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ABSTRACT

As a new emerging technology for wireless communica-
tions, massive multiple-input multiple-output (MIMO) faces
a significant challenge to deploy a separate receiver chain
of front-end circuits in a dense circuit board. In this pa-
per, we apply the compressive sensing technique to reduce
the required number of front-end circuits and the overall
computational complexity. Unlike the commonly adopted
random projections, we utilize the a priori probability dis-
tribution of the directions-of-arrival (DOAs) of the signals
to optimize compressive sensing kernels for massive MIMO
systems, such that the mutual information between the com-
pressed measurement and the DOA is maximized. With the
optimized sensing matrix, we present a compressive sensing
spatial spectrum estimator under the minimum variance dis-
tortionless response criterion. Simulation results demonstrate
performance advantages of the proposed optimal sensing
kernel over random sensing kernels.

Index Terms— Compressive sensing, DOA estimation,
kernel optimization, massive MIMO, spatial spectrum.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation using an array of mul-
tiple sensors is a fundamental problem in a variety of fields,
such as radar, sonar, wireless communications, acoustics,
seismology, and radio astronomy [1,2]. Recently, with the de-
velopment of millimeter wave technology, massive multiple-
input multiple-output (MIMO) equipped with a large number
of sensors has been a hot research topic for next genera-
tion wireless communications [3–8]. Although a massive
MIMO system does provide a higher resolution because of
its larger array aperture, it is a great challenge to equip a
large number of front-end circuit chains. Furthermore, the
computational complexity is also a major concern because
of the high-dimensional matrix operation (e.g., inversion or
eigen-decomposition). In order to reduce the complexity,
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compressive sensing is a viable solution for massive MIMO
systems.

In the past decade, the compressive sensing technique has
been widely applied in a variety of signal processing appli-
cations, such as DOA estimation [10–12], beamforming [13–
16], and radar imaging [17, 18]. It is well known that ran-
dom sensing matrix, such as Gaussian or Bernoulli matrix,
satisfies the incoherence property with any fixed signal repre-
sentation basis, which guarantees the reliable signal recovery.
Obviously, such random matrices do not exploit the potential
prior knowledge of the signals beyond the sparsity. In prac-
tical massive MIMO applications, prior knowledge of DOAs
of the signals of interest is usually available.

In this paper, we exploit the available a priori informa-
tion to optimize the compressive sensing kernel for DOA es-
timation in a massive MIMO system. More specifically, the
compressed measurements are characterized by a Gaussian
mixture model through discretizing the a priori probability
distribution of the DOAs. Based on this observation, the com-
pressive sensing matrix can be optimized by maximizing the
mutual information between the compressed measurements
and the DOAs to be estimated. With the optimized sensing
matrix, we present a compressive sensing minimum variance
distortionless response (CS-MVDR) spatial spectrum estima-
tor, from which both the DOAs and the power of the sig-
nals can be estimated. Simulation results demonstrate that the
DOA estimation accuracy is improved by using the optimized
sensing matrix. Furthermore, the CS-MVDR spatial spectrum
estimator with the optimized sensing matrix provides more
accurate power estimation than the standard MVDR spatial
spectrum estimator.

2. SIGNAL MODEL

Consider D far-field uncorrelated narrowband signal sources
impinging on an N -element massive array from directions
θ = [θ1, · · · , θD]

T, where ( · )T denotes the transpose op-
eration. The array received signal at the kth sampling time
can be modeled in complex baseband as

x(t) =

D∑
d=1

a(θd)sd(t) + n(t) = A(θ)s(t) + n(t), (1)



where A(θ) = [a(θ1),a(θ2), · · · ,a(θD)] ∈ CN×D de-
notes the array steering matrix with the dth column rep-
resenting the dth source’s steering vector a(θd) ∈ CN ,
s(t) = [s1(t), s2(t), · · · , sD(t)]

T ∈ CD denotes the sig-
nal waveform vector, and n(t) ∼ CN (0, σ2

nIN ) denotes the
zero-mean additive white Gaussian noise vector. Here, IN is
the N ×N identity matrix.

Let compressive sensing matrix Φ = [ϕT
1 ,ϕ

T
2 , · · · ,ϕ

T
M ]T

∈ CM×N (M ≪ N ) consist of M row-orthonormal sensing
kernels, i.e., ΦΦH = IM , where ( · )H denotes the Hermi-
tian transpose. When Φ is applied to the massive array, its
received signal vector x(t) ∈ CN can be compressed into an
M -dimensional measurement vector

y(t) = Φx(t) = ΦA(θ)s(t) +Φn(t). (2)

Hence, Φa(θ) ∈ CM can be regarded as a sketch of the mas-
sive array steering vector with a significantly reduced size of
dimension. Our objective is to optimize the compressive sens-
ing matrix Φ based on the prior knowledge of DOA distribu-
tion to obtain DOA estimates with an improved accuracy from
the compressed measurement vector y(t).

3. PROBABILISTIC OPTIMIZATION OF
COMPRESSIVE SENSING MATRIX

3.1. Probabilistic signal model

In this section, we optimize the compressive sensing matrix
using a probabilistic model. The DOA θ is treated as a random
variable that occupies a region Θ with a probability density
function (pdf) f(θ) which is known a priori. Such distribu-
tion can be, e.g., estimated from the previous observed data,
determined by the mission of operation, or decided based on
the previous states of the sources.

With the law of total probability, the pdf of the measure-
ment vector can be expressed as

f(y) = Eθ {f(y|θ)} =

∫
θ∈Θ

f(y|θ)f(θ) dθ, (3)

where Eθ{ · } denotes the statistical expectation with respect
to θ. Discretize the pdf f(θ) into K angular bins with an equal
width of ∆θ̄, and denote pk = f(θ̄k)∆θ̄ with

∑
k∈K pk = 1,

where K = {1, 2, · · · ,K}. Then, the above expression can
be approximated as

f(y) ≈
∑
k∈K

pkf(y|θ̄k). (4)

Consider the kth angular bin with a nominal DOA θ̄k. The
signal arrival in this angular bin, s(t), is considered as the
mixture of different sources and is modeled as a zero-mean
complex Gaussian random variable, i.e., s(t) ∼ CN (0, σ2

s).
In this case, the corresponding compressed measurement vec-
tor is

y|θ=θ̄k = Φ
(
a(θ̄k)s(t) + n(t)

)
, (5)

and the conditional pdf is

f(y|θ̄k) =
1

πM
∣∣∣Cyy|θ̄k

∣∣∣e−yHC−1

yy|θ̄k
y
, (6)

where Cyy|θ̄k = Φ
(
σ2
sa(θ̄k)a

H(θ̄k) + σ2
nIN

)
ΦH is the co-

variance matrix of y|θ=θ̄k . Hence, the pdf of the compressed
measurement vector is a weighted sum of K Gaussian distri-
butions, which forms a Gaussian mixture distribution. If the
bin width ∆θ̄ is chosen to be sufficiently small, then the ap-
proximation in (4) approaches to equality at the cost of infinite
components in the mixture.

3.2. Compressive sensing matrix optimization

We adopt the maximum mutual information criterion [19] to
optimize the compressive sensing matrix Φ such that a mas-
sive array can estimate the DOAs of the sources more accu-
rately. Considering that the optimization variables are repre-
sented as a high-dimensional fat matrix, we prefer a gradient-
based strategy as in [20] to search for the optimal sensing ma-
trix. This procedure requires the computation of the gradient
of the Shannon mutual information I(y; θ) between the com-
pressed measurement vector y and the DOA θ with respect to
the sensing matrix Φ, described as

∇ΦI(y; θ) = ∇Φh(y)−∇Φh(y|θ), (7)

where ∇Φ{ · } stands for the gradient operator with respec-
tive to Φ, h(y) = −Ey

{
log[f(y)]

}
denotes the differen-

tial entropy of the compressed measurement vector y, and
h(y|θ) = −Ey,θ

{
log[f(y|θ)]

}
represents the conditional

differential entropy of the compressed measurement vector y
given the DOA θ. Although there is no closed-form informa-
tion gradient expression for practical array applications, the
discretization of the pdf of DOAs makes it possible to obtain
an approximate gradient.

The conditional pdf of the mean of the compressed mea-
surement vector y, given DOA θ, is given by

f(y0 = 0|θ) = 1

πM
∣∣Cyy|θ

∣∣ , (8)

where Cyy|θ = Φ
(
σ2
sa(θ)a

H(θ) + σ2
nIN

)
ΦH. Hence, we

can compute the approximate mutual information as:

I(y; θ) ≈ h(y) +

∫∫
f(y, θ)logf(y0|θ) dydθ

= h(y) +

∫
logf(y0|θ)f(θ) dθ

= h(y)−
∫

log
∣∣Cyy|θ

∣∣ f(θ)dθ −M logπ

≈ −log
∑
k∈K

pk

∣∣∣Cyy|θ̄k

∣∣∣−1

−
∑
k∈K

pklog
∣∣∣Cyy|θ̄k

∣∣∣ , (9)



where the first approximation of h(y|θ) is based on a first-
order Taylor series expansion of logf(y|θ) around the mean
value y0 = 0, and the last approximation of the differential
entropy h(y) can be found in [20].

By taking the gradient of the resulting approximated mu-
tual information I(y; θ) in (9) with respect to the sensing ma-
trix Φ, we have

∇ΦI(y; θ)

≈

∑
k∈K

pk

∣∣∣∣Cyy|θ̄k
σ2
n

∣∣∣∣−1[Cyy|θ̄k
σ2
n

]−1

Φ

(
σ2
s

σ2
n

a(θ̄k)a
H(θ̄k)+IN

)
∑
k∈K

pk

∣∣∣∣Cyy|θ̄k
σ2
n

∣∣∣∣−1

−
∑
k∈K

pk

[Cyy|θ̄k
σ2
n

]−1

Φ

(
σ2
s

σ2
n

a(θ̄k)a
H(θ̄k) + IN

)
, (10)

where σ2
s/σ

2
n denotes the input signal-to-noise ratio (SNR) of

the signal, and Cyy|θ̄k/σ
2
n=Φ

(
(σ2

s/σ
2
n)a(θ̄k)a

H(θ̄k)+IN
)
ΦH.

Using the approximate information gradient ∇ΦI(y; θ)
(10), we can iteratively search for the optimal compressive
sensing matrix from

Φ̃ = Φ+ γ∇ΦI(y; θ), (11)

where γ > 0 is a step size. This procedure can be iterated
by re-orthonormalizing the rows of Φ̃ and computing the in-
formation gradient ∇Φ̃I(y; θ). In contrast to randomly gen-
erated compressive sensing kernels as commonly used in the
compressive sensing literature [9–11], the compressive sens-
ing kernel in the proposed framework can be optimized based
on the a priori knowledge of the distribution of the DOAs.
The detailed optimization process and convergence criterion
can be found in [20–23]. Because the complexity of com-
puting the information gradient in (10) is O(KMN2), the
overall computational complexity of the proposed compres-
sive sensing matrix optimization is O(JKMN2), where J
denotes the number of iterations.

4. CS-MVDR SPATIAL SPECTRUM ESTIMATOR

Because the compressive sensing matrix Φ is row-orthonormal,
the compressed additive noise vector Φn(t) ∼ CN (0, σ2

nIM )
is still white Gaussian. Based on the compressed measure-
ments of (2), we propose the following CS-MVDR spatial
spectrum estimator:

PCS-MVDR(θ) =
1

N

aH(θ)ΦHΦa(θ)

aH(θ)ΦHR̂
−1

yyΦa(θ)
, (12)

where R̂yy = 1
T

∑T
t=1 y(t)y

H(t) = ΦR̂xxΦ
H is the com-

pressed measurement sample covariance matrix. Here, T ≥ 1
is the number of snapshots, and R̂xx = 1

T

∑T
t=1 x(t)x

H(t) is
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Fig. 1. CS-MVDR spatial spectra comparison.

the massive array sample covariance matrix. It is worth men-
tioning that some structural information on the covariance
matrix can be exploited to enhance the estimation accuracy,
which may achieve better final performance [24–27]. When
Φ = IN , namely, Nyquist sampling is applied, the above CS-
MVDR spatial spectrum estimator degenerates to the standard
MVDR spatial spectrum estimator

PMVDR(θ) =
1

aH(θ)R̂
−1

xxa(θ)
, (13)

because aH(θ)a(θ) = N for any direction θ.
Benefiting from compressive sampling, the original high-

dimensional sample covariance matrix R̂xx ∈ CN×N is re-
duced to a much lower-dimensional measurement covariance
matrix R̂yy ∈ CM×M because M ≪ N . Hence, the cor-
responding computational complexity of the MVDR spatial
spectrum estimator is reduced to O(M3) from the original
O(N3). Meanwhile, to avoid the ill-conditioned inversion,
the required number of snapshots for compressive sampling
is reduced to T ≥ M from that for Nyquist sampling, which
is T ≥ N .

5. SIMULATION RESULTS

We assume a massive array with N = 50 omnidirectional
sensors and half-wavelength inter-element spacing. The com-
pression ratio is chosen to be N/M = 5, namely, the dimen-
sion of the compressed measurement vector y(t) is M = 10.
Without loss of generality, the DOAs of the sources for com-
pressive sensing matrix optimization are assumed to follow a
Gaussian distribution N (0◦, (5◦)2). We uniformly discretize
the pdf of DOA with a width of ∆θ̄ = 0.1◦ for sensing matrix
optimization regardless of the SNR. Namely, there are K =
1, 801 components in the Gaussian mixture (4). In the pro-
cess of sensing matrix optimization, a step size of γ = 0.001
is chosen for the gradient-based search.

In the first example, we compare the CS-MVDR spatial
spectra in Fig. 1, where the number of snapshots is T = 100
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Fig. 2. Performance comparison of different sensing kernels. (a) RMSE versus SNR; (b) MAPE versus SNR; (c) RMSE versus
number of snapshots; (d) MAPE versus number of snapshots.

and nine sources have the same SNR of 20 dB. It is clear
that the optimized sensing kernel can clearly identify the nine
sources as the Nyquist sampling, while the random sensing
kernels do not provide sufficient resolution to identify all nine
sources.

In the next example, we assume that there is one signal
following the same distribution as that for sensing matrix op-
timization. In Fig. 2, we compare the root mean square er-
ror (RMSE) of the DOA estimation, and the mean absolute
percentage error (MAPE) of the power estimation. The num-
ber of snapshots is fixed to T = 100 in Figs. 2(a) and 2(b)
when comparing the performance versus SNR, and the SNR
is fixed at 5 dB in Figs. 2(c) and 2(d) when comparing the per-
formance versus the number of snapshots. For each scenario,
1,000 Monte-Carlo runs are performed. It is clear that the op-
timized sensing kernel consistantly outperforms the random
sensing kernels in both DOA and power estimations. For
example, we can see from Fig. 2(a) that the optimized ker-
nel provides an SNR advantage of at least 5 dB compared to
random kernels in order to achieve the same DOA estima-
tion accuracy. Furthermore, it also performs better than the

Nyquist sampling either at low SNRs, benefiting from the a
priori knowledge, or with few snapshots, benefiting from the
low-dimensional covariance matrix estimation.

6. CONCLUSION

In this paper, we have considered the compressive sensing
matrix optimization for DOA estimation in a massive MIMO
system. Different from the commonly used random projec-
tions, the proposed compressive sensing kernel is optimized
by utilizing the prior knowledge of the probabilities of signal
DOAs to maximize the Shannon mutual information between
the compressed measurements and the DOAs. The optimized
sensing matrix is then used to estimate the DOAs by search-
ing the CS-MVDR spatial spectrum. In addition to achiev-
ing significant complexity reduction, simulation results also
demonstrate that the optimized sensing kernel offers signifi-
cant performance improvement compared with random sens-
ing kernels. Furthermore, the optimized compressive sensing
kernel can obtain better estimation accuracy than the standard
Nyquist sampling at low SNRs or with few snapshots.
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