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Time-Frequency Signatures for Assisted Living
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Abstract

Falls are a major public health concern and main causes of accidental death in the senior U.S.

population. Timely and accurate detection permits immediate assistance after a fall and, thereby, reduces

complications of fall risk. Radar technology provides an effective means for this purpose because it is

non-invasive, insensitive to lighting conditions as well as obstructions, and has less privacy concerns. In

this paper, we develop an effective fall detection scheme for the application in continuous-wave radar

systems. The proposed scheme exploits time-frequency characteristics of the radar Doppler signatures,

and the motion events are classified using the joint statistics of three different features, including the

extreme frequency, extreme frequency ratio, and the length of event period. Sparse Bayesian classifier

based on the relevance vector machine is used to perform the classification. Laboratory experiments are

performed to collect radar data corresponding to different motion patterns to verify the effectiveness of

the proposed algorithm.
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vector machine.

This paper is made possible by NPRP Grant # NPRP 6-680-2-282 from the Qatar National Research Fund (a member of Qatar
Foundation). The statements made herein are solely the responsibility of the authors. Part of the results has been presented at the
SPIE Radar Sensor Technology XVIII Conference, Baltimore, MD, May 2014 [1] and the IEEE China Summit and International
Conference on Signal and Information Processing, Xi’an, China, July 2014 [2].

Q. Wu, Y. D. Zhang, and M. G. Amin are with the Center for Advanced Communications, Villanova University, Villanova,
PA 19085, USA.

W. Tao is with the School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China.



2

I. INTRODUCTION

The old-age dependency ratio, which is defined as the ratio of the population aged 65-years

or over to the population aged between 20 and 64 and represents the number of dependents per

100 persons of working age, has been rising in many countries all over the world. According to

United Nations estimates for the “more developed regions”, this ratio is anticipated to exceed

30% in 2020 and reach 40% in 2030 [3]. To address the challenges of self-dependence living

within homes or residences for the elderly population, therefore, assisted living is an emerging

area that involve a broad spectrum of scientists. Among these challenges, elderly falls are a

major public health concern as they often result in disability and the main cause of accidental

death in the U.S. population over age 65 [4], [5]. Because immediate assistance provided after

a fall can significantly reduce complications of fall risks, it is critical to detect elderly falls in a

timely and accurate manner so that immediate response and proper care can be rendered [6].

Recent advances in sensing technologies can help reduce injuries and provide early detection

of health declination. This, in turn, leads to timely interventions and most effective treatments.

Sensing apparatuses depend on active and continuous assessments of health conditions and motor

functional abilities of the elderly so that small changes from predefined baseline can be detected.

A number of techniques have been proposed to sense vital signs and motions for ambient

assisted living (see, for example, [7], [8], [9]). These sensing techniques include those monitoring

physiological signs (e.g., electrocardiography (ECG)) and accelerometers, video camera, passive

infrared and thermography sensors, laser vibrometer, and radio frequency identification (RFID)

devices. Among those, ECG, accelerometers, and RFID require that devices be attached to human

body, whereas laser vibrometer requires very accurate control or placement. On the other hand,

video camera systems are sensitive to lighting conditions and obstructions due to walls and
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fabrics, and raise privacy concerns.

Radar is an excellent sensing modality for elderly fall detection due to its capability of monitor-

ing human motions. The general concept of radar-based system is to transmit an electromagnetic

(EM) wave over a certain range of frequencies and analyze the radar return signals. Radar systems

offer non-intrusive, clutter suppressed and noise tolerant sensing systems for sensing moving

human objects [10]. Specifically, low-cost narrowband radar systems can be used to estimate

the instantaneous velocity of moving objects by measuring the frequency shift of the wave

beckscattered from the object, known as the Doppler effects [11]. For an articulated object such

as a walking person, the motion of various components of the body, including the torso, arms,

and legs, induces frequency modulations on the returned radar signal, referred to as Doppler

signatures. As such, they enable monitoring of the elderlies motion profiles in their private

homes as well as in healthcare facilities. Radar systems avoid direct contact (unlike ECG and

accelerometers) and do not require very accurate control or placement (unlike laser Doppler

vibrometer). Compared to optical and infrared (IR)-based systems, radar systems can operate in

all types of environments, can penetrate walls and fabrics, preserve privacy, and are insensitive

to lighting conditions.

The human gait classification based on radar Doppler spectrograms was considered for dif-

ferent arm motion patterns in the context of urban sensing [12], [13], [14], [15], [16]. In [14],

[15], [16], a common scheme applied in these algorithms is to extract the Doppler signature

features, based on which the motion patterns are then identified using the support vector machine

(SVM). SVM is a state-of-the-art learning system that is commonly used in practice for pattern

recognition and data mining applications, such as text categorization, image classification, and

bioinformatics [17], [18]. However, SVM is known to make unnecessarily liberal use of basis
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functions since the number of required support vectors typically grows linearly with the size of

the training set and, therefore, is not preferred in processing large-scale data sets. In addition, it

requires that the error/margin trade-off parameters to be validated. The kernel matching pursuit

(KMP) [19], which greedily selects basis functions for non-regularized kernel least squares

problem, was proposed to achieve comparable accuracy by utilizing reduced number of support

vectors in the classifier. The SVM with reduced classifier complexity [20] extended the basic

ideas of KMP to the SVM. Nevertheless, ‘nuisance’ parameters, such as the number of support

vectors [19], trade-off parameters [20], and input variable scales in the kernel function [19], [20],

are still required to validate these approaches. In addition, the predictions of these approaches

are not probabilistic and their outputs are hard binary decisions.

In this paper, we examine a different approach for radar-based fall detection based on the time-

frequency characteristics of the radar return. Potentially catastrophic events are first identified by

applying the short-time Fourier transform (STFT) to the raw data retrieved from the radar and

analyzing the energy content of the signal. These events are extracted from the data for a tri-

characteristic analysis in order to classify the type of motion. The sparse Bayesian classification

algorithm is examined to distinguish between different motion patterns that respectively exhibit

close and distinct Doppler signatures. It has been demonstrated that sparse Bayesian learning

methods based on the relevance vector machine (RVM) [21], [22] improve performances over

the SVM with fewer relevance vectors. RVM is also a discriminative modeling technique in

a form similar to the SVM, but it is a fully probabilistic model and enables to estimate the

conditional probability distribution in order to capture the uncertainty in the prediction, unlike

the hard point estimation in the SVM. Furthermore, there are no parameters to validate in the

sense that the maximum likelihood procedure automatically sets the ‘regularisation’ parameters
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[21].

The proposed technique is tested using experimental data collected at the Radar Imaging Lab,

Center for Advanced Communications, Villanova University. For fall detection purpose, we have

designed fall events including forward and backward falls, and non-fall events including sitting-

and-standing (S&S) motions, and bending over and standing up (B&S) motions for classification.

With the data collected, we obtained quantifiable results to verify the reliability of the proposed

classification algorithm.

This paper is organized as follows. The system and signal models are described in Section II.

The Sparse Bayesian classification technique is introduced in Section III. We then describe the

proposed feature and classification techniques in Section IV. Section V provides the processed

results of the experimental data, Section VI concludes this paper.

The following notations are used in this paper. A lower (upper) case bold letter denotes a

vector (matrix). (.)T denotes transpose, and ‖ ·‖ represents the l2 norm of a vector. Furthermore,

N (a, b) denotes normal distribution with mean a and variance b, diag(.) converts a vector or a

row sequence into a diagonal matrix, and |A| denotes the determinant of matrix A.

II. SYSTEM AND SIGNAL MODEL

A. Signal Model

Consider a continuous-wave (CW) radar which emits a sinusoidal signal with frequency fc

over the sensing period. The transmitted waveform is expressed as s(t) = exp(j2πfct). Let us

first consider a point target which is located at a distance of R0 from the radar at time instant

t0, and moves with a velocity of v(t) toward a direction which forms an angle of θ between

the radar direction. As such, the distance between the radar and the target at time instant t is
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expressed as

R(t) = R0 +

∫ t

t0

v(u) cos(θ)du, (1)

and the received radar signal is expressed as

xa(t) = ρ exp[j2πfc(t− 2R(t)/c)], (2)

where ρ is the target reflection coefficient and c is the velocity of EM wave propagation. The

Doppler frequency corresponding to xa(t) is

fD(t) = 2v(t) cos(θ)/λ, (3)

where λ = c/fc is the wavelength.

A rigid body target, such as a human body, can be considered as a collection of scatterers.

Therefore, the return signal is the integration over the target region, expressed as

x(t) =

∫
Ω

xa(t)da, (4)

where Ω denotes the target region. As such, the Doppler signature is the superposition of each

component Doppler frequencies. Torso or gait motions generally generate different time-varying

Doppler frequencies, and their exact signatures depend on the target shape and the motion

patterns.

In our experimental studies, the radar data sets were collected in the Radar Imaging Lab at

the Center for Advanced Communications, Villanova University. The experiment scene is shown

in Fig. 1. The laboratory is semi-controlled by placing EM absorbers around the walls to reduce

the effect of wall reflection. An Agilent network analyzer was externally triggered with a time
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sampling rate of 1 kHz, and the carrier frequency is fc = 8 GHz. The network analyzer records

backscattering coefficients in terms of magnitude and phase, and the results are converted into

complex expressions, xr(t). In addition, background signals x0(t) in the absence of target are

also collected and their effect are subtracted from all data observations. As such, the data to be

processed for Doppler analysis is expressed as

x(t) = xr(t)− x0(t), (5)

which is periodically sampled to result in discrete-time observations x[k] = x(kT ), where T =

10−3 s is the sampling interval.

Fig. 1. Experiment scene.

B. Time-Frequency Analysis

By using joint time-frequency analysis methods, time-varying Doppler frequency can be

captured at various instances of time. In this paper, we use the spectrogram, generated through

the STFT, to perform the time-frequency analysis of the Doppler signature. The discrete-time
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STFT of signal x(t) is defined as

X[k, ν] =
∞∑

m=−∞

x[m]h[k −m] exp(−j2πmνTF ), (6)

where ν denotes the index of frequency bin (νF is the actual frequency with F denoting the

frequency step size), and h[k] is the discrete-time window function that trades off the time and

frequency resolutions. We use the Hamming window and tested different window sizes and found

that a window size of 255 is chosen for our processing. A larger window length may degrade the

time resolution whereas as a smaller window length may compromise the frequency resolution.

Fig. 2 compares the spectrogram, which is the magnitude square of the STFT, of a backward

fall with Hamming window sizes of 127, 255, 511, and 1023.

C. Power Burst Curve

After the proper spectrogram of the data is obtained, the algorithm first determines exactly

where important events have occurred in the data and a classification process should be initiated

to detect whether such an event is a fall. We utilize a power burst curve (PBC) of the data (which

was referred to as the energy burst curve in [23] and [24]), which represents the summation of

signal power within a specific frequency band between frequencies f1 and f2 at time instant kT ,

expressed as

PBC[k] =
∑

ν:νF∈[f1,f2]

|X[k, ν]|2 +
∑

ν:νF∈[−f2,−f1]

|X[k, ν]|2. (7)

We choose f1 = 70 Hz and f2 = 100 Hz to detect high-energy events, as catastrophic events,

such as falls, typically have high Doppler energy content within this frequency band.

The PBC of the ambient noise can be considered to follow a Gaussian distribution, denoted

as N (µP , σP ), where µP and σP respectively denote the mean and variance of the distribution.
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(a) window length 127 (b) window length 255

(c) window length 511 (d) window length 1023

Fig. 2. Spectrogram of fall generated with different window sizes.

To keep the algorithm sensitive to human event whereas sufficiently separated from the noise

power burst floor, the following threshold is used for event detection:

ηP = µP + 6
√
σP . (8)

Therefore, an event is determined whenever the PBC exceeds threshold ηP , initiating the classi-

fication procedure as described in the following section. Fig. 3 shows one example of the PBC

where a fall occurs.
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Fig. 3. An example of the PBC. The red line represents the detection threshold.

III. FEATURE EXTRACTION AND CLASSIFICATION

Once an event is detected by thresholding the PBC, we construct a 4-second window of the

spectrogram, centered around each of these points that correspond to the peak frequency, to

determine whether a fall has happened. The proposed technique consists of segmentation and

morphological processing to obtain a clean binary time-frequency signature, and the extracted

characteristics are exploited to perform sparse Bayesian classification for the determination of

the type of motion represented in each window.

A. Spectrogram Segmentation and Morphological Processing

To obtain a clean binary time-frequency signature of the interested activities for the feature

extraction, the following two important steps are executed on the spectrogram results: (a) image

segmentation; and (b) morphological operation. In this work, the latter step includes image

dilation and disconnected region removal.

The objective of image segmentation is to separate the Doppler signatures of human events

from background noise. The segmentation is performed using gray-scale spectrogram images.

A commonly used image segmentation technique is through proper thresholding [25], [26]. The
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determination of an appropriate threshold value, which separates or segments a gray-level time-

frequency representation into target events and background noise regions, is an important task

of a thresholding algorithm. Because the presence of the Doppler signature is usually very weak

around the extreme frequencies, which are used as an important feature in the sequel, it is

important that the threshold is not too high to reject such weak signals, whereas it is not too

low as well so that the entire time-frequency domain is cluttered.

In addition, the spectrogram may consist of weak components, particularly around the extreme

frequencies, which may yield broken segments after spectrogram segmentation [27]. Morpho-

logical operation [28], specifically dilation, can bridge closely located broken segments together.

On the other hand, the removal of disconnected regions will only keep the significant time-

frequency region which represents the target activities. Note that the effect of dilation should be

compensated with the known number of dilated pixels when computing the peak frequencies.

Fig. 3 shows the binary time-frequency signature, corresponding to the spectrogram depicted

in Fig. 2(b), respectively after segmentation and morphological operator. The threshold level

used for segmentation is µ+ 1.5
√
σ, with µ and σ respectively denoting the mean and variance

of the noise floor in the spectrogram, which provides a good trade-off between weak signal

preservation and noise rejection. The mean and variance of the noise floor can be obtained from

the spectrogram of the ambient data.

B. Feature Definition

For motion classification and fall detection, the following three features are chosen: extreme

frequency magnitude, extreme frequency ratio, and length of event.
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(a) after segmentation (b) after morphological operation

Fig. 4. Binary time-frequency signature obtained from the spectrogram.

1) Extreme Frequency Magnitude: The extreme frequency magnitude is defined as

F = max(f+ max,−f−min), (9)

where f+ max and f−min, respectively, denote the maximum frequency in the positive frequency

range and the minimum frequency in the negative frequency range. Critical falls often exhibit a

high extreme frequency magnitude when compared to other types of observed motions.

2) Extreme Frequency Ratio: The extreme frequency ratio is defined as

R = max

(∣∣∣∣f+ max

f−min

∣∣∣∣ , ∣∣∣∣ f−min

f+ max

∣∣∣∣) . (10)

For falls, due to the translational motion of the entire body, high energy spectrogram is concen-

trated in either the positive or negative frequencies, resulting in a high extreme frequency ratio.

On the other hand, other types of motions, such as sitting and standing, often demonstrate high

energy content in both the positive and negative frequency bands because different body parts

behave with different motion patterns, thereby corresponding to a low extreme frequency ratio.
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3) Length of Event: This feature describes the length of time, in milliseconds, between the

start and the end of an event, i.e.,

L = textrm − tbegin, (11)

where textrm denotes the time where the extreme frequency occurs, whereas tbegin denotes

the corresponding beginning time the event has initiated. The beginning time of an event is

determined by the time when the magnitude of the frequency content of a signal passes a

specific threshold. The different motion patterns being compared in this work generally show

distinct time spans.

The three features described above, i.e., the extreme frequency magnitude, the extreme fre-

quency ratio, and the length of event, extracted from the spectrogram will be used for fall

detection. The sparse Bayesian classification algorithm, which is detailed in the following section,

is applied to classify fall or non-fall events. The classifier uses these features, denoted as

xn = [Fn, Rn, Ln]T ∈ R3 for the nth event, as the input, and produces tn as the output of

event such that tn = 1 when the event is a fall, and tn = 0 when the event is not a fall.

IV. SPARSE BAYESIAN CLASSIFICATION

The three features described above, i.e., the extreme frequency magnitude, the extreme fre-

quency ratio, and the length of event, extracted from the spectrogram will be used for fall

detection. The sparse Bayesian classification algorithm, which is detailed in this section, is

applied to classify fall or non-fall events. The classifier uses these features, denoted as xn =

[Fn, Rn, Ln]T ∈ R3 for the nth event, as the input, and produces tn as the output of event with

two classes. That is, tn takes a value of 1 when the event is a fall, and its value is 0 when the

event is not a fall.
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Such a two-class classification is implemented by evaluating the posterior probability of an

event under test, x, belongs to each of the two classes. Such posterior probability can be generally

represented in terms of the logistical sigmoid function,

ρ(y) =
1

1 + e−y
, (12)

as [21], [22],

p(t|w) =
N∏
n=1

ρ{y(xn,w)}tn [1− ρ{y(xn,w)}]1−tn , (13)

where tn ∈ {0, 1} is a binary variable and follows the Bernoulli distribution with the weight of

ρ{y(xn,w)}, and y(xn,w) is defined as the weighted summation over the base kernel K(x,xi)

for a given set of training data xi, i = 1, ..., N , that is

y(x,w) =
N∑
i=1

wiK(x,xi) + w0. (14)

The weights w = {w0, w1, · · · , wN} will be automatically learned to enforce the sparseness and

capture the most relevant vectors. The kernel function K(·) effectively defines a basis function

for each example in the training set, and can be of the form of Gaussian, Euclidean distance,

Laplacian polynomial, etc. Unlike in the SVM, the kernel in the RVM does not have to be a

Mercer kernel.

We place a zero-mean Gaussian prior distribution over w,

p(w|α) =
N∏
i=0

N (wi|0, α−1
i ), (15)

where α = [α0, ..., αN ]T is a vector of N + 1 hyperparameters denoting the respective precision
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(reciprocal of variance). Because of the discontinuity of the likelihood in (13), neither the

weight posterior p(w|t,α) nor the marginal distribution p(α|t) can be analytically evaluated

and acquired in a closed form. We thus choose to utilize the Laplace’s approximation method

for the estimation of the weight vector α. Given the hyperparameters α, we maximize the

posterior distribution to acquire updated weight vector w, and then α is updated based on the

estimated w. As such, α and w are obtained through an iteration procedure which is terminated

when the convergence criterion is satisfied. More specifically, wMAP can be expressed as based

on the maximum a posteriori (MAP) estimation by [21],

wMAP = ΣΦTBt, (16)

Σ = (ΦTBΦ + A)−1, (17)

A = diag(α0, · · · , αN), (18)

B = diag(β1, · · · , βN), (19)

βn = ρ{y(xn,w)}[1− ρ{y(xn,w)}], (20)

where Φ = [φ(x1),φ(x2), · · · ,φ(xN)]T and φ(xn) = [1, K(xn,x1), K(xn,x2), · · · , K(xn,xN)]T .

Given a specific α, the wMAP is updated in Eq. (16), the associated learning problem becomes

a search for the hyperparameter α. We define a new variable t̂ as

t̂ = ΦwMAP + B−1(t− y). (21)

A type-II maximum likelihood approximation employs a point estimate for α to maximize the
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approximate log marginal likelihood [21], [29], [30], [31], [32],

L(α) = −1

2

[
N log 2π + log |C|+ t̂TC−1t̂

]
, (22)

where C = B + ΦAΦT . We acquire the updated expression of αn based on the fast greedy

algorithms [22], [32],

αn =


s2
n

q2
n − sn

, if q2
n > sn,

∞, if q2
n ≤ sn,

(23)

where sn = φT (xn)(C−n)−1φ(xn), qn = φT (xn)(C−n)−1t̂ and C−n = C− α−1
n φ(xn)φT (xn).

Note that Eq. (23) shows the pruned-out operator. That is, when q2
n > sn, αn adopts a nonzero

value and the corresponding atom would be kept as a relevance vector. On the other hand, when

q2
n ≤ sn, the atom would be pruned out from the model. It is observed that the sparse Bayesian

learning based on RVM strongly encourages the sparseness of the weight vector compared with

the SVM and thus acquires much fewer relevance vectors in the resulting model.

V. EXPERIMENT RESULTS

A. Experiment Settings

We conducted experiments for 8 different motion patterns, with each experiment pattern

repeated for 10 times (5 times each for 2 objects). The recording time for each experiment

is 20 seconds. Every set of experiments contains a different type of motion, including forward

falling, backward falling, sitting and standing, and bending over and standing up. We also split

each motion pattern into two different variations, one demonstrating a standard type of motion

whereas the other one demonstrating a high-energy form of that motion in order to study the

impact of such variations on the classification performance. The typical spectrograms of the 8
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motion patterns are shown in Fig. 5. The first 4 patterns are collectively considered as falls,

whereas the last 4 patterns are collectively considered as non-falls. Our objective is to correctly

detect fall events from non-fall events.

B. Feature Extraction and Classification Results

Fig. 6 shows the ground truth of three features defined in Section III, i.e., the extreme frequency

magnitude, the extreme frequency ratio, and the length of event. Specifically, Fig. 6(a) shows

the three-dimensional (3-D) view of the three features, whereas their pairwise two-dimensional

(2-D) plots are respectively shown in Figs. 6(b)–6(d). It is observed that these features generally

provide a clear distinction between the fall and non-fall events, except one outlier fall event

(marked with a circle). Examination of the spectrogram of this outlier fall event shows that the

signal is very weak, yielding low extreme Doppler frequency as well as a short length of event

time.

The fall events exhibit larger extreme frequency magnitudes, higher extreme frequency ratios,

and longer lengths of event time than the non-fall counterparts. These features, however, does

not robustly classify the fall and non-fall activities based on a singe feature alone.

The sparse Bayesian classification algorithm and the SVM algorithm are respectively applied

by using a Gaussian kernel, which is defined as K(xm,xn) = exp(−‖xm − xn‖2/r2) with the

width parameter chosen as r = 0.5. We use 5-fold cross-validation on the motion data. The

entire sample set is randomly partitioned into 5 equal-size subsets. Out of the 5 subsets, a single

subset is retained as the validation data for testing the classifier, and the remaining 4 subsets are

used as the training data. The cross-validation process is repeated 5 times, with each of the 5

subsets used exactly once as the validation data.
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Both algorithms acquire similar results with one misclassification of the outlier fall event as

described earlier, as shown Fig. 7(a), where the misclassified result is marked in circle. The

number of relevance vectors required in the sparse Bayesian classification are around 5, which

is much smaller when compared with the 20 support vectors obtained in the SVM. It is found

that the number of support vectors required generally grows linearly with the size of training data

in the experiments. Although the number of samples is limited in the current experimental study,

the classification method based on the RVM technique acquires the same accuracy with far less

relevance vectors. In practical applications, the number of data samples will be large and, thereby,

the advantages of RVM will be more pronounced. Furthermore, the sparse Bayesian classification

algorithm also acquires the probability of fall motion so that we can evaluate uncertainty in the

prediction, as shown Fig. 7(b). In this figure, the index of experiment is ordered with forward

falling, forward falling with arm motion, backward falling, backward falling with arm motion,

sitting and standing, fast sitting and standing, bending over and standing up, and fast bending

over and standing up (refer to Fig. 5), each of 10 trials. We observe in Fig. 7(b) that the fall events

generally show a high probability of fall motion except the outlier event. For non-fall events,

the normal sit-and-stand and bend-and-stand-up activities show consistent low probability of fall

motion, whereas the fast sit-and-stand and bend-and-stand-up activities tend to exhibit a higher

probability of fall motion, although their absolute value remains low for reliable classification.

VI. CONCLUSION

We have proposed an effective technique to process radar Doppler signatures for fall detection.

The proposed technique treats the spectrogram as a gray-scale image, and image segmentation

and morphological processing of spectrogram are performed before it is passed to perform feature

analysis. Three features, namely, the extreme frequency magnitude, extreme frequency ratio, and
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the length of event, are extracted from the processed spectrogram, and the results are used to

perform sparse Bayesian classification for proper fall detection. Experiment results validated the

effectiveness of the proposed technique.
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(a) Fall backward (b) Fall backward with arm motion

(c) Fall forward (d) Fall forward with arm motion

(e) Sit and stand (f) Fast sit and stand

(g) Bend and stand up (h) Fast bend and stand up

Fig. 5. Spectrogram of typical motion patterns.
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Fig. 6. Ground truth of motions with 3-D vision and three 2-D visions.
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Fig. 7. (a) Classification result based on sparse Bayesian algorithm. (b) Probability distribution of fall motion.


