the expression
of the CRB for the normalized spatial frequencies exploiting
CSA, which is given in Theorem 2.

Theorem 2. If the rank of the augmented coarray manifold
matrix VD is 2Q+2, then the CRB for the normalized spatial
frequencies ω = [ω1, · · · , ωQ]T is expressed as

CRB(ω) =
1

4π2T

(
GH

0 Π⊥M0WD
G0

)−1
, (33)

where

G0 = M0V0Jdiag(D)ADdiag([p1, · · · , pQ]), (34)
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TABLE I
NUMBER OF DOFS OF CSA BASED ON POPULAR SPARSE ARRAY CONFIGURATIONS FOR ODD L

Array confiuration Unique lags Redundancy DOF of M -chain CSA

N-CACIS [6]
L2 + 1

2

L2 − 1

2

L2 − 1

4
, M2 >

L2 + 1

2
; bM

2 − 2

2
c, M2 ≤ L2 + 1

2

N-CADiS [6]
L2 + 2L− 1

2

L2 − 2L+ 1

2

L2 + 2L− 3

4
, M2 >

L2 + 2L− 1

2
; bM

2 − 2

2
c, M2 ≤ L2 + 2L− 1

2

Nested Array [3]
L2 + 2L− 1

2

L2 − 2L+ 1

2

L2 + 2L− 3

4
, M2 >

L2 + 2L− 1

2
; bM

2 − 2

2
c, M2 ≤ L2 + 2L− 1

2

ULA 2L− 1 L2 − 2L+ 1 L− 1, M2 > L2 − 2L+ 1; bM
2 − 2

2
c, M2 ≤ L2 − 2L+ 1

TABLE II
NUMBER OF DOFS OF CSA BASED ON POPULAR SPARSE ARRAY CONFIGURATIONS FOR EVEN L

Array confiuration Unique lags Redundancy DOF of M -chain CSA

N-CACIS [6]
L2 + 2

2

L2 − 2

2

L2

4
, M2 >

L2 + 2

2
; bM

2 − 2

2
c, M2 ≤ L2 + 2

2

N-CADiS [6]
L2 + 2L+ 2

2

L2 − 2L− 2

2

L2 + 2L

4
, M2 >

L2 + 2L+ 2

2
; bM

2 − 2

2
c, M2 ≤ L2 + 2L+ 2

2

Nested Array [3]
L2 + 2L− 2

2

L2 − 2L+ 2

2

L2 + 2L− 4

4
, M2 >

L2 + 2L− 2

2
; bM

2 − 2

2
c, M2 ≤ L2 + 2L− 2

2

ULA 2L− 1 L2 − 2L+ 1 L− 1, M2 > L2 − 2L+ 1; bM
2 − 2

2
c, M2 ≤ L2 − 2L+ 1
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Fig. 4. Number of DOFs versus M .

M0 =
(
RT

yy ⊗Ryy

)− 1
2 , (35)

V0 = (Φ∗ ⊗Φ) , (36)

WD = [V0JAD,V0Je0, vec(IM )], (37)

Ryy = ΦASRSA
H
S ΦH + pvΦΦH + pwIM , (38)

AD = [aD(ω1), · · · ,aD(ωQ)], (39)

vec(IL) = Je0. (40)

Here, pq is the power of the q-th source, q = 1, 2, · · · , Q, pv
is the power of the signal noise, and pw is the power of the
measurement noise.

Proof. It is straightforward to prove (33) by substituting (44),
(47), and (48) into (31).

Overall, the superiority of the proposed CSA scheme is
summarized as follows:
a) Given L > M > 3, according to Corollary 2, the M -

chain CSA based on an L-element sparse array can always
obtain a higher number of DOFs than the M -element sparse
array with the same structure. This conclusion applies to
all linear array configurations, including the original and
generalized coprime arrays, nested arrays and the MRA.
Furthermore, since an M -chain CSA is based on the L-
element sparse array where L > M , the corresponding
receive array aperture is always larger than that of the M -
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element sparse array where the number of circuit chains is
the same, thus enabling a higher estimation accuracy than
directly using the M -element sparse array, provided that
the sources are resolvable under both structures.

b) The hardware complexity is reduced by exploiting the
proposed CSA implementation, since the number of front-
end circuit chains is substantially decreased. If the prior
knowledge on DOAs is known, the DOA estimation perfor-
mance loss can be reduced by optimizing the compression
matrix Φ;

c) Compared with using a ULA, using a sparse array can
obtain a much higher number of DOFs and a much larger
aperture with the same number of antennas. For the same
array aperture, using the sparse array can lead to a much
lower cost from the receive array aspect.

VI. SIMULATION RESULTS

Throughout this section, SNR1 and SNR2 are defined in
terms of the signal power ps as

SNR1 =
ps
pv
, SNR2 =

ps
pw
,

respectively. All sources are assumed to have the same power.
In addition, the sources are uncorrelated with each other and
independent to both the signal noise and the measurement
noise. The root mean square error (RMSE) of the estimated
spatial frequency is defined as

RMSE =

√√√√ 1

IQ

I∑
i0=1

Q∑
q=1

(ωq − ω̃(i0)
q )2,

where I is the number of Monte Carlo trials and ω̃(i0)
q is the

estimated normalized spatial frequency of the q-th source in
the i0-th trial. The N-CACIS is used as the receive antenna ar-
ray. Unless otherwise specified, the entries of the compression
matrix Φ are independently drawn from a complex random
Gaussian distribution CN (0, 1). It is noted that the following
simulations aim at evaluating the performance of the proposed
CSA architecture. More specifically, we compare the proposed
CSA, consisting of L antennas and M circuits where L > M ,
with two conventional N-CACIS sparse array structures, one
with M elements and the other with L elements. The values
of M and L are separately determined in each simulation.
As previously analyzed, it is expected that the proposed CSA
achieves a lower system complexity than the L-element N-
CACIS by slightly sacrificing the estimation accuracy. On the
other hand, the propose CSA is expected to outperform the
M -element N-CACIS in terms of both the number of DOFs
and the estimation accuracy aspects due to the extension of
the receive array.

A. Number of DOFs

In this subsection, the M -chain CSA is designed based on
a 10-element N-CACIS. The LASSO algorithm is used to
estimate the spatial frequencies ω which is set as −0.49 +
0.99(q − 1)/Q with q = 1, 2, · · · , Q.

0 5 10 15 20 25 30

Number of sources
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)

10-element N-CACIS
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8-chain CSA
7-element N-CACIS
7-chain CSA
6-element N-CACIS
6-chain CSA

Fig. 5. The CRB versus the number of sources. SNR1 is 0 dB and the number
of snapshots is 5,000.

We first consider the CRBs for both N-CACIS and CSA.
The CRB of the normalized spatial frequencies for the N-
CACIS is plotted as discussed in [24]. Similar results of the
CRB based on the sparse arrays can be found in [32] and
[33]. Meanwhile, the expression of the CRB for the normalized
spatial frequencies based on the CSA is derived in Theorem 2.
For simplicity, we only verify the scenarios where M equals
6, 7, and 8. SNR1 and SNR2 are set as 0 dB and 20 dB,
respectively, and the number of snapshots is 5,000. The results
are plotted in Fig. 5. It is clear that, for N-CACIS with 6, 7,
and 8 antennas, the number of DOFs is respectively 9, 12,
and 16, while 17, 23, and 25 sources can be resolved for the
CSA with 6, 7, and 8 front-end circuit chains. The result is
consistent with Corollary 1.

Then, we examine the spatial spectra in the corresponding
scenarios. In addition, 15, 20, and 23 uncorrelated far-field
narrowband sources are considered for M = 6, 7, and 8,
respectively. The estimated spatial spectra are shown in Fig. 6.
The red dash lines show the true spatial frequencies. We can
find that the M -element N-CACIS cannot resolve the sources,
while the M -element CSA correctly estimated the directions
of the sources. The results confirm that the CSA can estimate
more sources than the N-CACIS when they assume the same
number of front-end circuit chains, M .

B. Estimation Accuracy

In this subsection, we examine the DOA estimation accu-
racy of CSA. Three configurations are taken into account,
namely, the N-CACIS with 10 antennas, the N-CACIS with
8 antennas, and the CSA with 8 chains compressed from 10-
element N-CACIS. Limited by the number of DOFs available
to the 8-element N-CACIS, only 10 sources are considered,
and their directions are set as −0.49 + 0.99(q − 1)/Q with
q = 1, 2, · · · , Q. The LASSO algorithm is used to estimate the
DOAs, and 500 Monte Carlo trials are conducted to calculate
the RMSE. Then RMSE versus SNR1 and the number of
snapshots are plotted in Fig. 7 and Fig. 8, respectively, where
SNR2 is set to 40 dB. In Fig. 7, 2,000 snapshots are used,
and η is set as 0.2. In Fig. 8, 20 dB SNR1 is used, and η
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(b) 7-element N-CACIS
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(c) 8-element N-CACIS
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(d) 6-chain CSA
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(e) 7-chain CSA
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Fig. 6. The spatial spectra under 0 dB SNR1 and 5,000 snapshots: (a) 15 sources with 6-element N-CACIS; (b) 20 sources with 7-element N-CACIS; (c) 23
sources with 8-element N-CACIS; (d) 15 sources with 6-chain CSA; (e) 20 sources with 7-chain CSA; (f) 23 sources with 8-chain CSA.
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Fig. 7. The RMSE versus SNR1. SNR2 is 40 dB and the number of snapshots
is 2,000.

is set as 0.15 for the 10-element N-CACIS and 0.2 for the
8-element N-CACIS and the 8-chain CSA. In this case, the 8-
chain CSA based on 10-element N-CACIS achieves a higher
accuracy as compared to the 8-element N-CACIS. Thus, given
the number of front-end circuit chains, both the number of
DOFs and the estimation accuracy can be improved by using
the CSA structure.

C. Optimization of Compression Matrix

The effectiveness of the optimization procedure for Φ is
examined in this subsection. It is noted that θ in degree is
used here since the prior information is given for θ instead
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Fig. 8. The RMSE versus the number of snapshots. SNR1 is 20 dB and
SNR2 is 40 dB.

of ω. To consider a more general scenario, we assume two
sources θ1 and θ2 which both follow the Gaussian distribution
N (0, 52). Furthermore, the interval between the two sources
is constraint to be larger than 2◦. The 12-element N-CACIS
is compressed to 6 chains here, and the yielding compression
ratio is 2. The CS-MVDR is used to estimated the DOAs
and no coarray operation is performed. For the optimization
procedure, Φ is optimized through 2000 steps with a step size
of 0.01. In addition, as demonstrated in [20], we can optimize
Φ in the high SNR1 region when the exact input SNR1 is
unknown. Here Φ is optimized by using 60 dB SNR1, and
500 Monte Carlo trials are conducted to calculate the RMSE.

Given 100 snapshots and 50 dB SNR2, the RMSE versus
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Fig. 9. The RMSE versus SNR1. SNR2 is 50 dB, and the number of snapshots
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Fig. 10. The RMSE versus the number of snapshots. SNR1 is 40 dB and
SNR2 is 50 dB.

SNR1 is plotted in Fig. 9. Furthermore, the RMSE versus the
number of snapshots is plotted in Fig. 10, where SNR1 is 40
dB and SNR2 is 50 dB. It is evident that using optimized
Φ can obtain a higher accuracy than using randomly selected
Φ. Furthermore, both optimized and randomly selected Φ can
have a much better estimation performance than using the 6-
element N-CACIS. Note in Fig. 10 that the estimation is failed
using the 12-element N-CACIS when the number of snapshots
is 10. One important reason that leads to the gap between
the 6-chain CSA using the optimized Φ and the 12-element
N-CACIS is the constraint on the interval between the two
sources, i.e., the sources do not exactly follow the Gaussian
distribution due to such constraint. Thus, there is still some
information loss even when the optimized Φ is used.

D. Angular Resolution

In this subsection, the angular resolution capability for two
closely spaced sources is evaluated. A 12-element N-CACIS is
compressed to 6 chains. CS-MVDR is performed to estimate
the DOAs. Since no prior knowledge is given here, every entry
in Φ is randomly selected from an independently and identi-
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Fig. 11. The RMSE versus the number of snapshots. Both SNR1 and SNR2

are 20 dB.

cally distributed complex Gaussian distribution CN (0, 1). Two
sources located on 30◦ − ∆θ and 30◦ + ∆θ are considered.
The two sources are supposed to be correctly resolved when
there are two peaks and the estimated DOAs θ̃1 and θ̃2 satisfy
|θ̃1 − θ1| < ∆θ and |θ̃2 − θ2| < ∆θ. In this simulation,
SNR1 and SNR2 are respectively set to 10 dB and 20 dB,
and 100 snapshots are used. ∆θ ranges from 0.1◦ to 4◦ with
step size 0.1◦ from 0.1◦ to 2◦ and step size 0.2◦ from 2◦ to
4◦. The resolution probability is computed through 500 Monte
Carlo trials. The simulation result is shown in Fig. 11. As
expected, the resolution probability of 6-chain CSA is slightly
worse than that of 12-element N-CACIS without compression.
However, the resolution capability of the 6-chain CSA is much
better than that of the 6-element N-CACIS.

VII. CONCLUSION

We developed a generalized structure for compressed sparse
array, which consists of an arbitrary sparse array and a com-
bining network, in order to achieve effective DOA estimation
using a reduced number of front-end chains. By analyzing
the Cramr-Rao bound and its existence conditions, we derived
the analytical expression of the achievable number of degrees
of freedom. It is revealed that, given the same number of
front-end chains, the number of DOFs as well as the DOA
estimation accuracy can be increased by using more sparse
array antennas. The analytical expressions developed in this
paper enabled analytical assessment of the achievable number
of DOFs and optimized design of the sparse array and the com-
bining network. We further optimized the compression matrix
used in the combining network to minimize the information
loss in the process of data combining in order to achieve a
high DOA estimation accuracy.

APPENDIX A
PROOF OF LEMMA 1

Here we first derive the expression for ∆. The partial
derivative of ryy with respect to pq is given by

∂ryy

∂pq
= V0JaD(ωq). (41)
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Similarly, we have

∂ryy

∂pv
= V0Je0, (42)

∂ryy

∂pw
= vec(IM ). (43)

Denote [V0JAD,V0Je0, vec(IM )] as WD. Then, ∆ is ex-
pressed as

∆ =
(
RT

yy ⊗Ryy

)− 1
2 WD. (44)

It is easily to verify that the dimension of WD is M2×(Q+2)
and the rank of ∆ equals the rank of WD.

For ∆H∆, we have the following rank properties

rank(∆H∆) ≥ rank(∆H) + rank(∆)− (Q+ 2)

= 2rank(∆)− (Q+ 2),
(45)

rank(∆H∆) ≤ max{rank(∆H), rank(∆)}
= rank(∆).

(46)

Thus, if ∆ has a full column rank, i.e., rank(WD) = Q+ 2,
then rank(∆H∆) = Q + 2, indicating that ∆H∆ is nonsin-
gular.

APPENDIX B
PROOF OF LEMMA 2

Combining (10) and (29) yields

G =
(
RT

yy ⊗Ryy

)− 1
2 V0J

[
p1
∂aD(ω1)

∂ω1
, · · · , pQ

∂aD(ωQ)

∂ωQ

]
= j2π

(
RT

yy ⊗Ryy

)− 1
2 V0Jdiag(D)ADP,

(47)

where P = diag([p1, · · · , pQ]). For notational simplicity,
denote

(
RT

yy ⊗Ryy

)− 1
2 as M0. Then, we can obtain

GHΠ⊥∆G

4π2
= GH

0 Π⊥M0WD
G0, (48)

where G0 = M0V0Jdiag(D)ADP. Since the projection
matrix Π⊥M0WD

is Hermitian and idempotent [34], an arbitrary
vector u0 satisfies the following inequality

‖Π⊥M0WD
G0u0‖22 ≥ 0. (49)

It is easily to find that the equality in (49) holds if and only if
Π⊥M0WD

G0u0 = 0, which indicates that G0u0 lies in the
column space of M0WD, namely, G0u0 = col(M0WD).
Thus, there exists a vector v0 satisfying

G0u0 = M0WDv0. (50)

Since M0 is positive definite, the following equality is satis-
fied:

V0Jdiag(D)ADPu0 −WDv0 = 0. (51)

Rewrite (51) into a matrix form as[
V0Jdiag(D)AD WD

] [Pu0

−v0

]
= 0. (52)

Hence, if VD = [(Φ∗ ⊗ Φ)diag(D),WD] has a full column
rank, (52) holds if and only if Pu0 is a zero vector, indicating
that u0 is a zero vector.

Combining (52) and (49), for an arbitrary non-zero vector
u0, if the rank of VD is 2Q+ 2, (49) is simplified to

‖Π⊥M0WD
G0u0‖22 > 0. (53)

As such, GHΠ⊥∆G is positive definite and nonsingular, which
completes the proof.

APPENDIX C
PROOF OF COROLLARY 1

Rewrite VD as VD = [V0J[diag(D)AD,AD, e0], vec(IM )]
and denote V̂D = [diag(D)AD,AD, e0]. The dimension of
V̂D is |D| × (2Q + 1). Thus, if M2 > |D|, then, for any
choice of Q distinct DOAs, the following inequalities hold
when Q > (|D| − 1)/2,

rank(VD) ≤ rank(V0JV̂D) + 1

≤ rank(V̂D) + 1

≤ |D|+ 1

< 2Q+ 2.

(54)

If M2 ≤ |D|, then, for any choice of Q distinct DOAs, VD
become a fat matrix when Q > b(M2− 2)/2c, indicating that
rank(VD) < 2Q+ 2.

APPENDIX D
PROOF OF THEOREM 1

We should first note that the M -element sparse array needs
to have the same design with the L-element sparse array. For
example, if the L-element sparse array is a CACIS [6], then,
the M -element sparse array also follows the CACIS design.
Denote the number of unique lags in the L-element sparse
array and the M -element sparse array as |DL| and |DM |,
respectively. Due to the property of sparse arrays, |DL| is
always larger than |DM |, if L > M .

When M2 > |D|, according to Corollary 1, the number of
DOFs for an M -chain CSA is (|DL|−1)/2, while the number
of DOFs for an M -element sparse array is (|DM | − 1)/2.
Thus, the M -chain CSA can obtain a higher number of DOFs
in contrast with the M -element sparse array.

When M2 ≤ |D|, according to Corollary 1, the number
of DOFs for the M -chain CSA is b(M2 − 2)/2c. Then, the
number of DOFs is expressed as

DOFCSA =


M2 − 3

2
, M is odd,

M2 − 2

2
, M is even.

(55)

For an M -element sparse array with N overlapping lags in
the corresponding coarray, the number of unique lags is

|DM | = M2 −N. (56)

We should note that the N overlapping lags consist of two
parts, i.e., the N0 overlapping lags on the 0-th position and the
N1 overlapping lags on other positions, where N = N0 +N1.
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Due to the symmetric property of the coarray in terms of the
0-th position, N0 is even if M is odd, otherwise N0 is odd.
Furthermore, N1 is always even for any value of M . As a
result, N is even if M is odd while N is odd if M is even,
indicating that |DM | is always odd for any choice of M . The
number of DOFs for the M -element sparse array is expressed
as [24]

DOFSA =
|DM | − 1

2
=
M2 −N − 1

2
. (57)

Comparing (55) with (57), it is straightforward that if N > 2,
the number of DOFs of the CSA is higher than that of the
sparse array.
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