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Abstract

In this paper, we propose direction-of-arrival (DOA) estimation techniques, respectively based on

covariance matrix reconstruction and matrix completion, to achieve robust DOA estimation capability

in nonuniform noise environments using coprime arrays. For the covariance matrix reconstruction-based

approach, by exploring the diagonal structure of the covariance matrix of the noise, the covariance

matrix of the received signal vector is reconstructed through averaging its diagonal elements. Moreover,

in order to handle more sources than the number of sensors, the difference coarray of coprime arrays is

utilized through the vectorization of the reconstructed covariance matrix. A compressive sensing (CS)

based DOA estimator is then formulated to provide sparsity-based DOA estimation. For the matrix

completion-based approach, we take the full advantage of the difference coarray lags and obtain the

noise-free covariance matrix of the virtual uniform linear array by using the matrix completion technique

to recover the removed diagonal elements and missing holes in the virtual array covariance matrix. Then

CS-based and MUSIC-based DOA estimators are respectively designed to perform DOA estimation using

the estimated noise-free covariance matrix. Simulation results verify the effectiveness of the proposed

algorithms.
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I. INTRODUCTION

Direction-of-arrival (DOA) estimation is a vital task in array signal processing and is widely

used in various applications, such as radar, biomedical imaging, remote sensing, and radio astro-

nomy [1–3]. In the past decades, various DOA estimation methods, such as MUSIC [4], ESPRIT

[5] and compressive sensing (CS) [6] [7], were developed to obtain a high-accuracy performance.

Most of the existing DOA estimation techniques are developed under the assumption that the

noise is uniform, that is, the noise power is the same at each sensors. However, in some practical

situations, the noise may become nonuniform, yielding an arbitrary diagonal noise covariance

matrix. In this case, the performance of DOA estimator will degrade. For example, for subspace-

based DOA estimation methods, such as MUSIC and ESPRIT, eigen-decomposition of the data

covariance matrix does not lead to correct signal and noise subspace estimation. Similarly,

for CS-based DOA estimation methods, it becomes difficult to accurately recover the direction

information.

So far, a number of methods have been developed in the literature to provide robust DOA

estimation in the presence of nonuniform noise [8–19]. In [9], for example, the covariance

matrix of nonuniform noise is first estimated from the array covariance matrix, and high-

performance DOA estimation is achieved after pre-whitening the data. However, it requires the

number of sensors to be at least three times higher than the number of source. Two maximum

likelihood (ML)-based DOA estimators are derived in [10] [11], which use an iterative manner

to estimate the signal DOAs and noise parameter. These methods suffer a high computational

load. Two subspace estimation-based methods are proposed in [16] to estimate the signal and

noise subspaces. However, they require an iterative procedure and thus are time-consuming.

After setting diagonal elements of the covariance matrix to be a same value, the signal and

noise subspaces can be directly estimated through eigen-decomposition [17]. By using the

matrix completion technique, an iteration-free method developed in [18] can offer satisfactory

performance. However, the number of resolvable sources is less than the number of sensors.

On the other hand, to achieve a higher number of degrees-of-freedom (DOFs) than the

number of physical sensors, a number of sparse linear arrays have been developed. For a given

number of physical sensors, the minimal redundancy arrays (MRA) yields a maximum number

of consecutive virtual arrays [20]. However, the MRA does not have a closed-form expression

about its physical array locations and the achievable number of DOFs. Recently, the nested array
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[21] and the coprime array [22] are developed as alternative sparse array designs that permit

systematical design with known sensor positions and analytical expression for the achievable

number of unique and consecutive lags [23]. Both nested and coprime arrays consist of two

uniform linear subarrays. For the nested array, one of the subarrays has a half-wavelength

spacing, and all the virtual sensors in the resulting difference coarray are always consecutive.

A nested array detects O(N2) sources with O(N) physical sensors. Compared with the nested

array configure, the interelement spacing of the two subarrays used in a coprime array have

a coprime relationship. A coprime array is more flexible in achieving a large array aperture

and reducing the mutual coupling effects, thus attracted considerable interests (e.g., [23–31]).

Unlike the nested array, the virtual sensors in the resulting difference coarray constructed from

a coprime array are generally non-consecutive, i.e., there are holes between the virtual sensors.

Similar to the case in uniform linear arrays (ULAs), nonuniform noise could lead to severe

performance degradation of the DOA estimators in a coprime array. Our study interests focus on

the design of novel DOA estimators that work robustly in nonuniform noise environment. It is

noted that there are holes in the difference coarray from a coprime array. In this case, CS-based

methods do not need to consider the continuity issue of the virtual array sensors by building

the dictionary matrix through vectorization of the array covariance matrix. For subspace-based

methods, e.g., MUSIC and ESPRIT, spatial smoothing has to be used to restore the rank of

the virtual sensor covariance matrix and thus only the consecutive lags can be used [32, 33].

The method developed in [12] is a simple and efficient CS-type DOA estimation algorithm in

the presence of nonuniform noise. The results have been extended to wideband signals in [13].

However, these methods directly remove the diagonal elements from the data covariance matrix,

thus resulting in a performance loss. Recently, reference [19] proposed a DOA estimation method

for coprime arrays and it could be regarded as a sparse array version of method described in [17].

However, the method in [19] therein only uses the consecutive lags, and any non-consecutive

lags are discarded. Therefore, it generally does not achieve the best possible performance as

coprime arrays usually generate coarrays with holes.

In this paper, we develop new methods, respectively based on covariance matrix reconstruction

and matrix completion, to achieve effective DOA estimation for coprime arrays in the presence

of nonuniform noise. For the method based on covariance matrix reconstruction, in order to

decrease the effect of nonuniform noise, the array covariance matrix is reconstructed to follow

a Hermitian structure with equal diagonal elements. Then, by exploring the position structure
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of the vectored array covariance matrix, the DOA estimation problem is converted to a sparse

signal recovering problem which is solved through convex optimization methods. For matrix

completion-based approach, in order to remove nonuniform noise covariance and take a full

advantage of difference coarray lags, we first remove the diagonal element of array covariance,

and matrix completion technique [34]–[35] is then used to recover the values corresponding to

the holes in difference coarray and the diagonal elements of the virtual covariance matrix. In

this approach, because the restored virtual array is uniform linear, we use both CS and MUSIC

methods to estimate the source DOAs.

The remainder of this paper is organized as follows. In Section II, we describe the signal model

of coprime arrays in the presence of unknown nonuniform noise. In Section III, the proposed

covariance matrix reconstruction-based and matrix completion-based methods are respectively

presented. The Cramér-Rao bound (CRB) existence conditions of the proposed algorithm are

derived in the Section IV. In Section V, simulation results are provided to demonstrate the

effectiveness and superiority of the proposed DOA estimation methods in terms of detection

performance, angular resolution, and estimation accuracy. Section VI concludes this paper.

Throughout this paper, we use lower-case and upper-case boldface characters to denote vectors

and matrices, respectively. The superscripts (·)∗, (·)T and (·)H respectively stand for the conjugate,

transpose and conjugate transpose of a vector or matrix. || · ||2 denotes the Euclidean (l2) norm

of a vector, whereas || · ||0 and || · ||1 respectively denote the l0 and l1 norms. || · ||∗ denotes

the nuclear norm. ◦, ⊗ and � stand for the Hadamard product, the Kronecker product and the

Khatri-Rao product, respectively. In addition, vec(·) is the vectorization operator, and diag{a}

denotes a diagonal matrix whose diagonal elements are the elements of a. In addition, trace(A)

denotes the trace of the matrix A. E[·] is the expectation operator. IN represents the N × N

identity matrix. [xS]j denotes the j entry of [xS], and 〈xS〉i denotes the value on the support

i ∈ S. For example, if S = {2, 4, 6} and [xS] = {1, 3, 5}, then [xS]1 = 1, [xS]2 = 3, [xS]3 = 5,

and 〈xS〉2 = 1, 〈xS〉4 = 3 and 〈xS〉6 = 5.

II. SIGNAL MODEL

Let M and N be a pair of coprime integers. Consider a coprime array which consists of two

uniform linear subarrays. The two subarrays have 2M and N sensors, respectively, and their

respective element spacing is Nd and Md. The unit interelement spacing is d which is set to

half wavelength, denoted as λ/2. Without loss of generality, we assume 2M > N . We assume
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Fig. 1: Array geometry of coprime array

that the first sensor of both subarrays coincides and is set as the reference element. Due to the

coprime relationship between M and N , except the reference sensor, other sensors do not overlap

with each other. Hence, the sensor positions of the difference coarray p = [p1, p2, ..., p2M+N−1]
T

are located at

S = {Mnd, 0 ≤ n ≤ N − 1} ∪ {Nmd, 0 ≤ m ≤ 2M − 1}, (1)

and there are a total number of |S| = 2M + N − 1 sensors in the coprime array. The array

geometry of coprime array is shown in Fig.1.

Assume L far-field uncorrelated narrow-band signals impinging on the coprime array from

L distinct angles θ1, θ2, . . . , θL. The (2M + N − 1)-dimensional received signal vector x(k) is

expressed as

x(k) =
L∑
l=1

a(θl)sl(k) + n(k) = As(k) + n(k), (2)

where k is the index of sample snapshot, s(k) = [s1(k), s2(k), . . . , sL(k)]T is the source

signal vector, a(θl) = [1, e
2π
λ
p2 sin(θl), . . . , e

2π
λ
p2M+N−1 sin(θl)]T is the signal steering vector with

pg, g = 1, 2, . . . , 2M +N − 1, being the sensor position, and A = [a(θ1), a(θ2), . . . , a(θL)] is the

steering matrix. n(k) is the additive complex Gaussian noise vector with uncorrelated entries.

The covariance matrix of the received signal vector x(k) is expressed as

Rxx = E{x(k)xH(k)} = APAH + Q, (3)

where P = E{s(k)sH(k)} and Q = E{n(k)nH(k)} are the signal covariance matrix and the noise

covariance matrix, respectively. It is common to assume n(k) as a Gaussian white noise vector
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with identical power, and the noise covariance matrix is expressed as Q = σ2
nI2M+N−1, where

σ2
n is the noise power at each sensor. In this paper, however, we consider a nonuniform Gaussian

noise environment, where the noise power in each sensor is different and unknown. In this case,

the noise covariance matrix becomes

Q = diag{Ψ2
1,Ψ

2
2, ...,Ψ

2
2M+N−1}, (4)

where Ψ2
g, g = 1, ..., 2M +N − 1, denotes the noise power measured at the gth sensor. Clearly,

the uniform noise environment can be considered as a special case of the nonuniform noise. In

practice, the array covariance matrix is estimated by

R̂xx =
1

K

K∑
k=1

x(k)xH(k), (5)

where K denotes the number of sample snapshots.

III. PROPOSED DOA ESTIMATION ALGORITHMS

To mitigate the effect of unknown nonuniform noise to the DOA estimation performance and

take full advantage of the virtual array aperture of the coprime array, in this paper, three DOA

estimators are proposed for effective DOA estimation. All these techniques explore the intrinsic

structure of the covariance matrix of the received signal vector and the unknown noise variance

to effectively mitigate the effect of nonuniform noise covariance entries. They can be classified

into two major categories, one based on covariance matrix reconstruction and two based on

matrix completion. (a) In the covariance matrix reconstruction method, the sample covariance

matrix is first reconstructed to maintain a Hermitian structure with equal diagonal elements.

Then, the DOA estimation problem is converted to a sparse signal recovery problem which can

be solved efficiently by convex optimization techniques. (b) In the matrix completion methods,

the nonuniform denoising problem is first converted to signal subspace estimation problem. We

then rebuild a noise-free covariance matrix using the matrix completion technique, and estimate

the signal DOAs respectively using CS and MUSIC-based methods.

A. Proposed Method 1: Covariance matrix reconstruction based CS DOA estimator

It is well known that the nonuiformity of noise will result in performance degradation,

especially in a low SNR condition. According to (3), the covariance matrix of nonuniform noise

is a diagonal matrix with unequal diagonal entries. Therefore, to eliminate the nonuiformity in
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Q, a simple method is to reconstruct the sample covariance matrix R̂xx by averaging its main

diagonal elements. As a result, the new covariance matrix R1 is expressed as

R1 = J1 ◦ R̂xx + ηI2M+N−1, (6)

where J1 ∈ C(2M+N−1)×(2M+N−1) is an all-one matrix except the diagonal elements which are

all zeros, and η is the averaged value of the diagonal elements of the sample covariance matrix

R̂xx, i.e.,

η =
1

2M +N − 1
trace(R̂xx). (7)

To take advantage of the virtual array of the coprime array to estimate more signal DOAs

than the number of physical sensors, we vectorize R1, yielding

z = vec(R̂1) = Ãb + ηĩ + ε, (8)

where Ã = [vec(J1)◦ ã(θ1), vec(J1)◦ ã(θ2), . . . , vec(J1)◦ ã(θL)] is a steering matrix with ã(θl) =

a∗(θl)⊗a(θl) for l = 1, 2, · · · , L, b = [σ2
1, σ

2
2, . . . , σ

2
L]T is the signal power, and ĩ = vec(I2M+N−1)

is the vectorized identity matrix. ε represents discrepancies between z and the virtual array

model. As such, z amounts to a single-snapshot received vector corresponding to a virtual array

with an extended dimension. We can use the CS technique to utilize the coarray aperture for

effective DOA estimation. In this approach, we build an over-complete sensing matrix through

grid sampling over the potential angular region, e.g., from −90◦ to 90◦. Then, by using a sparse

signal recovering method through CS, we obtain a sparse vector representing the signed power

in each grid point, and the non-zero entries correspond to the source DOAs.

Denote θo1, θ
o
2, ..., θ

o
G as G samples grid points in the angular region, where G � L, and

construct Ã1 = [vec(J1)◦ ã(θo1), vec(J1)◦ ã(θo2), . . . , vec(J1)◦ ã(θoG)] as the sensing matrix. Then,

the cost function of the DOA estimation problem is expressed as

min
b1
‖ b1 ‖0 s.t. ‖ z− Ã1b1 − ηĩ ‖2< δ, (9)

where δ is a user-specific parameter. Because the l0-norm problem in (9) is non-convex, we relax

the above l0 norm to l1 norm and use the Lasso approach for sparse signal recovery. The Lasso

cost function is expressed as

min
b1
‖ z− Ã1b1 − ηĩ ‖2 + τ ‖ b1 ‖1 (10)

where τ is a regularization parameter that trades off between the sparsity and the accuracy. The

optimization problem (10) is convex and can be solved by, e.g., the interior-point method [36].
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In this paper, we assume that the true DOAs are on the sampling grid, and extension to grid-off

cases is straightforward [37]. For the sake of convenience, the covariance matrix reconstruction

based DOA estimator is named as Proposed Method 1.

B. Proposed Method 2: Matrix completion based CS DOA estimator

Proposed Method 1 can suppress nonuniform noise through averaging the diagonal elements

of the sample covariance matrix. In essence, it is to whiten the covariance matrix and mitigate

the effect of nonuniform noise. In the following two sections, we use the matrix completion

technique to recover a noise-free covariance matrix, and CS and MUSIC-based methods are

respectively used to perform DOA estimation.

For the sake of clarify, several definitions are borrowed from [35] as follows:

Definition 1 (difference coarray integer set D) For a sparse array where physical sensor

positions formulate an integer set S, whose difference coarray is given as D = {c1−c2|c1, c2 ∈ S}.

Definition 2 (maximum contiguous lag integer set U) The maximum contiguous segment in

D is given as U = {c|{−|c|, ...,−1, 0, 1, ..., |c|} ⊆ D}.

Definition 3 (shortest contiguous ULA integer set V) The shortest contiguous segment con-

taining D is given as V = {c|min(D) ≤ c ≤ max(D)}.

Definition 4 (weight function of coprime array w(c)) Z→ Z: w(c) = |{(c1, c2) ∈ S2|c1−c2 =

c}| which means the appearance times of each element in difference coarray D.

Definition 5 (transfer matrix F ∈ Z|D|×|S|2) A transfer matrix is used to remove the repeated

information in the difference coarray and is defined as 〈F〉c = vec(H(c))T , where H(c) ∈ R|S|×|S|

satisfies

〈H(c)〉c1,c2 =


1

w(c)
, if c1 − c2 = c, c1, c2 ∈ S,

0, otherwise.
(11)

Matrix completion is an efficient method to recover a low-rank matrix from a finite sample set

of entries. From (3), we know that the unknown covariance matrix of the nonuniform noise only

affects the diagonal entries of the covariance matrix of the received signals. Therefore, unlike

Proposed Method 1 which averages the diagonal elements of the sample covariance matrix, the

proposed matrix completion based methods delete the diagonal elements and recover the entire

noise-free covariance matrix of the virtual ULA defined by the integer set V, including those
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corresponding to missing holes. Removing the diagonal entries of the sample covariance matrix

yields

R2 = J1 ◦ R̂xx. (12)

After vectorizing R2 and rearranging the results through a transfer matrix F, the new received

vector based on the virtual ULA is expressed as

z2 = Fvec(R̂2), (13)

where z2 amounts to a single-snapshot received signal. Note that a covariance matrix constructed

from z2 is rank one because only a single snapshot is available. Spatial smoothing is often utilized

to restore its rank. However, the spatial smoothing operator can only deal with contiguous lags.

In this case, to fill the holes in the difference coarray and form a virtual ULA in V, the matrix

completion technique is used to recover the missing elements.

A low-complexity direct spatial smoothing method is designed in [33] which, in addition to

achieving spatial smoothing similar to [32], also fill in holes through matrix completion. The

following virtual covariance matrix, which includes missing entries, is obtained by arranging the

entries of the virtual received signal vector,

R3 =


〈z2〉0 〈z2〉−1 . . . 〈z2〉−Mξ

〈z2〉1 〈z2〉0 . . . 〈z2〉−Mξ+1

...
... . . . ...

〈z2〉Mξ
〈z2〉Mξ−1 . . . 〈z2〉0

 (14)

where Mξ = max(D) is the largest array aperture of virtual ULA.

To interpolate the holes and diagonal elements in R3 and recover noise-free covariance matrix

R4 in virtual ULA, the coarray interpolation method performs the following optimization:

min
R4

rank(R4)

s.t. [R4]c1,c2 = [R3]c1,c2, c1 6= c2, c1 − c2 /∈ V− D,

R4 = RH
4 .

(15)
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Compared to [33], we added the constraint c1 6= c2 because the diagonal elements are removed

and need to be re-estimated. However, the above matrix rank optimization is NP-hard. Convex

relaxation is usually applied to yield the following nuclear norm minimization problem

min
R4

‖ R4 ‖∗

s.t. [R4]c1,c2 = [R3]c1,c2, c1 6= c2, c1 − c2 /∈ V− D,

R4 = RH
4 .

(16)

As R4 is a positive-semidefinite Hermitian matrix, the nuclear norm can be further written as

‖ R4 ‖∗= trace(R4), (17)

and the constraint [R4]c1,c2 = [R3]c1,c2 , c1 6= c2, c1 − c2 /∈ V− D can be simplified as

J2 ◦ [R4 − R3] = 0, (18)

where J2 is an ((Mξ + 1)× (Mξ + 1))-dimensional projection matrix which is an all-one matrix

except when the coordinate of matrix [J2]c1,c2 satisfies c1 = c2 or c1 − c2 ∈ V − D where the

values are set to zero. Then, considering the covariance matrix error, the optimization problem

(16) can be written as
min

R4

trace(R4)

s.t. ‖ J2 ◦ [R4 − R3] ‖2≤ δ1,

R4 = RH
4 ,

(19)

where δ1 is a positive constant representing the estimation accuracy. It takes a small positive value

when the number of snapshots is sufficiently large. Both the cost function and the constraints

are convex. Therefore, (19) can be solved efficiently by using a convex optimization toolbox

[36]. After obtaining R4, CS and MUSIC can be used to perform DOA estimation. The resulting

algorithms using CS and MUSIC are respectively referred to as Proposed Method 2 and Proposed

Method 3, and are described below.

Similar to Proposed Method 1, the CS technique can be used to estimate the DOAs from R4.

One choice would be to utilize directly the covariance matrix R4 to design the DOA estimator

as proposed in reference [38]. However, for low-complexity implementation, we only use the

first column of R4, denoted as r4, to construct the following sparse signal recovery problem

min
b2
‖ b2 ‖0 s.t. ‖ r4 − Ã2b2 ‖2< δ2, (20)
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where δ2 is a user-specific parameter, Ã2 = [aV(θo1), aV(θo2), . . . , aV(θoG)] is the sensing matrix,

and aV(θo) = [1, e
2π
λ
d sin(θo), . . . , e

2π
λ
(Mξ)d sin(θ

o)]T is the steering vector of the virtual ULA. We

use Lasso to solve the following optimization problem

min
b2
‖ r4 − Ã2b2 ‖2 + τ2 ‖ b2 ‖1, (21)

where τ2 is a regularization parameter similar to (10). It is noted that the sensing matrix in

(21) is different to that in (10), because Ã2 corresponds to a fully augmented ULA. The matrix

completion based CS algorithm is named as Proposed Method 2.

C. Proposed Method 3: Matrix completion based MUSIC DOA estimator

Compared with the CS-based method, the MUSIC algorithm is a classical alternative to

perform effective DOA estimation. As the reconstructed virtual array is uniform linear, the

MUSIC algorithm achieves a similar number of DOFs to the CS-based method. The eigen-

decomposition of the estimated covariance matrix R̂4 results in

R̂4 = VsΦsVH
s + VnΦnVH

n , (22)

where matrix Vs contains the eigenvectors corresponding to the L largest eigenvalues in Φs and

spans the signal subspace, whereas Vn contains the eigenvectors corresponding to the Mξ−L+1

smallest eigenvalues in Φn and spans the noise subspace. The L highest peaks of the following

pseudo spatial spectrum correspond to the signal DOAs:

p(θ) =
1

aH
V(θ)VnVH

naV(θ)
. (23)

The matrix completion-based MUSIC algorithm is referred to as Proposed Method 3.

The last two proposed DOA estimation methods based on matrix completion (Method 2 and

Method 3) are summarized as follows:

Step 1: Estimate the sample covariance matrix using (5) and remove the diagonal elements

using (12).

Step 2: Rearrange sample covariance matrix and obtain received signal vector of the virtual

ULA using (13).

Step 3: Obtain the covariance matrix of the virtual array by optimizing (19).

Step 4: For Proposed Method 2, we use (21) to obtain the signal DOAs through Lasso. For

Proposed Method 3, we first construct the noise subspace of R̂4 using (22) and then perform

DOA estimation using (23).
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Both the matrix reconstruction-based method (Method 1) and the matrix completion-based

methods (Methods 2 and 3) solve the covariance matrix denoising problem to mitigate the

effect of the nonuniform noise. For proposed Method 1, we enforce the diagonal elements

of the covariance matrix to take the same value. For proposed Methods 2 and 3, the matrix

completion technique is used to recover the noise-free low-rank virtual covariance matrix. As

all proposed algorithms can effectively suppress the effect of nonuniform noise, they provide a

similar performance. Compared with Method 1, Methods 2 and 3 have a lower computational

complexity as the transfer matrix F in (11) reduces the dimension of the virtual received

signal vector. In particular, Method 3 is subspace-based and thus does not need to consider

the off-grid problem. On the other hand, in a low SNR case, Method 1 achieves slightly better

performance than Methods 2 and 3, because the latter suffers from performance degradation in

matrix completion when the input SNR is low.

IV. CRB AND ITS EXISTENCE CONDITION

In this section, we derive the CRB and its existence condition in the presence of nonuniform

noise. The derivation process is similar to that in [12], [39] and [40], but we prove the nonsingular

condition of Fish information matrix (FIM) in the nonuniform noise condition. Therefore, the

CRB expression is different to those obtained in [39] and [40], as those results are derived

under the assumption of uniform Gaussian white noise, and are not applicable to the underlying

situation with nonuniform noise. Note that the CRB expression derived here is equivalent to that

in [12] derived for nested arrays, but we derive the results in a different form so as to facilitate

the analysis of the CRB existence condition. Reference [12] did not provide the CRB existence

condition.

The CRB of the DOAs in nonuniform noise environment is expressed as

CRB(θ) =
1

K
{ΓH[I− D(DHD)−1DH]Γ}−1. (24)

where the matrix Γ is given as

Γ = 2π(RT
S ⊗ RS)

− 1
2 AwP, (25)

RS is the covariance matrix of the physical array, rS = vec(RS), P = diag(σ2
1, ..., σ

2
L), Aw =

{A∗S � [diag(S)AS] + [diag(S)A∗S]� AS}, and the matrix D is given as

D = (RT
S ⊗ RS)

− 1
2 W, (26)
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where W = [A∗S�AS, I|S|�I|S|]. The derivation process of CRB expression is given in Appendix

A. In the following two theorems, we provide the nonsingular condition of the FIM matrix, i.e,

the CRB existence condition.

Theorem 1. The nonsingular condition of the FIM is

rank(W) = L+ |S|. (27)

The proof of Theorem 1 is given in Appendix B.

Theorem 2. Assume rank(W) = L+ |S|. Then, [ΓH(I−D(DHD)−1DH)Γ] is positive-definite

if and only if

rank
[
Aw W

]
= 2L+ |S|. (28)

The proof of Theorem 2 is given in Appendix C.

The nonsingular condition given in (27) and (28) indicates that there are |S| variables to

characterize the noise power corresponding to the zeroth lag in the virtual array, and it is

straightforward to verify that the matrix I|S| � I|S| is full column rank. As a result, to keep

W to be full column rank, the number of signals should be less than (|D| − 1)/2. That is, we

could utilize the (|D| − 1)/2 lags in the difference coarray to perform DOA estimation. As a

result, to guarantee the CRB existing condition, the maximum number of signals must not exceed

(|D| − 1)/2. According to [23], there are 3MN + M − N unique lags for the coprime array

configuration discussed in this paper. Therefore, considering the nonsingular condition of the

CRB, the maximum number of sources that could be resolved is (3MN +M −N)/2.

V. SIMULATION RESULTS

Consider a coprime array consisting of 10 omnidirectional antenna sensors with two coprime

integers M = 3 and N = 5. The sensor positions at the two subarrays are respectively

[0, 3, 6, 9, 12]d and [0, 5, 10, 15, 20, 25]d. To verify that the coprime array can estimate more

source DOAs than the number of physical sensors, we consider 15 narrowband far-field signals

uniformly distributed between −65o and 75o. The noise vector is modeled as an independent zero-

mean Gaussian random vector whose covariance matrix is Q = diag{11.2, 5.2, 10, 3.4, 7.8, 9.2, 7, 6,

12.5, 9}.
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To verify the effectiveness and superiority of the proposed algorithms, the results of the

proposed algorithms are compared to those obtained from methods described in [12], [19] and

[24]. The input signal-to-noise ratio (SNR) is defined as

SNR =
σ2
s

2M +N − 1

2M+N−1∑
l=1

1

σ2
l

(29)

where σ2
s and σ2

l are signal power and the noise power evaluated at the lth sensor, respectively.

For Proposed Methods 1 and 2, the regularization parameter of the Lasso is set to 0.85 and 0.95,

respectively, and the sample grid is uniformly distributed between −90◦ and 90◦ with a 0.2◦

increment between adjacent grid points.

A. Detection performance

Fig. 2 compared the estimated spatial spectra, where the input SNR is 1 dB, and 4000 snapshots

are used. From this figure, it is evident that the proposed algorithms can identify all of the sources

and have sharp peaks, verifying the effectiveness of DOA estimation with a higher number of

DOFs than the number of physical sensors. The method in [24] does not eliminate the effect of

nonuniform noise, suffering from performance degradation. Moreover, the estimator developed in

[19] only utilizes the contiguous virtual sensors, i.e., it does not take the full advantages offered

by all the lags in the difference coarray. The method in [12] deletes the diagonal elements of

covariance matrix, resulting in performance loss. By using the CS and the matrix completion

techniques, the proposed methods utilize as many lags as possible offered in virtual array and

hence achieve improved performance compared with method in [12], [19] and [24].

B. Angular resolution ability

We examine the angular resolution performance by considering a scenario with two closely

located sources at 0.8◦ and 1.8◦. 4000 snapshots are used, and the input SNR is 1 dB. The spatial

spectra estimated using the proposed algorithms and the method being compared [12], [19] and

[24] are shown in Fig. 3. For clarify, we only show an angular region between −3◦ and 5◦. It

can be seen from Fig. 3 that the method in [12], [19] and [24] fails to accurately estimate the

DOAs because of their close angular separation. However, all the proposed algorithms provide

unbiased DOA estimates.
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C. Estimation accuracy

To evaluate the estimation accuracy of the DOAs, we use the root mean square error (RMSE)

as the performance indicator, which is defined by

RMSE =

√√√√ 1

LT

L∑
l=1

T∑
t=1

[
θ̃l(t)− θl

]2
, (30)

where θ̃l(t) denotes the estimated θl from the tth Monte Carlo trial, t = 1, 2, · · · , T . For

comparison, the CRB is also included in the figure.

The RMSE performance is shown in Fig. 4 with respect to the input SNR and in Fig. 5

with respect to the number of snapshots. In Fig. 4, 4000 snapshots are used, whereas in Fig. 5,

the input SNR is set to -5dB. 11 incident signals uniformly distribute between −75o and 25o,

and results from 300 Monte Carlo trials are averaged to obtain each simulation point. Other

simulation settings are identical to those used in Fig. 2. From Fig. 4, it is observed that the

proposed algorithms achieve much lower RMSE than the methods being compared [12], [19]

and [24]. That is due to the fact that the proposed algorithms can effectively mitigate the influence

of nonuniform noise in covariance matrix and take advantage of as many lags as possible in

virtual array. It is noted that, as pointed out in [39], when the number of sources is higher than

that of the physical sensors, the RMSE cannot reach the CRB, which is consistent with the

simulation results. In Fig. 5, it is observed that, compared to the method developed in [12], [19]

and [24], the proposed methods not only offer lower RMSE results, but also achieve a faster

convergence.

VI. CONCLUSION

Based on a coprime array, three novel DOA estimation algorithms in the presence of unknown

nonuniform noise were proposed in this paper. For Proposed Method 1, by reconstructing the

sample covariance matrix of physical sensors into Hermitian matrix with equal diagonal elements,

the effect of unknown nonuniform noise is suppressed well. For Proposed Method 2 and Method

3, the matrix completion technique is used to recover the noise-free low-rank covariance matrix

of virtual array and the entries corresponding to missing holes are filled. In addition, the

proposed three algorithms take advantage of more lags than compared method, they have a

better performance for DOA estimation. Simulation results demonstrate that, compared with

existing method, the proposed algorithms achieve a superior performance in terms of detection

capacity, angular resolution, and estimation accuracy.



16

ACKNOWLEDGMENT

The work of K. Liu was supported by the China Scholarship Council for his stay at the Temple

University. The work of Y. D. Zhang was supported in part by the National Science Foundation

under Grant No. AST-1547420.

APPENDIX A

Considering a stochastic model with parameter set defined as ω = [θ̃, σ2
1, ...σ

2
L,Ψ

2
1, ...,Ψ

2
|S|]

T,

where θ̃ = [θ̃1, θ̃2, ..., θ̃L] = [(d/λ)sinθ1, (d/λ)sinθ2, ..., (d/λ)sinθL], whereas σ2
q1
, q1 = 1, 2, ..., L,

and Ψ2
q2
, q2 = 1, 2, ..., |S|, are the signal power of each source and the noise power of each

sensor, respectively. Denote RS =
∑L

j=1 σ
2
ja(θj)aH(θj) +

∑|S|
j=1 Ψ2

jejeT
j as the covariance matrix

corresponding to the physical array, where ej is the jth column of the identity matrix I|S|. Then,

the (p, q)th entry of the FIM Φ is given by

Φp,q = Ktrace
(

R−1S
∂RS

∂[ω]p
R−1S

∂RS

∂[ω]q

)
. (A.1)

Since trace(XYAB) = vecH(YH)(XT ⊗ A)vec(B), and (X⊗ Y)−1 = X−1 ⊗ Y−1 when X and Y

are nonsingular [41], (A.1) can be reformulated as

Φp,q =K

[
vec(

∂RS

∂[ω]p
)

]H

(R−T
S ⊗ R−1S )vec

(
∂RS

∂[ω]q

)
=K

[
(RT

S ⊗ RS)
− 1

2 vec
(
∂RS

∂[ω]p

)]H

·
[
(RT

S ⊗ RS)
− 1

2 vec
(
∂RS

∂[ω]q

)]
=K

[
(RT

S ⊗ RS)
− 1

2

(
∂rS
∂[ω]p

)]H

·
[
(RT

S ⊗ RS)
− 1

2

(
∂rS
∂[ω]q

)]
,

(A.2)

where rS = vec(RS). Therefore, the FIM Φ is expressed as

Φ = K

ΓHΓ ΓHD

DHΓ DHD

 , (A.3)

where Γ is an |S|2 × L matrix given as

Γ =(RT
S ⊗ RS)

− 1
2

[
∂rS
∂θ̃1

, · · · , ∂rS
∂θ̃L

]
=(RT

S ⊗ RS)
− 1

2

[
A∗S ⊗

∂AS

∂θ̃
+
∂A∗S
∂θ̃
⊗ AS

]
P

=2π(RT
S ⊗ RS)

− 1
2{A∗S � [(diag(S)AS)] + [diag(S)A∗S]� AS}P

=2π(RT
S ⊗ RS)

− 1
2 AwP,

(A.4)
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P = diag(σ2
1, ..., σ

2
L), Aw = {A∗S � [diag(S)AS] + [diag(S)A∗S] � AS}, and the |S|2 × (L+ |S|)-

dimensional matrix D is given as

D =(RT
S ⊗ RS)

− 1
2

[
∂rS
∂σ2

1

, · · · , ∂rS
∂σ2

L

,
∂rS
∂Ψ2

1

, · · · , ∂rS
∂Ψ2

S

]
=(RT

S ⊗ RS)
− 1

2 [A∗S � AS, e1 ⊗ e1, ..., e|S| ⊗ e|S|]

=(RT
S ⊗ RS)

− 1
2 [A∗S � AS, IS � IS]

=(RT
S ⊗ RS)

− 1
2 W,

(A.5)

where W = [A∗S�AS, I|S|� I|S|]. If the FIM is nonsingular, according to (A.3), the CRB of the

DOAs becomes

CRB(θ) =
1

K
{ΓH[I− D(DHD)−1DH]Γ}−1. (A.6)

APPENDIX B

Proof. (Sufficient) According to (A.5), DHD = WH(RT
S ⊗RS)

−1W. Since rank(W) = L+ |S|

and (RT
S ⊗ RS)

−1 is positive-definite, DHD is positive-definite.

(Necessity) If rank(W) < L + |S|, there exists a non-zero vector satisfying Wu = 0. As a

result, the following equation is valid: uH(DHD)u = (Wu)H(RT
S⊗RS)

−1(Wu) = 0, which means

that DHD is not positive-definite.

APPENDIX C

Proof. (Sufficiency) Since [I − D(DHD)−1DH] is Hermitian and idempotent, there exists a

vector u1 such that

1

4π2
uH
1 {ΓH[I− D(DHD)−1DH]Γ}u1 = ||[I− D(DHD)−1DH](RT

S ⊗ RS)
− 1

2 AwPu1||22 ≥ 0.

(C.1)

The equality is valid only if (I − D(DHD)−1DH)(RT
S ⊗ RS)

− 1
2 AwPu1 = 0, and there exists a

vector v such that

AwPu1 −Wv = [Aw W]

Pu1

−v

 = 0, (C.2)

if rank[Aw W] = 2L+|S|, then Pu1 = 0, implying u1 = 0. Therefore, {ΓH[I−D(DHD)−1DH]Γ}

is positive-definite.

(Necessity) If rank[Aw W] < 2L+ |S|, then there exist vectors x and y such as

[Aw W]

x

y

 = 0, (C.3)
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which means

AwP(P−1x) = W(−y). (C.4)

If x 6= 0, then [I − D(DHD)−1DH](RT
S ⊗ RS)

− 1
2 AwP−1x = 0, and {ΓH[I − D(DHD)−1DH]Γ} is

not positive-definite. If x = 0 and y 6= 0, then Wy = 0, which contradicts with rank(W) =

L+ |S|.
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(c) DOA estimator [19]
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(d) Proposed Method 1
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(e) Proposed Method 2
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(f) Proposed Method 3

Fig. 2: Comparison of spatial spectrum in nonuniform noise environment. (1 dB input SNR and

4000 snapshots)
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(b) DOA estimator [12]
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(c) DOA estimator [19]
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(d) Proposed Method 1
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(e) Proposed Method 2
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(f) Proposed Method 3

Fig. 3: Comparison of spatial spectrum in nonuniform noise environment. (1 dB input SNR and

1000 snapshots)
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Fig. 4: RMSE vs. SNR.

500 1000 1500 2000 2500 3000 3500 4000100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of snapshots

R
M

S
E

(°
)

 

 

Method [19]
Method [24]
Method [12]
Proposed method 1
Proposed method 2
Proposed method 3
CRB

Fig. 5: RMSE vs. number of snapshots.




