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ABSTRACT

Coprime arrays are capable of achieving an increased number
of degrees-of-freedom by operating the coarray signals. How-
ever, their non-uniform coarrays prevent the full utilization of
the available signals. To address this problem, a novel coar-
ray interpolation-based direction-of-arrival (DOA) estimation
algorithm via covariance matrix reconstruction is proposed in
this paper. In particular, we formulate a gridless optimization
problem to reconstruct the covariance matrix of the interpo-
lated coarray, such that all the coarray observations are fully
utilized. We also investigate the rotational invariance in the
coarray domain to retrieve the DOAs. Neither spatial sam-
pling nor spectrum searching is required in the proposed al-
gorithm, indicating the capability of resolving off-grid DOAs.
Simulation results demonstrate the effectiveness of the pro-
posed DOA estimation algorithm.

Index Terms— Coarray interpolation, coprime array, co-
variance matrix reconstruction, DOA estimation, rotational
invariance.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation is one of the key tech-
niques in radar, sonar, acoustics, speech, seismic, and wireless
communications [1–12]. Recently, coprime arrays have at-
tracted tremendous attentions due to their systematical sparse
array configurations and superior estimation performance
over the uniform linear arrays (ULAs) [13–17]. Nevertheless,
the coarray of the coprime array is non-uniform, making the
DOA estimation methods tailored for ULAs difficult to ap-
ply. A commonly used solution is to extract the maximum
contiguous segment of the coarray for the subsequent signal
processing [18–21]. In so doing, however, performance loss
will be inevitably encountered due to the discarded sensors.

Coarray interpolation is a promising approach to gener-
ate a ULA in the coarray domain, such that all the signals
of the non-uniform coarray can be utilized. In [22], a nuclear
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norm minimization (NNM) algorithm is proposed to complete
the interpolated coprime coarray covariance matrix, where the
missing correlation elements corresponding to the interpolat-
ed sensors are recovered. Furthermore, the minimum-sized
coarray for completing the interpolated coarray covariance
matrix is investigated in [23]. However, both approaches are
developed based on the matrix completion, indicating that the
correlations obtained from the sample covariance matrix are
retained in the completed covariance matrix. Hence, the esti-
mation accuracy is affected by the finite number of snapshots.
In [24], the positive semidefinite (PSD) constraint is imposed
to the NNM problem, based on which a unified analysis for
the extrapolation error is presented. Although the abovemen-
tioned methods optimize the covariance matrix in a gridless
manner, the given spectrum searching interval limits the es-
timation accuracy of off-grid DOAs when incorporating the
coarray MUSIC [18, 22–25].

In this paper, we propose a novel DOA estimation algo-
rithm based on covariance matrix reconstruction by exploit-
ing the rotational invariance of the interpolated coprime coar-
ray covariance matrix. Different from the previous method-
s adopting the principle of matrix completion, the proposed
algorithm adopts the principle of matrix reconstruction to re-
cover the interpolated coarray covariance matrix, where the
observed correlations are used for covariance matrix fitting
in a formulated gridless optimization problem. Moreover,
the shift invariance of the interpolated coprime coarray is in-
vestigated, from which a closed-form solution for DOA esti-
mation is derived based on the rotational invariance involved
in the reconstructed interpolated coprime coarray covariance
matrix. As a result, the time-consuming spectrum searching
process is avoided. The effectiveness of the proposed algo-
rithm is validated through numerical simulations.

2. COPRIME COARRAY SIGNAL MODEL

A coprime array is the union of a pair of sparse ULAs as

S={Nmd, 0≤m≤M − 1}∪{Mnd, 1≤n≤N − 1} , (1)

where M and N are coprime integers, and d equals to a half
wavelength, i.e., d = λ/2. Due to the coprimality, there are a
total number of M +N − 1 sensors in the coprime array.



Assuming K far-field, narrowband, and statistically un-
correlated sources impinge the coprime array from directions
θk, k = 1, 2, · · · ,K, the coprime array received signals at
time slot t can be modeled as

x(t) =
K∑

k=1

aS(θk)sk(t) + n(t), (2)

where

aS(θk)=
[
1, e−j 2π

λ z2 sin(θk), · · ·, e−j 2π
λ zM+N−1 sin(θk)

]T
(3)

is the coprime array steering vector, sk(t) is the correspond-
ing signal waveform, and n(t) is the Gaussian white noise
vector. Here, S = {z1, z2, · · · , zM+N−1} is the set of sensor
positions with reference z1 = 0, and ( · )T denotes transpose.
Accordingly, the covariance matrix of the signal vector re-
ceived at the coprime array is

RS = E
[
x(t)xH(t)

]
=

K∑
k=1

pkaS(θk)a
H
S (θk) + σ2

nI, (4)

where E[ · ] is the expectation operator, ( · )H stands for con-
jugate transpose, pk = E

[
|sk(t)|2

]
denotes the signal power

of the k-th source, and σ2
n denotes the noise power.

The coprime coarray V can be formulated as

V = {zı − zȷ|zı, zȷ ∈ S}, (5)

whose corresponding coarray signals can be obtained by vec-
torizing RS. After removing the repeated rows and rearrang-
ing all remaining rows, the coarray signals can be modeled
as

uV =
K∑

k=1

pkaV(θk) + σ2
niV, (6)

where aV(θk) is the steering vector of the coprime coarray V,
and the elements in iV are all zeros except ones corresponding
to the zeroth position in V. Although the second-order co-
prime coarray signals uV has a similar form as the first-order
signals x(t), the coprime coarray V offers more degrees-of-
freedom (DOFs) than the coprime array S.

3. THE PROPOSED ALGORITHM

A novel coarray interpolation-based DOA estimation algo-
rithm is proposed in this section, including gridless covari-
ance matrix reconstruction and a searching-free solution.

3.1. Coarray Interpolation and Matrix Reconstruction

It is revealed in [13] that there exist several holes in V, re-
sulting in a discontiguous coarray configuration. In order to
create a ULA-based coarray model without discarding the dis-
contiguous sensors in V, we introduce the idea of array inter-
polation into the coarray domain, where the additional virtual

sensors are interpolated to the positions of holes to obtain a
ULA as

I = { i|min(V) ≤ i ≤ max(V)} . (7)

In practical applications, the theoretical covariance ma-
trix RS is unavailable due to the finite number of snapshots.
Hence, the observed coarray signals of V are obtained by vec-
torizing the sample covariance matrix R̂S as

ûV = vec(R̂S) = vec

(
1

T

T∑
t=1

x(t)xH(t)

)
, (8)

where T is the number of snapshots. Accordingly, the inter-
polated coprime coarray signals can be initialized as

⟨ûI⟩ℓ =

{
⟨ûV⟩ℓ, ℓ ∈ V,

0, ℓ ∈ I\V,
(9)

where ⟨ · ⟩ℓ denotes the element corresponding to the position
ℓ. Here, the coarray signals corresponding to the non-uniform
coprime coarray V are retained in ûI, whereas those corre-
sponding to the interpolated sensors are simply set to zeros
since they are unknown in practice.

According to the relationship between the second-order
coarray signals and the Toeplitz matrix structure established
in [26], the initial covariance matrix of the interpolated co-
prime coarray signals can be directly constructed as

R̂I = T (ûI+) , (10)

where T (ûI+) denotes a Hermitian Toeplitz matrix with ûI+

as its first column. Here, ûI+ is a subvector of ûI containing
the initial coarray signals of I+, and ( · )+ denotes the subset
consisting of the non-negative elements. The initial covari-
ance matrix R̂I contains all the information in ûI, where the
spatial smoothing process and the matrix square root process
in [18] are skipped. Meanwhile, we define a binary matrix
Ω ∈ R|I+|×|I+| with the same dimension as R̂I to distinguish
the elements of R̂I, whose elements corresponding to the ob-
served correlations in ûI are set to ones and zeros otherwise.
It is obvious that the binary matrix Ω is determined when a
systematical coprime array configuration is deployed.

The goal of covariance matrix reconstruction [19, 27, 28]
is to recover the covariance matrix of the interpolated coprime
coarray, including the unknown elements which are initialized
to be zeros in (9). In particular, taking the initial covariance
matrix R̂I as the reference, the interpolated coprime coarray
covariance matrix reconstruction can be formulated as a nu-
clear norm minimization problem as

min
u∈C|I+|

∥T (u)∥∗

subject to
∥∥∥PΩ (T (u))− R̂I

∥∥∥2
F
≤ ε,

T (u) ≽ 0, (11)



where PΩ( · ) denotes the projection operator by taking the
Hadamard product of the binary matrix Ω with the same di-
mensional matrix, ∥ · ∥∗ and ∥ · ∥F respectively denote the
nuclear norm and Frobenius norm, ε constrains the fitting er-
ror between the observed correlations (non-zero elements) in
R̂I and the corresponding elements in T (u), and T (u) ≽ 0
ensures a Hermitian PSD Toeplitz matrix. Alternatively, the
optimization problem (11) can be reformulated as

min
u∈C|I+|

1

2

∥∥∥PΩ (T (u))− R̂I

∥∥∥2
F
+ µ∥u∥∗

subject to T (u) ≽ 0, (12)

where µ is a regularization parameter to balance the fitting
error and the nuclear norm. The optimization problem (12)
is convex and can be efficiently solved using interior point
methods.

3.2. DOA Estimation Exploiting Rotational Invariance

The reconstructed matrix T (û) ∈ C|I+|×|I+| can be viewed as
the covariance matrix of the interpolated coprime coarray I+,
whose uniform structure enables the investigation of rotation-
al invariance in the coarray domain [29, 30]. In particular, we
first extract a pair of shift invariant subarrays I+1 and I+2 from
I+ as illustrated in Fig. 1, whose corresponding (|I+|−1)×K
dimensional steering matrices can be represented as AI+1

and
AI+2

, respectively. While the pair of subarrays share the same
geometry except a translational distance of d, the steering ma-
trices can be related as

AI+2
= AI+1

Φ, (13)

where

Φ = diag
{
e−j 2π

λ d sin(θ1), e−j 2π
λ d sin(θ2), · · · , e−j 2π

λ d sin(θK)
}

(14)
is a unitary matrix. Meanwhile, denoting Es,I+ ∈ C|I+|×K as
the signal subspace of T (û) including the eigenvectors cor-
responding to its K prominent eigenvalues, the signal sub-
spaces of the shift invariant subarray pair Es,I+1

and Es,I+2
can be respectively obtained by removing the last row and the
first row of Es,I+ as

Es,I+ =

[
Es,I+1

last row

]
=

[
first row

Es,I+2

]
. (15)

Since Es,I+ shares the same subspace with those spanned
by AI+ , a unique nonsingular matrix T ∈ CK×K exists and
relates the signal subspaces and the steering matrices of each
subarray as

Es,I+1
= AI+1

T , (16)

Es,I+2
= AI+2

T = AI+1
ΦT . (17)

Fig. 1. Illustration of a pair of shift invariant subarrays in the
coarray domain with an example of M=3 and N=5. Filled
circles: coarray sensors; Hollow circles: interpolated sensors.

While both Es,I+1
and Es,I+2

have the full rank K, an orthog-
onal relationship can be established by defining the K × K
dimensional matrices F1 and F2 as[

Es,I+1
Es,I+2

] [
F1

F2

]
= Es,I+1

F1 +Es,I+2
F2 = 0. (18)

Hence, Es,I+2
= Es,I+1

Γ with Γ = −F1F
−1
2 , which can be

calculated as
Γ = E†

s,I+1
Es,I+2

. (19)

Here, ( · )† denotes the pseudo-inverse. Combining the rela-
tionships established in (16) and (17), we have

AI+1
ΦT = AI+1

TΓ. (20)

Because T is a nonsingular matrix and AI+1
is full rank, (20)

can be transformed as

Φ = TΓT−1. (21)

According to the definition of Φ in (14), a closed-form
solution for DOA estimation can be obtained as

θ̂k = arcsin

(
− 1

π
ℑ(ln γk)

)
, (22)

where ℑ( · ) denotes the imaginary part of the complex num-
ber, and γk is the k-th dominant eigenvalue of Γ.

4. SIMULATION RESULTS

In our simulations, we deploy the coprime array with a
pair of coprime integers M = 3 and N = 5, i.e., S =
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Fig. 2. The spatial spectra of the proposed algorithm with the
number of sources: (a) K = 9; (b) K = 11.
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Fig. 3. Comparison of DOA estimation accuracy: RMSE ver-
sus SNR, T = 500.

{0, 3d, 5d, 6d, 9d, 10d, 12d}. The regularization parameter µ
in the proposed algorithm is chosen to be 0.25.

The available DOFs of the proposed algorithm are illus-
trated by depicting the spatial spectra in Fig. 2, where the
sources are uniformly distributed in [−50◦, 50◦]. We first con-
sider the case that the number of sources is K = 9, which
exceeds the DOFs provided by the contiguous segment of V.
It is observed from Fig. 2(a) that the proposed algorithm is
capable of identifying all the nine sources, indicating that the
discontiguous sensors in V are effectively utilized. Moreover,
Fig. 2(b) shows that the proposed algorithm can also resolve
all K = 11 sources, whereas the maximum number of achiev-
able DOFs of V is only ten. Hence, although the interpolated
virtual sensors do not actually exist, they still provide addi-
tional DOFs via covariance matrix reconstruction.

The DOA estimation accuracy of the proposed algorith-
m is compared with the NNM algorithm [22], where the di-
rection of the incident source is randomly selected from the
normal distribution N (0◦, (1◦)2). The spectrum searching in-
terval for the NNM algorithm is given as ∆θ = 0.1◦. The
root mean square error (RMSE) versus the input signal-to-
noise ratio (SNR) is depicted in Fig. 3, where the Cramér-
Rao bound (CRB) [31] is also presented for reference. For
each scenario, 1,000 Monte-Carlo trials are performed.

It is clear from Fig. 3 that the proposed algorithm out-
performs the NNM algorithm when the input SNR is high-
er than −5 dB. This is because the estimation accuracy of
the NNM algorithm is limited by the given searching interval
∆θ. In contrast, the proposed algorithm retrieves the closed-
form DOAs according to the rotational invariance involved
in the interpolated coprime coarray covariance matrix, where
the spectrum searching process is not required. Therefore, the
proposed algorithm is capable of effectively resolving off-grid
DOAs. We note that the performance of the proposed algo-
rithm in the asymptotic region is consistent with the CRB.
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Fig. 4. Comparison of optimized covariance matrix accuracy:
NMSE versus SNR, T = 500.

Furthermore, we also compare the estimation accuracy of
the optimized Hermitian Toeplitz covariance matrix T (û) by
defining the normalized mean square error (NMSE) as

NMSE = E

[
∥û(q)− u∥22

∥u∥22

]
, (23)

where u is the first column of the theoretical interpolated co-
prime coarray covariance matrix, and û(q) is the estimator of
u in the q-th Monte-Carlo trial. The simulation parameters
are the same as those in Fig. 3.

It is observed from Fig. 4 that the NMSE of the proposed
algorithm outperforms that of the NNM algorithm when the
input SNR is higher than 0 dB. In this case, the NNM al-
gorithm recovers the missing elements corresponding to the
interpolated sensors based on the principle of matrix comple-
tion, while the observed correlations are retained in the com-
pleted covariance matrix. In contrast, the proposed algorithm
formulates an optimization problem based on the principle of
matrix reconstruction, where the elements in the reconstruct-
ed covariance matrix T (û) may not be the same as those in
R̂I, especially in the scenario of limited snapshots.

5. CONCLUSION

In this paper, we proposed a novel coarray interpolation-based
DOA estimation algorithm via covariance matrix reconstruc-
tion, such that all sensors in the discontiguous coprime coar-
ray can be fully utilized. The idea of array interpolation is
implemented in the coarray domain. A gridless optimization
problem is formulated to reconstruct the interpolated coprime
coarray covariance matrix, based on which the rotational in-
variance is then investigated to retrieve the closed-form DOAs
without spectrum searching. Simulation results demonstrat-
ed the superiority of the proposed algorithm in terms of the
achievable number of DOFs and the estimation accuracy.
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