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Abstract

We develop a novel radar-based human motion recognition technique that ex-
ploits the temporal sequentiality of human motions. The stacked recurrent neu-
ral network (RNN) with long short-term memory (LSTM) units is employed to
extract sequential features for automatic motion classification. The spectrogram
of raw radar data is used as the network input to utilize the time-varying Doppler
and micro-Doppler signatures for human motion characterization. Based on ex-
perimental data, we verified that a stacked RNN with two 36-cell LSTM layers
successfully classifies six different types of human motions.

Keywords: Human motion recognition, radar, deep learning, recurrent neural
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1. Introduction

Human motion recognition becomes increasingly attractive in many appli-
cations, such as computer gaming, smart home, elderly care, kinesiology, and
secure surveillance, and is valuable in improving the quality of entertainment
experiences and living quality [1, 2, 3, 4, 5]. A number of techniques have
been developed with different types of sensors to sense human motions. These
techniques can be classified into two major groups: wearable and unwearable.
Wearable methods capture the details of human actions since sensors are directly
attached to a body part[6]. However, wearable sensors are often forgotten, and
easy worn out. As a result, wearable methods are inconvenient and unreliable.

Unwearable methods, on the other hand, overcome these issues and there-
fore become a more preferred choice[1, 2, 3, 4, 5, 7]. Unwearable sensors are
typically installed in fix positions. One such technique is based on computer
vision[8, 9, 10, 11, 12, 13]. By using optical and depth cameras, human motion
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features can be extracted from images and video frames for motion classification
and recognition. Nevertheless, computer vision techniques are strictly limited
by the light conditions and raise significant privacy concerns. Radar technique
conquers these issues because it does not depend on lighting conditions and nor
does it raise privacy concerns[14]. The radar senses the Doppler and micro-
Doppler signatures associated with human motion[15, 16]. Specifically, Doppler
refers to the frequency change due to the motion of the torso, whereas micro-
Doppler refers to that due to other body parts, such as the limbs. The time-
varying spectrum, analyzed using the spectrogram[17], represents all instanta-
neous Doppler and micro-Doppler components at each time [1, 18, 19]. Based on
such spectrum, hand-crafted features, such as extreme frequency ratio[1], Boulic
human walking model [20], the step repetition obtained from the cadence veloc-
ity spectrum[21, 22], Doppler frequency of trunk and arm movements[23], total
Doppler bandwidth[24], can be designed to characterize the motions. However,
as Doppler and micro-Doppler signatures vary with each individual, even for the
same type of motions, motion classification based on hand-crafted features is
not reliable. Therefore, automated and optimized feature extraction is desired
for more reliable human motion characterization and classification.

Toward this end, the recently developed deep learning methods are capable
to automatically learn and represent the more general and accurate charac-
teristics from the measured data[25]. Inspired by the information processing
mechanism of human nervous systems for vision and hearing, deep structures
with multiple layers can be constructed and employed to extract hierarchical
features of data. Such techniques have been applied in image classification, ob-
ject detection, speech recognition and natural language processing with a great
success[25]. Convolution neural network (CNN) is a commonly used deep learn-
ing method for image classification and object recognition without the need of
designing hand-crafted features[26]. Because of the grid structure of images,
CNN can automatically learn and extract structural features from a series of
local small regions in an image[25, 26, 5]. For radar based human motion recog-
nition, the Doppler signatures are usually represented in a two-dimensional joint
time-frequency domain, which can be treated as an image. Hence, many of
the works exploit CNN to extract motion features from such time-frequency
images[27, 2, 4]. However, it is noted that every type of motion consists of
a chain of coherent postures. Thus, in the underlying application, the radar
echoes of human motions have high temporal sequentiality rather than the spa-
tial grid structure in images. However, CNN cannot take the advantage of such
sequentiality.

Motivated by this fact, we opt for the recurrent neural network (RNN)
method which accounts for the sequential information and memorizes the rela-
tionship between the current and the historical inputs[28, 29]. In other words,
RNN treats the inputs with a sequential order as state transitions. By utilizing
such temporal correlation, RNN can learn the time-varying dynamic signatures
and make use of the sequentiality of human motions to improve the classification
and recognition performance.

In this paper, we propose a novel human motion recognition method that
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employs a stacked RNN with long short-term memory (LSTM) units to auto-
matically recognize human motions based on radar signals. In particular, we
construct, train, and test a stacked RNN with two 36-cell LSTM layers to classify
and recognize the following six motions: boxing, hand clapping, hand waving,
piaffe (walking at a fixed spot), jogging, and walking. The advantages and the
effectiveness of the proposed method are verified using experimental data.

The rest of this paper are arranged as follows. In Section 2, the signal
model of the radar echoes reflected from a human body is established. Then,
we propose the recognition method based on stacked RNN and describe the
principle of the network in Section 3. In Section 4, experimental results using
measured radar data are presented to validate the proposed method. Section 5
concludes this paper.

2. Signal Model

Consider a continuous-wave radar transmitting a sinusoidal waveform with
frequency fc, expressed as s(t) = exp(j2πfct). For an ideal point target p at
a range of Rp0 at initial time t0 moving with velocity vp(t) toward a direction
ϕp(t) with respect to the radar line of sight, the echo reflected from the target
at time t is expressed as

sp(t) = Ap(t) exp

[

j2πfc

(

t−
2Rp(t)

c

)]

, (1)

where Ap(t) is the amplitude of the echo at time t, c is the velocity of electromag-
netic wave propagating in air, and Rp(t) is the instantaneous target distance,
expressed as

Rp(t) = Rp0 +

∫ t

t0

vp(τ) cosϕp(τ)dτ . (2)

Consequently, the Doppler frequency introduced by the relative motion between
the target and the radar is

fD(t)p =
2vp(t) cosϕp(t)

c
fc. (3)

Since a human body can be treated as an intricate reflecting object comprised
by many points, the receiving signal of the radar reflected from the human body
is the summation of the echoes from all point-like targets, expressed as

sbody(t) =

∫

Σ(t)

Ap(t) exp {j2πfc (t− tp)}dp, (4)

where

tp =
2Rp(t)

c
=

2Rp0

c
+

∫ t

t0

fD(τ)p
fc

dτ , (5)

and Σ(t) denotes the collection of scattering points in the human body at time
t.
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Since the velocities of distinct body parts are different and vary with time,
the Doppler frequency fD(τ)p in Eq. (5) changes with the position of p as well
as the time. As such, time-frequency spectrum is suitable to characterize the
Doppler and micro-Doppler signatures. In this paper, spectrogram generated
from the short-time Fourier transform is adopted, expressed as

Sbody(t, f) =

∣

∣

∣

∣

∫

∞

−∞

s̃body(t)h(t− τ)e−j2πfτdτ

∣

∣

∣

∣

2

, (6)

where s̃body(t), the base-band signal corresponding to the echo sbody(t) in Eq.
(4), contains the micro-Doppler information of the motions, and h(t) is a window
function.

Fig. 1 shows spectrogram examples of the following six human motions: box-
ing, hand clapping, hand waving, piaffe (walking on a fixed spot), jogging, and
walking. The details about the experimental setting is provided in Section IV-A.
It is clear that each motion type has a distinct time-Doppler pattern. However,
Doppler and micro-Doppler signatures vary with each individual, even for the
same type of motions. Hence, automated and optimized feature extraction is
desired for more reliable human motion characterization and classification.

(a) Boxing

P
o

w
e

r (d
B

)

(b) Hand clapping

(c) Hand waving

P
o

w
e

r (d
B

)

(d) Piaffe

(e) Jogging

P
o

w
e

r (d
B

)

(f) Walking

Figure 1: Spectrograms of human motions

3. Stacked RNN with LSTM

3.1. RNN

RNN is a deep learning algorithm with a recurrent feedback structure[30].
A classical structure of RNN, which is exemplified in Fig. 2, contains three
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layers: input layer, hidden layer, and output layer. Each neuron in the hidden
layer includes a state feedback structure, which enables RNN to memorize his-
torical information transformed from the input data. Therefore, RNN is more
suited to deal with sequential data. Another important feature of the RNN is
that, because of its recurrent structure, it can process sequences with different
lengths[30].
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Figure 2: The RNN structure with a single hidden layer in an unfolded form

It can be observed in Fig. 1 that the radar echoes of human motions have
high temporal sequentiality, and the lasting time of each motion varies. As
such, the human motion spectrogram results can be treated as length-varying
temporal sequences whose elements at a specific time instance form a Doppler
frequency vector. Therefore, by using RNN to extract radar based human mo-
tion features with sequentiality, improved motion classification and recognition
can be achieved.

In Fig. 2, the network input at time t is x(t). The output of the hidden layer,
s(t), referred to as the state, is the result of nonlinear mapping with respect to
the weighted sum of the current network input and the historical state of the
previous instant, expressed as

s(t) = f(Ux(t) +Ws(t−1) + b(t)s ). (7)

Finally, the network estimation ŷ(t) is obtained by the similar nonlinear mapping
relative to the weighted sum of states, expressed as

ŷ(t) = f(Vs(t) + b(t)y ). (8)

3.2. LSTM Structure

A problem with RNN is that it cannot process long sequences because the
gradient may vanish or explode during the training procedure, i.e., RNN has a
short-term memory that either forgets historical information (for the gradient
vanish situation) or only remembers the history at some initial instants (for the
gradient explosion situation). To overcome such drawback of RNN, an LSTM
structure, as shown in Fig. 3, was proposed in [31].

LSTM extends the structure of hidden neurons in RNN by introducing a
novel unit called block. Within each block, one or more memory cells and
multiple stream controlling gates are included. In each cell, the constant er-
ror carousel (CEC) structure shown in Fig. 3 recurrently works to update the

5



f f g f

q

( 1)[ ]t l-
s ( )[ ]t l

s

( 1)[ ]t l-
h

( )[ ]t l
x

( )[ ]t l
h

( )[ ]t l
h

( )[ ]

f

t l
o

( )[ ]

i

t l
o

( )[ ]t l
s

( )[ ]

o

t l
o

CEC structure

Figure 3: Structure of an LSTM block with a single cell

activation status, which is referred to as the cell state. CEC solves the vanish-
ing gradient problem since an error stream flowing through the CEC structure
maintains a constant value during the network training procedure. Multiple
stream controlling gates, which can be shared by multiple cells in a single block,
manage the upgrading of the information stream flowing through the CEC units.
The following four gates are commonly used in an LSTM unit: input gate, out-
put gate, forget gate, and state candidate. In this paper, only a single cell is
contained in each memory block in order to simplify the complexity of network.
Therefore, the workflow of an LSTM unit is expressed as (refer to Fig. 3)

o
(t)[l]
f = f(W

[l]
fh
h(t−1)[l] +W

[l]
fx
x(t)[l] + b

[l]
f ), (9)

o
(t)[l]
i = f(W

[l]
ih
h(t−1)[l] +W

[l]
ix
x(t)[l] + b

[l]
i ), (10)

s̃(t)[l] = g(W
[l]
s̃h
h(t−1)[l] +W

[l]
s̃x
x(t)[l] + b

[l]
s̃ ), (11)

s(t)[l] = o
(t)[l]
f ⊙ s(t−1)[l] + o

(t)[l]
i ⊙ s̃(t)[l], (12)

o(t)[l]
o = f(W[l]

ohh
(t−1)[l] +W[l]

oxx
(t)[l] + b[l]o ), (13)

h(t)[l] = o(t)[l]
o ⊙ q(s(t)[l]), (14)

where superscript [l] denotes the l-th hidden layer; f , g and q stand for different
activation functions; s denotes the cell states; f, i, s̃ and o appearing in subscripts
respectively represent the forget gate, input gate, state candidates, and output
gate; and ⊙ denotes the Hadamard product operation.

Eq. (12) shows the upgrading procedure of the cell states controlled by

the forget gate and the input gate. When o
(t)[l]
f approaches to zero, the forget

gate closes and most historical memories are blocked to flow into the current
cell. Thus, old memories are “forgotten” and their contributions less affect the

current network output. On the contrary, when o
(t)[l]
f approaches to one, the

forget gate opens and the historical information is accessed to pass through the
current cell. As such, old memories play a vital role in the network processing.
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Similarly, the value of o
(t)[l]
i , which determines the opening or the closing of the

input gate, controls appending of new information generated by state candidate
s̃(t)[l] to the cell state. Consequently, the LSTM structure can well learn the
dynamic signatures from long time-dependent sequential data.

3.3. Proposed Structure

Since abstracted features can be extracted at each time instance, the output
of an LSTM unit is also a sequence. Thus another LSTM layer can be stacked
on the top of the current LSTM layer to extract more generalized sequential
features. Based on this idea, we propose a novel method applying a deep neural
network via stacking multiple RNN hidden layers with LSTM units to learn
dynamic motion features and improve human motion classification and recogni-
tion. The proposed stacked RNN structure with two LSTM layers is shown in
Fig. 4.

unit delay unit delay

LSTM

Layer

LSTM

Layer

spectrogram input output

Figure 4: The structure of stacked RNN with LSTM layers

The raw radar data is first preprocessed to generate the spectrograms. Be-
cause of the high dynamic range of spectrograms, we perform the logarithm
operation and normalization on spectrograms, and the results are fed into the
network. Then, the stacked RNN with multiple LSTM layers extracts dynamic
motion signatures. Finally, the output layer provides the probability of each
motion and predicts a specific motion class at each time instant.

The stacked RNN with LSTM layers can be trained by utilizing the back
propagation through time algorithm [32], and the network parameters are opti-
mized through Adadelta algorithm[33] with an adaptive learning rate.

4. Experiments and Analysis

4.1. Experiment Setup

We exploit Ancortek Software Defined Radio (SDR) 2500B kit[34] as the
radar to transmit continuous-wave sinusoidal signal with a carrier frequency of
25 GHz for sensing human motions. A sampling rate of 64 kHz is selected in
order to ensure that detailed motions of human body parts are captured while
keeping a minimum volume of acquired data for the subsequent process.

We establish a dataset for radar based human motion recognition at the
Advanced Signal Processing Lab, Temple University. The experimental scene is
shown in Fig. 5. During the data acquisition, each human subject performed
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motions along the radar line of sight. The dataset contains the following six
motion classes for two subjects: (a) boxing, (b) hand clapping, (c) hand wav-
ing, (d) piaffe, (e) jogging, and (f) walking. Subjects performed each motion
for 3 seconds so as to contain enough motion cycles with necessary features.
Each activity was repeated 100 times for each subject and the corresponding
spectrograms were generated with an 8192-point Hamming window and a 90%
overlap, which results in 1200 examples and each example contains 225 temporal
frames. In addition, since the maximum velocity for all the six types of motions
is no more than 5 meter/second, we discard the spectrogram data whose abso-
lute velocity exceeds 5 meter/second. Therefore, the size of the preprocessed
spectrogram is 225 × 214.

We employ 4-fold cross validation to evaluate the learning ability of the
stacked RNN with LSTM units for human motion classification. The training
and cross validation datasets respectively contain 900 and 300 examples. The
number of hidden LSTM layers and the LSTM cell size are hyperparameters
chosen by cross validation. The activation functions g and q are chosen as tanh,
and f is chosen as sigmoid.

Because of the large volume of data and enormous number of network pa-
rameters, we use Keras [35] with Tensorflow [36] backend, and utilize NVIDIA
GPU with CUDA library called cuDNN [37] to accelerate the training proce-
dure. The learning rate of Adadelta [33] is set to 0.5. Early stopping and
dropout [38] with a probability of 50% added to the last LSTM layer are ap-
plied to overcome overfitting problem. The core configures of computer used for
training are NVIDIA GeForce GTX 1080 Ti GPU (with 11 GB memory) and
2.4 GHz Intel Xeon CPU E5-2640 v4.

T

R

Blind
Area

Blind
Area

Motion Area

Subject

light of sight

Radar

7.30m

3
.5

0
m

Figure 5: The setup of the experiments

4.2. Hyperparameters and Extracted Features

After a heuristic search on the hyperparameters, the best model includes two
hidden LSTM layers, each contains 36 cells. The average accuracy on the 4-fold
cross validation set over all temporal frames is 98.97%. This accuracy verified
that the stacked RNN with LSTM units is capable to classify human motions
based on Doppler and micro-Doppler without manual feature extraction.

Fig. 6 shows the output of LSTM layers as well as the classified results of
the output layer in the proposed network. The output of the first LSTM layer
shown in Fig. 6(a) illustrates that the extracted features are of sequentiality,
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and different motions have distinct feature sequences. From the output of the
second LSTM layer depicted in Fig. 6(b), the features become more abstract
and more sparse. Also, these features get less time-variant and yield more
clear structures. As such, the function of the LSTM layer resembles that of an
“encoder” to translate different motion signals into a set of distinct features or
codes, each representing a motion type. The output layer acts as a “decoder”
trained by those codes to interpret features into motion classes. When classifying
an unknown motion signal, the whole network works like a “codec” to perform
effective motion classification.

Comparing the classification results of the network depicted in Fig. 6(c) with
the ground truth of the motions illustrated in Fig. 6(d), the proposed network
can accurately classify the motion types at all instants except at some beginning
instants. The misjudgments in these instants are due to the absence of any prior
motion information because the memory of the network at the initial time is
blank. As we continue to process the following motions, perfect classification is
achieved during all the subsequent time instants.

(a) Output of first LSTM layer (b) Output of second LSTM layer

(c) Classified results of network (d) Ground truth

Figure 6: Extracted features and classified results of the stacked RNN with LSTM units: The
six motions (boxing, hand clapping, hand waving, piaffe, jogging, and walking) are in the
order of left to right and top to bottom.

4.3. Evaluation and Comparison on Testing Set

To illustrate the salient generalization performance of the stacked RNN with
LSTM units, we evaluate the proposed model and compare the results with the
output of a deep convolution neural network (DCNN), which is similar to the
model in [2], on a group of testing data by using the average accuracy.

In order to make the distribution of the testing data consistent with that of
the training data, the same six motions of training dataset are collected from the
same object. We randomly concatenate the spectrogram results corresponding
to the six motions and achieve a 135-second data stream. A 3-second sliding
window is adopted and the data samples within the window is fed into the input
layer in both the proposed model and the DCNN.
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For fair comparison, the training and cross validation procedures for the
DCNN are the same as those of our method. The examples fed into DCNN
are identical to the ones fed into the proposed network. The fine-tuned DCNN
contains three convolution layers with four 5×5 filters, three maxpooling layers
with a 2 × 2 window and 2 × 2 strides, and two dense layers with 100 neurons
and 6 neurons respectively. The average accuracy of the 4-fold cross validation
is 98.98%. Therefore, the DCNN achieved the same level of training perfor-
mance with essentially identical cross validation accuracy as compared with the
proposed method.

The classification results obtained using the two networks are shown in Fig.
7. From Fig. 7, the average accuracy of the testing classification is 92.65%
for the stacked RNN with LSTM units and 82.33% for the DCNN. From the
confusion matrices shown in Fig. 7(e) and (f), we can obtain that the micro-F1
score of our model, which is 0.4632, is higher than that of the DCNN, which
is 0.4117. Moreover, the response time of the motion type switching for the
DCNN is about 2.071 seconds, which is almost 4.34 times longer than that for
the proposed model, which is about 0.4769 seconds. Since DCNN does not
have the capability to use the sequentiality with memory, the generalization
performance of the DCNN for radar based human motion recognition is lower
than the proposed method. Therefore, the stacked RNN with LSTM units is
more suitable for real-time operations than the DCNN. Moreover, the number
of parameters in the DCNN, which is 314,822, is much higher than that in the
proposed network, which is 47,878. Therefore, compared with the DCNN, the
stacked RNN with LSTM units requires much less memory resources.

5. Conclusion

This paper addressed the problem of human motion recognition exploiting
a Doppler radar. To utilize the temporal sequentiality of human motions, we
proposed a novel human motion classification method which employs the stacked
RNN with LSTM units to automatically extract sequential features and classify
motion types. Since the time-varying Doppler and micro-Dopper signaures can
represent human motions well, the spectrogram of raw radar data is used as the
inputs of network. We considered six different motions, and trained a stacked
RNN with two 36-cell LSTM layers. Experimental results verified attractive
human motion recognition performance with an overall classification accuracy
of 92.65%. In the future, we will apply and evaluate our proposed method for
more motion types including some categories of fine, small and precise actions.
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