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ABSTRACT

In this paper, we consider robust direction-of-arrival (DOA)
estimation for an array that contains mis-calibrated sensors
with unknown gain and phase uncertainties. We develop two
robust DOA estimation algorithms based on the maximum
correntropy criterion (MCC). In the first algorithm, adaptively
optimized weighting factors are obtained and applied to each
sensor to effectively mitigate the effect of calibration error
and array manifold distortions, and the results are fed into
sparse reconstruction methods for DOA estimation. In the
second algorithm, we further estimate the gain and phase er-
rors of the mis-calibrated sensors so that the entire array is
fully calibrated for improved DOA estimation. The effective-
ness of the proposed techniques is verified using simulation
results.

Index Terms— Robust DOA estimation, gain-phase er-
ror, maximum correntropy criterion, array calibration

1. INTRODUCTION

Direction-of-arrival (DOA) estimation determines the spatial
spectrum of the impinging electromagnetic waves on an an-
tenna array. It finds variety of applications in radar, sonar,
radio astronomy, and mobile communication systems [1].
Recently, sparse signal representation (SSR) framework has
emerged and attracted significant interest in DOA estimation,
mainly due to the key observation that the DOAs of signals
are sparse in the entire spatial domain. The idea of utilizing
SSR, which is intrinsically different from the subspace-based
methods like MUSIC [2] and ESPRIT [3], provides a new
sparse signal reconstruction perspective for DOA estimation,
and has been well studied in various contexts. The ¢;-based
singular value decomposition (L1-SVD) algorithm [4] mainly
addresses the DOA estimation problem by directly represent-
ing the array output in time domain with an overcomplete
basis from the array response vector. A number of methods
have been developed to exploit the spatial sparsity of the
signal arrivals so as to improve the resolution, increase the
degrees of freedom, handle spatially distributed sources, and
achieve robustness against coherent signals [5—8].

However, all these strategies assume exact knowledge of
the gain and phase of all sensor arrays. In a practical opera-
tion, however, the actual sensor gain and phase characteristics
may deviate or be perturbed from their assumed values due to
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the variation in the temperature and operational environment.
Since the conventional SSR based algorithms are generally
based on the minimum mean square error (MMSE) criterion,
the corresponding quadratic operation amplifies the contribu-
tion of such perturbations, resulting in significant degrada-
tions of the DOA estimation accuracy.

In this paper, we consider robust DOA estimation for an
array with mis-calibrated sensors, i.e., their gain and phase
characteristics are unknown. More specifically, two robust
DOA estimation algorithms are developed based on the max-
imum correntropy criterion (MCC) [9]. MCC is a useful tool
to detect outliers and suppress their contributions, whereas
it attains the same optimality as MMSE when no outliers
are present. In [9], it was shown that correntropy induces a
new metric which is equivalent to the ¢2-norm distance if the
points are close, where it behaves similarly to the ¢;-norm
distance as the points get further apart and eventually ap-
proaches the {y-norm as they are far apart. This geometric
interpretation elucidates the robustness of correntropy for
outlier (caused by manifold perturbations) rejection. The
MCC has been demonstrated to achieve robust results when
observations are corrupted by non-Gaussian noise or outliers.
It has been successfully applied in various applications, such
as radar localization [10], ellipse fitting problem [11], and
DOA estimation [12].

Two robust DOA estimation algorithms are developed
in this paper. In the first algorithm, adaptively optimized
weighting factors are obtained and applied to each sensor
to effectively mitigate the effect of calibration error and ar-
ray manifold distortions. More specifically, the value of the
weights will be close to unity when the corresponding sensor
is properly calibrated, whereas the weights will be close to
zero when the corresponding sensor is highly mis-calibrated.
The weighted results are then fed into sparse reconstruction
methods to achieve robust DOA estimation. In the second
algorithm, we further estimate the gain and phase errors of
the mis-calibrated sensors so that the entire array is fully
calibrated for improved DOA estimation.

Notations: We use lower-case (upper-case) bold charac-
ters to denote vectors (matrices). In particular, Iy stands for
the N x N identity matrix. (-)* implies complex conjugation,
whereas ()7 and (-)¥ respectively denote the transpose and
conjugate transpose of a matrix or a vector. diag(x) denotes a
diagonal matrix that uses the elements of x as its diagonal el-
ements. ® denotes the Kronecker product and vec(A) stands
for stacking the columns of matrix A into a single-column
vector. |-||; and ||-||, denote the ¢;-norm and {y-norm, re-
spectively. phase(a) returns the phase of the element a.



2. PROBLEM FORMULATION
2.1. Signal Model

Consider @) narrowband far-field signals impinging on an ar-
bitrary linear array with M antennas. Denote p,, as the po-
sition of the mth antenna where m = 1, ..., M, and the first
sensor is assumed as the reference, i.e., p; = 0. Assume
that the signals are from angles © = [0y, ..., 00]7, and their
discretized baseband waveforms are expressed as s,(t), for
q=1,...,Q,any t = 1,...,T. Then, the M x 1 array
output vector with 7" snapshots can be modelled as

Q
= Z a(fg)sq(t) + ()
q=1

., T, where

= As(t) +n(t), (1)

fort=1,..
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a(f,) = [1,¢ Xm0,

is the steering vector of the array corresponding to 64, A =
[a(01),...,a(0g)], and s(t) = [s1(t), ..., s¢(t)]T. In addition,
n(t) is the noise vector. We introduce the following standard
assumptions about the properties of the signals and noise:

(1) Thesignals s4(t), ¢ =1,...,Q, are uncorrelated zero-
mean random variables with E[s,(t)s%(t)] = 0204,

1<q¢p=<@;

(2) The noise elements are independent and identically dis-
tributed (i.i.d.) random variables following the complex
Gaussian distribution CN (0, 021 y);

(3) The noise is statistically independent of all the signals.

2.2. Covariance Sparsity-Aware DOA Estimation

The M x M covariance matrix of x(t) is obtained as

Rax = E[x(t)x(t)] = ARgAT + 021y,

Q
— Y o%a(6,)

=1

6,) + 02Lur, )
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where Res = E[s(t)s" ()] = diag([o}, ..., 03)]) is the Q x Q
source covariance matrix. In practice, the covariance matrix
is estimated using the 7" available samples, i.e.,

. 1 <&
Rox = > x()x"(t). 4)
t=1

By vectorizing the matrix R, we obtain the following
M? x 1 vector

z = vec(Ryx) = Ab 4 21 = Br, )
where A = [a(61),..., &(6o)]. &(6;) = a*(6,) ® a(f,),
b = [0%,..., o’Q}T I= vcc(IM) In addition, B = [A,]]
and t = [b”,02]" = [0%,...,04,02]" are used for nota-

tional convenience. As such, we can regard z as a received

signal vector from a single-snapshot signal vector b, and the
matrix A corresponds to the virtual array sensors. Note that
the virtual vector z can be sparsely represented over the entire
discretized angular grids as [13]

# =arg min|[r||; st. ||z—Br|j3 <e, (6)
where B = [A,I]. Herein, A is defined as the collec-
tion of steering vectors a(f,) over all possible grids 6,
g = 1,...,G, with G > (@, and r is the sparse vector
whose non-zero entry positions correspond to the DOAs 6,
q=1,...,Q. In addition, € is a user-specific tolerance factor
which reflects the discrepancies between the statistical expec-
tation and the sample average in computing the covariance
matrix. The sparse learning problem (6) can be solved within
the SSR framework and various SSR methods (e.g., [14-19])
can be used for this purpose.

2.3. Problem Formulation

The signal model discussed in Sections 2.1 and 2.2 assume
that all antennas are calibrated. In this section, we introduce
the signal model in the presence of mis-calibrated antennas
which are affected by unknown gain and phase distortions.
Denote M as the set of mis-calibrated antennas with a car-
dinality |M| = My < M. Taking the gain-phase error into
account, the model in (1) can be modified as

y(t) = G®As(t) + n(t) = T'As(t) + n(t), (7
where G = diag([p1, ..., pas]) contains gain error p,,, m =
1,..., M, whereas the phase error ¢,,, m = 1,..., M, is
included in ® = diag([e’?1, ..., e/?M]). In addition, T is a
diagonal matrix whose diagonal entries can be expressed as

r - o pmejd)ma m € M, (8)

Denote Ry, = T Zt Ly()y(t) as the corresponding
sample covariance matrix, whose expected value is

Ry, = TARLATTY 021y, )
and the sparse reconstruction problem is updated as

# = arg min |[r°||; st. ||Z2°—Br°|i<e  (10)
with Z° = vec(Ryy ), and #° is the estimated sparse vector
with unknown gain-phase error. Note that the gain-phase
error matrix I' distorts the observation. In particular, the
quadratic operation in (10) amplifies the contribution of such
perturbations, yielding the incorrect estimates.

3. MAXIMUM CORRENTROPY CRITERION
THEORY

In this section, the MCC theory is briefly reviewed [9]. As-
sume two arbitrary scalar random variables Z; and Z;. The
correntropy is a generalized similarity measure between 2
and Z5 and is defined by

Vo (21, Z2) = E ko (Z1 — Z2)], (11)



where Kk, (z) = \/2170 exp (—2%'22) is a Gaussian kernel. The

kernel size o is, also referred to as bandwidth, a parameter
that must be properly chosen based on density estimation, us-
ing, for example, Silverman’s rule [20] or maximum likeli-
hood [10]. In practice, the joint probability density function
is unknown and only a finite number of data are available,
leading to the sample estimator of correntropy

N
1
Vo (21.22) = 5 D o (21, = 22,). (12)
n=1

Note that the value of the correntropy is primarily dictated
by the kernel function along the line z; = 2o, which implies
that the correntropy is insensitive to outliers [9]. Such local
criterion of similarity indicates that the MCC, given by,

N
1
mfxﬁ Zlna (71, — 22,), (13)

achieves robust estimation result with outlier observations
compared to the MMSE criterion in (10), where w =
[wi,-- ,wy] denotes a set of the adjustable parameters.
By adjusting the values of w, the optimal solution is achieved
when (13) achieves the maximum value.

It should be noted that the kernel size acts as a zoom lens
and adjusts the observation window which provides an effec-
tive mechanism to eliminate the detrimental effect of outliers.
Thus, MCC has the advantage that it is a local criterion of sim-
ilarity and it is useful when the observation noise is nonzero
mean, non-Gaussian with outliers.

4. PROPOSED METHOD

In this section, we proposed a robust DOA estimation method
under the gain-phase perturbations, based on the MCC and
the re-calibration techniques.

4.1. Robust DOA Estimation
A. DOA estimation
Denote the estimation error as
em = |z, — wmb, T, (14)

with m = 1,---, M?, where 22, and b,, denote the mth
element of z° and the mth row of B, respectively. In addition,
¢ is the estimate of r°. Under the MCC, the revised sparse
reconstruction problem can be expressed as

M2

i = arg min [y st ———— <& (19)

Z Ho(em)

m=1

where € is a user-specific parameter. Using the results devel-
oped in [10], the above expression can be reformulated as

MQ
#° = arg min [|r°]|; s.t. Z Wmem < €,  (16)
m=1

where €; is a user-specific parameter and the weight w,, is
given by
Wi = Ko (em)- 17)

It seems from (16) w,, is a function of ¥°, whereas ©° de-
pends on w,,. This suggests an iterative algorithm that it-

erates between (16) and (17). The estimates of DOAs, 6,
qg=1,...,Q, can be obtained by positions of the high peaks
of ©° when the convergence is achieved. Note that w,, ~ 1
if e,,, is small, whereas the value of w,,, will be significantly
reduced when perturbed observations exist. As 6, converges
to ¢, the deficient antenna set M can be identified by the el-
ements of weighting vector w with small values. Based on

the deficient antenna positions and 6, we can further achieve
the gain-phase error estimation as described in [21]. For the
convenience of presentation, we assume that the first sensor
is correctly calibrated, i.e., p; = 1 and ¢; = 0.

B. Gain error estimation

The eigen-decomposition of Ryy is given by
Ryy = U,A,UY + U,A,UY, (18)

where U, € CM*Q and U,, € CM*(M=Q) contain eigen-
vectors corresponding to the signal and noise subspaces, re-
spectively, and the associated eigenvalues are included in the
diagonal matrices A, = diag{[A\1, \e,...,Ag]} and A,, =
diag{[Ag+1, Ag+2; - - -, Aam]}. Then, the noise variance can
be estimated as

1 M
~2 o
=0 > A (19)
m=Q+1

Subtracting the noise term from f{yy, we have
Ryy, = TARAYTH. (20)

Taking r as the main diagonal of Ryyo, it is easy to confirm

that
Q

NSRS P Q1)

q=1

2
r=[p....
Then, the gain error can be estimated as

R r—, m € M,
Pm = 1 (22)

1, m ¢ M.
C. Phase error estimation
In [2], it has shown that the noise eigenvectors are orthog-

onal to the space spanned by the column of A. Hence, we
need to minimize the following cost function

fo(r)=1# {i diag (aH(éq)) U, Ul diag (a(éq)) } r

=r7ar, 23)
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Fig. 1. Weighting factors of f{yy.

under the constraints T ¢ = 1 with ¢ = [1,0,...,0]7. The
solution of this problem is given by
Q lc
= ——. 24
¢ cr'Q-1c 24
Then, the phase error can be estimated as
. phase (&), m € M,
O = (25)
0, m ¢ M.

D. Improved DOA estimation

Once the gain and phase errors of all sensors are esti-
mated, the received data vector can be calibrated as

y(t) =& 'GIGPAs(t) + 271G In(t),  (26)

with the calibration matrices G = diag(1/p1,...,1/pn])
and ® = diag([e 7?1, ...,e 7%M]). As aresult, an improved
DOA estimates can be achieved by

min |[r°||; st. ||Z—Br°|2 <e, 27)

where Z = vec(Ryg) = vec(+ Zle yt)ye ().

5. SIMULATION RESULTS

For illustrative purposes, we consider an M = 6 uniform lin-
ear array (ULA), where the interelement spacing is the half
wavelength of carrier frequency. Assume that the 3rd and
5th sensors are mis-calibrated with errors p,, € [0.8,1.2] and
¢m € [0,7] whenm € M = {3,5}. Q = 3 far-field narrow-
band sources with identical powers are from [—23°, 5°, 26°],
respectively.

The proposed method is employed to achieve the robust
DOA estimation. The covariance matrix is estimated by us-
ing 500 snapshots with a 0 dB SNR. The grid interval in the
angular space is set to 0.2°. Fig. 1 shows the weighting fac-

tors of the covariance matrix Ry,. Note that all entries cor-
responding to the 3rd and 5th sensors are significant reduced.
As such, the deficient sensors can be detected.

In Fig. 2, we compare the proposed method with the con-
ventional SSR based method. The MCC without calibration
techniques is referred to as the MCC1, and the MCC2 repre-
sents the MCC with calibration technique. It is clear that the
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Fig. 3. RMSE of the DOA estimation versus SNR.

proposed method can achieve robust DOA estimation when
the conventional method fails. In addition, the re-calibration
techniques improve the estimation accuracy.

The estimation results of the gain and phase are summa-
rized in Table 1. The mean and the standard deviance (STD)
are obtained from 50 independent trials with SNR = 10 dB.
In this experiment, the gain-phase errors for the 3rd and 5th
sensors are set as 1.2¢72:9132 and 0.8¢70-3710_ Table 1 verifies
that the proposed method achieves accurate gain-phase error
estimation.

Fig. 3 provides the RMSE results of the conventional SSR
based method and the proposed method at different SNRs.
At each SNR, the RMSE is calculated from 50 independent
trials. Compared to the conventional method, the proposed
method always achieves significant performance improve-
ment. Utilizing the re-calibration algorithm, the performance
of the MCC2 method further improves the estimated DOA
performance as compared to the MCC1 method, especially in
the important situatoin with a low input SNR.

Table 1. Gain and Phase Estimation Results
(a) Gain (b) Phase (radian)

Index | Actual | Mean | STD Index | Actual | Mean | STD
p3 | 1.2000 | 1.2116 | 0.0104 ¢3 |2.0132|2.0171 | 0.0064
ps | 0.8000 | 0.7894 | 0.0156 o5 | 0.3710 | 0.3782 | 0.0067

6. CONCLUSIONS

In this paper, two robust DOA estimation algorithms are de-
veloped in the sparse reconstruction framework for arrays
with mis-calibrated sensors. Utilizing the MCC, the effect of
perturbations of the mis-calibrated array sensors is effectively
mitigated with the adaptively optimized weights. Further, by
re-calibrating the mis-calibrated sensors, the DOA estimation
performance is further improved. The effectiveness of these
two methods are verified using simulation results.
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