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Performance Analysis for Uniform Linear Arrays
Exploiting Two Coprime Frequencies
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Abstract—Sparse arrays can achieve a higher number of
degrees of freedom (DOFs) compared with uniform linear array
(ULA) counterparts. To further reduce the number of physical
sensors while keeping a high number of DOFs, a direction
of arrival (DOA) estimation algorithm by exploiting coprime
frequencies base on a sparse ULA is recently proposed. However,
the performance of such approach is not properly analyzed. In
this letter, we analyze the Cramér-Rao bound (CRB) as the
lower bound of the DOA estimation performance. The difference
between the results presented in this letter and the recent CRB
results on sparse arrays lies primarily in the additional phases
occurred when utilizing different frequencies. It is shown in this
letter that the phases affect the covariance matrix of the received
data vector and, as a result, change the number of resolvable
sources and alter the achieved CRB. We first demonstrate the
effect of the additional phases with an example of two closely
spaced sources, and the CRB for a sparse ULA exploiting two
coprime frequencies is then derived. Numerical simulations are
provided to validate the analyses.

Index Terms—DOA estimation, Cramér-Rao bound, coprime
frequencies, performance analysis.

I. INTRODUCTION

TO obtain higher degrees of freedom (DOFs) with a given
number of sensors, sparse arrays, such as nested arrays

[1] and coprime arrays [2], [3], have been proposed recently.
Auto-correlation information is exploited in the direction of
arrival (DOA) estimation based on sparse arrays. Generally,
O(N2) uncorrelated far-field narrowband sources can be esti-
mated through O(N) sensors. To evaluate the performance of
sparse arrays, the Cramér-Rao bound (CRB) for sparse arrays
was derived in [4]–[6]. The offerings of coprime arrays have
been experimentally validated in, e.g., [7]–[9].

Utilizing the fact that the array manifold matrix is related
to the signal frequencies, a DOA estimation method based on
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a sparse uniform linear array (ULA) exploiting two or more
coprime frequencies is proposed in [10], [11] to achieve a
high number of degrees of freedom with much less sensors.
By using two coprime frequencies, the number of physical
sensors is approximately reduced to half as compared to
the conventional coprime arrays. The coprime frequencies
structure has gained considerable attention once proposed.
For example, signals with coprime frequencies are exploited
to interpolate the holes in the difference coarray of coprime
arrays [12]. In this case, only a special scenario is considered
and no phase difference between different frequency compo-
nents are taken into account. Recently, DOA estimation using
signals with coprime frequencies is examined in the context
of high-order statistics [13]. Similar to [11], it mainly focuses
on the achievable degrees of freedom, and no performance
analysis is provided. A related work is to utilize coprime
frequency signals to implement frequency diverse array for
target localization [14].

In this letter, we focus on analyzing the performance of
coprime frequencies structure, especially the effect of the
phases difference between the signal components observed
from different frequencies. Such signals indeed have unknown
phase differences due to the frequency-dependent target re-
flectivity and different propagation phase delays. As a result,
the CRB derived for conventional sparse arrays [6]–[8] cannot
be readily applied to evaluate the performance of the array
structure using coprime frequencies. To the best knowledge
of the authors, the performance for ULA exploiting coprime
frequencies has not been considered so far. In this letter,
we first analyze the effect caused by additional phases in
two closely spaced sources scenario and find that the angular
resolution becomes better and better as the phase difference
increases. Then, the CRB for ULA exploiting two coprime
frequencies is derived and the corresponding performance is
analyzed based on the CRB. An interesting result indicated by
the CRB is that more sources can be resolved in presence of
additional phases. Simulation results verify the analysis.

This letter is organized as follows. In Section II, we first
introduce the system model and then briefly analyze the effect
of the phase difference in two close source scenario. The
CRB for ULA exploiting two coprime frequencies is derived
in Section III. Simulation results are shown in Section IV to
verify the analysis. Section V concludes this letter.

II. PRELIMINARIES

A. System Model

Assume that an L-sensor ULA receives two continuous-
wave (CW) signals whose carrier frequencies are associated
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by a coprime relationship [11]. More specifically, the two
frequencies f1 and f2 can be expressed as fk = Mkf0 with
k = 1, 2, where M1 and M2 are a pair of coprime integers
and f0 is referred to as the base frequency. Equivalently, we
can express the corresponding wavelength as λk = λ0/Mk,
where λ0 = c/f0 is the wavelength associated with the base
frequency and λk = c/fk. Denote d0 = λ0/2 as the unit
interelement spacing. Assume Q far-field targets with DOAs
θ1, θ2, · · · , θQ impinge on the array, and let ωq = sin(θq)
with q = 1, 2, · · · , Q. Then, the baseband model or the
received returned signal vector associated with frequency fk
is expressed as [11]

x(k)(t) =

Q∑
q=1

ρ(k)
q (t)a(k)(ωq) + n(k)(t)

=A(k)s(k)(t) + n(k)(t),

(1)

for t = 1, 2, · · · , N , where s(k)(t) = [ρ
(k)
1 (t), · · · , ρ(k)

Q (t)] and
ρ

(k)
q (t) is the complex envelop of the signal q at frequency fk.

We assume that ρ(k)
q (t) is uncorrelated for different targets.

In addition, A(k) =
[
a(k)(ω1), · · · ,a(k)(ωQ)

]
is the array

manifold matrix, and a(k)(ωq) is the steering vector of the
qth target at frequency fk and is expressed as

a(k)(ωq) =
[
1, ej2πd0ωq/λk , · · · , ej2π(L−1)d0ωq/λk

]T
=
[
1, ejπMkωq , · · · , ejπ(L−1)Mkωq

]T
,

(2)

where (·)T denotes the transpose operator. Furthermore,
n(k)(t) is additive complex white Gaussian noise, independent
from the target return signals, with mean zero and covariance
matrix pnkIL, i.e., n(k)(t) ∼ CN(0, pnkIL), where IL is the
L× L identity matrix.

For brevity, denote s(1)(t) as s(t). Due to the different
propagation phase delays and target reflectivity between the
two frequencies, additional phases occur in the received signal
of the second frequency with respect to difference targets [10].
Thus, s(2)(t) can be expressed as s(2)(t) = Bs(t), where
B = diag

(
[ejφ1 , · · · , ejφQ ]

)
is the additional phase matrix,

j =
√
−1, and diag(·) represents a diagonal matrix with the

argument as its diagonal entries. Stacking the received return
signals at both frequencies yields

x(t) = Ãs(t) + n(t), t = 1, 2, · · · , N, (3)

where x(t) = [(x(1)(t))T , (x(2)(t))T ]T , Ã =
[(A(1))T , (A(2)B)T ]T = [ã(ω1), · · · , ã(ωQ)], and
n(t) = [(n(1)(t))T , (n(2)(t))T ]T . ã(ωq) is the qth column of
Ã and is expressed as

ã(ωq) =
[
1, ejπM1ωq , · · · , ejπ(L−1)M1ωq , ejφq ,

ej(πM2ωq+φq), · · · , ej(π(L−1)M2ωq+φq)
]T
.

(4)

Thus, the covariance matrix of the combined data vector x(t)
is given by

Rxx = ÃRssÃ
H + Rnn, (5)

where Rss = diag([p1, · · · , pQ]) with pq denoting the power

of the qth returned signal, Rnn = diag([pn1, pn2])⊗ IL with
⊗ denoting the Kronecker product operator, and (·)H denotes
the Hermitian operator.

B. Effects of Phase Difference

According to (4), an additional phase φq is introduced in the
steering vector for the second frequency corresponding to the
the qth target. In order to understand the effect of this phase
difference, we first define the spatial correlation coefficient
between two complex steering vectors u and v as

γu,v =
uHv

‖u‖‖v‖
. (6)

Consider the scenario of two closely spaced targets with DOAs
ω1 and ω2. Without loss of generality, let ω1 < ω2, and denote
∆ω = ω2 − ω1 and ∆φ = φ2 − φ1. Then, we obtain

ãH(ω1)ã(ω2) =

L∑
i=1

ejπ(i−1)M1∆ω + ej∆φ
L∑
i=1

ejπ(i−1)M2∆ω.

(7)

By letting x1(i) = π(i−1)M1∆ω and x2(i) = π(i−1)M2∆ω,
(7) can be simplified as

ãH(ω1)ã(ω2) =

L∑
i=1

ejx1(i) + ej∆φ
L∑
i=1

ejx2(i). (8)

To clearly demonstrate the effects of ∆φ, we consider a special
case in which the two sources are from the same direction, i.e.,
∆ω = 0. In this case, x1(i) = x2(i) = 0 always holds, and
(8) becomes

ãH(ω1)ã(ω2) = L(1 + ej∆φ). (9)

The magnitude of the correlation coefficient between ã(ω1)
and ã(ω1) is expressed as∣∣γã(ω1),ã(ω2)

∣∣ =

∥∥ãH(ω1)ã(ω2)
∥∥

‖ã(ω1)‖ ‖ã(ω2)‖

=
|1 + ej∆φ|

2
=

[
1

2
(1 + cos∆φ)

]1/2

.

(10)

It is well known that, under the conventional array processing
scheme, two targets with identical DOAs yields a unit spatial
correlation coefficient and cannot be resolved. From (10),
however, we observe that

∥∥γã(ω1),ã(ω2)

∥∥ varies with ∆φ. As
∆φ increases from 0 to π,

∥∥γã(ω1),ã(ω2)

∥∥ varies from 1 to
0. As a result, the angular resolution is improved. Thus, the
existence of ∆φ is likely to improve the angular resolution for
closely spaced targets. This is an important feature which is
desirable in applications that handle closely spaced targets.

III. CRAMER-RAO BOUND RESULTS

Define S = {0,M1, · · · , (L−1)M1, 0,M2, · · · , (L−1)M2}
as the equivalent arrays corresponding to the two frequencies.
Note that location 0 appears twice as it is included in both
arrays associated with the two frequencies. Let

D = {µ− ν|µ, ν ∈ S}. (11)
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We define the following real-valued parameter vector,

α =
[
ΩT ρT φT pn1 pn2

]T
, (12)

where Ω = [ω1, · · · , ωQ]T and ρ = [p1, · · · , pQ]T .

Under the previous assumptions and the Gaussian hypoth-
esis, we can express the Fisher information matrix (FIM) as
[4], [15]–[17]

1

N
FIM=

[(
RT
xx ⊗Rxx

)− 1
2
∂rxx
∂αT

]H[(
RT
xx ⊗Rxx

)− 1
2
∂rxx
∂αT

]
.

(13)
Because we are interested in the CRB of the DOAs, the
parameter vector α is divided as

α =
[
ΩT | ρT φT pn1 pn2

]T
. (14)

Then, follow the derivation in [4], if FIM is invertible, the
CRB for Ω can be expressed as [18]

CRB(Ω) =
1

N
(GHΠ⊥∆G)−1, (15)

where Π⊥∆ = I−∆(∆H∆)−1∆H . G and ∆ are defined as

G =
(
RT
xx ⊗Rxx

)− 1
2

[
∂rxx
∂ω1

, · · · , ∂rxx
∂ωQ

]
,

∆ =
(
RT
xx ⊗Rxx

)− 1
2

·
[
∂rxx
∂p1

, · · · , ∂rxx
∂pQ

,
∂rxx
∂φ1

, · · · , ∂rxx
∂φQ

,
∂rxx
∂pn1

,
∂rxx
∂pn2

]
.

(16)

Vectorizing the covariance matrix Rxx in (5) yields

rxx =

Q∑
q=1

pqã
∗(ωq)⊗ ã(ωq) + vec (Rnn) , (17)

since vec
(
uvT

)
= v⊗u [19]. The term ã∗(ωq)⊗ ã(ωq) can

be further simplified as

ã∗(ωq)⊗ ã(ωq)

=

[
a(1)∗(ωq)

a
(2)∗
2 (ωq)e

−jφq

]
⊗
[

a(1)(ωq)

a
(2)
2 (ωq)e

jφq

]
=

{[
IL 0
0 ILe

−jφq

] [
a(1)(ωq)

a
(2)
2 (ωq)

]∗}

⊗
{[

IL 0
0 ILe

jφq

] [
a(1)(ωq)

a
(2)
2 (ωq)

]}
=

{[
IL 0
0 ILe

−jφq

]
⊗
[

IL 0
0 ILe

jφq

]}
·

{[
a(1)(ωq)

a
(2)
2 (ωq)

]∗
⊗
[
a(1)(ωq)

a
(2)
2 (ωq)

]}
=FqJaD(ωq),

(18)

where the property (AB) ⊗ (CD) = (A ⊗ C)(B ⊗
D) is utilized [19]. In the above expression, aD(ωq) is
the steering vector of the qth target based on the coar-
ray with locations {d̄d0|d̄ ∈ D} and J is the bi-
nary matrix [4] such that [(a(1)(ωq))

T (a
(2)
2 (ωq))

T ]H ⊗
[(a(1)(ωq))

T (a
(2)
2 (ωq))

T ]T = JaD(ωq). Fq only depends

on the phase φq and is expressed as

Fq =

[
IL 0
0 ILe

−jφq

]
⊗
[

IL 0
0 ILe

jφq

]
. (19)

By substituting (18) into (17), the vectorized covariance
matrix rxx is simplified as

rxx =

Q∑
q=1

pqFqJaD(ωq) + vec (Rnn) . (20)

To obtain the CRB for two coprime frequencies, we then take
the derivative of rxx with respect to α. By utilizing (20) we
obtain

∂rxx
∂ωq

= pqFqJ
∂aD(ωq)

∂ωq

= jπpqFqJdiag(D)aD(ωq).

(21)

Similarly, the partial of rxx with respect to the rest of the
parameter vector can be expressed as

∂rxx
∂pq

= FqJaD(ωq), (22)

∂rxx
∂φq

=pq
∂Fq
∂φq

JaD(ωq)

=pq

∂

{[
IL 0
0 ILe

−jφq

]
⊗
[

IL 0
0 ILe

jφq

]}
∂φq

JaD(ωq)

=pq

{[
0 0
0 −jILe−jφq

]
⊗
[

IL 0
0 ILe

jφq

]
+

[
IL 0
0 ILe

−jφq

]
⊗
[

0 0
0 jILe

jφq

]}
JaD(ωq)

=pqF
′
qJaD(ωq),

(23)

∂rxx
∂pn1

= vec
([

IL 0
0 0

])
,

∂rxx
∂pn2

= vec
([

0 0
0 IL

])
.

(24)
In (23), d(X⊗Y) = (dX)⊗Y + X⊗ (dY) is utilized [19].
Substituting (21)–(24) into (16) and (15) will lead to the CRB
for ULA exploiting two coprime frequencies.

IV. SIMULATION RESULTS

In this section, we first verify the effects of phase difference
in the case of two closely spaced sources. The CRB versus
the number of snapshots and SNR are then examined in terms
of the empirical root mean square error (RMSE). Finally, we
investigate the CRB versus the number of targets. The RMSE
is defined as

RMSE =

[
1

IQ

I∑
i=1

Q∑
q=1

(θ̂(i)
q − θ(i)

q )2

]1/2

. (25)

where θ̂q is the estimated DOA of the qth target.
Throughout this section, we consider a ULA with 4 sensors

and use two coprime frequencies with M1 = 3 and M2 = 4.
We assume the powers of the returned signals to be identical.
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(b) ∆φ = 0.5π
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(c) ∆φ = 0.6π
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(d) ∆φ = 0.7π

Fig. 1. The spatial spectra of two close sources with different phases.

In addition, the noise powers pn1 and pn2 are assumed to
be the same. Furthermore, the phase of each source with
respect to the second frequency is set as 2(q − 1)π/Q with
q = 1, 2, · · · , Q. The group LASSO method is used for the
estimation of the DOAs [10].

A. Effects of Phase Difference in the Case of Two Closely
Spaced Targets

In Section II.B, we have shown that the identifiability
can be improved for two closely spaced targets as the the
phase difference between the two frequency components varies
from 0 to π. To verify this claim, consider two targets with
DOAs of −1◦ and 1◦. To clearly understand the effect of
the phase difference, we consider a noise-free scenario with
200,000 snapshots. Four different phase difference values,
i.e., ∆φ = 0.4π, 0.5π, 0.6π and 0.7π, are considered, and the
results are shown in Fig. 1. It is observed that the two close
sources become more resolvable as ∆φ increases, which is
consistent to the analysis in Section II.B.

B. Comparison of CRB and Empirical RMSE

Next, we examine the CRB of the two coprime frequency
case with respect to the number of snapshots and the input
SNR. 8 targets uniformly distributed between −60◦ and 60◦

are considered here. The simulation results are given in Fig.
2. A gap is observed between the CRB and the empirical
RMSE. Moreover, the decreasing ratio of empirical RMSE is
smaller than that of CRB in Figure 2(a). One important reason
that leads to this phenomenon is the DOAs of targets are not
exactly lie on the grid of group LASSO.

C. CRB versus the Number of Targets

As analyzed in the previous sections, if the phase differences
are zero, the two coprime frequency model is equivalent
to a corresponding coprime array structure with a pair of
coprime integers equaling M1 and M2. Note that different to
the conventional coprime arrays where we assume different
numbers of sensors in the two subarrays, the numbers of
sensors in the underlying array structure are identical.
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Fig. 2. CRB for two coprime frequencies. (a) versus the number of snapshots
(SNR=20 dB); (b) versus SNR (2,000 snapshots).
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Fig. 3. CRB versus the number of targets with 20 dB SNR and 2000
snapshots.

Let the target DOAs uniformly distribute between −60◦ and
60◦ for each index, and use 20 dB SNR and 2,000 snapshots.
Fig. 3 shows an interesting result that more targets can be
resolved by using two signals coprime frequencies in the
presence of the phase differences. To verify this result, we
also plot the spatial spectrum results in Fig. 4. In Fig. 4(a), 10
targets are considered and all the phase differences are set to
zeros. As a result, the targets cannot be resolved correctly as
indicated by the CRB. In contrast, 12 targets are considered
in Fig. 4(b) in presence of the phase differences. Despite the
more targets, the 12 targets are accurately resolved.

V. CONCLUSION

In this letter, we analyzed the DOA estimation performance
for a sparse ULA exploiting two coprime frequencies. The
effect induced by the phase difference in the two frequency
signals generally improves the angular resolution of closely
spaced targets. We then derived the corresponding CRB,
and reveal that the additional phase difference can increase
the number of resolvable targets. Finally, simulations results
verified the theoretical analyses.
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Fig. 4. Spatial spectra with and without phase differences. (a) 10-target case
with no phase differences. (b) 12-target case with random phase differences.
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