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Abstract

In this paper, we propose a robust direction-of-arrival (DOA) estimation algorithm based on group sparse reconstruction
algorithm utilizing signals observed at multiple frequencies. The group sparse reconstruction scheme for DOA
estimation is solved through the complex multitask Bayesian compressive sensing algorithm by exploiting the group
sparse property of the received multi-frequency signals. Then, we propose a robust reconstruction algorithm in the
presence of distorted signals. In particular, we consider a problem where the observed data in some frequencies are
distorted due to, e.g., interference contamination. In this case, the residual error will follow the impulsive Gaussian
mixture distribution instead of the Gaussian distribution due to the fact that some of the estimation errors significantly
depart from the mean value of the estimation error distribution. Thus, the minimum least square restriction used in
the conventional sparse reconstruction algorithm may lead to a failed reconstruction result. By exploiting the
maximum correntropy criterion which is inherently insensitive to the impulsive noise, a weighting vector is derived to
automatically mitigate the effect of the distorted narrowband signals, and a robust group compressive sensing
approach is developed to achieve reliable DOA estimation. The robustness and effectiveness of the proposed
algorithm are verified using simulation results.

Keywords: Compressive sensing, DOA estimation, Group sparsity, Robust group compressive sensing, Maximum
correntropy criterion

1 Introduction
Direction-of-arrival (DOA) estimation is an important
array signal processing technique which finds broad appli-
cations in radar, sonar, navigation and wireless communi-
cations. In the past decades, a number of high-resolution
DOA estimation algorithms, such as Capon estimator [1],
multiple signal classification (MUSIC) [2], estimation of
parameters via rotation invariance techniques (ESPRIT)
[3], and maximum likehood estimator (ML) [4], have
been proposed. Recently, compressive sensing and sparse
reconstruction methods become attractive in DOA esti-
mation by exploiting the spatial sparsity of the signal
arrivals (e.g., [5–8]). Various reconstruction algorithms
are available in the literature to obtain desired sparse
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solutions, including least absolute shrinkage and selection
operator (Lasso) [9], orthogonal matching pursuit (OMP)
[10], and Bayesian compressive sensing (BCS) [11].
When multiple observations are available due to the

use of, e.g., multiple polarizations and/or multiple fre-
quencies, group sparse reconstruction algorithms allow
exploitation of multiple observations for better deter-
mination of the sparse signal support and thus achieve
improved sparse reconstruction performance as com-
pared with conventional methods that do not account for
such group sparse property. A number of group sparse
reconstruction algorithms, such as group LASSO (gLasso)
[12], block orthogonalmatching pursuit (BOMP) [13], and
multitask Bayesian compressive sensing (MT-BCS) [14]
algorithms, have been developed for this purpose. The
BCS algorithm based on the relevance vector machine
(RVM) [15] has constituted a family of algorithms to
recover sparse signals, and it is applied in this paper
to solve the sparse reconstruction problem because it
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can achieve superior performance and is less sensitive to
the coherence of the dictionary entries. To handle com-
plex values involved in the underlying DOA estimation
problem, a complex value can be decomposed into the
real and imaginary components [16]. In this paper, we
exploit the complexmultitask compressive sensing (CMT-
CS) algorithm [17] which achieves an improved perfor-
mance by exploiting the sparsity pattern shared by the
real and imaginary components of the complex-valued
observations.
In [6], DOA estimation of wideband signals is examined

by using a coprime array. In this approach, the wideband
signals are divided into multiple subbands. The prob-
lem is considered in the context of group sparsity, i.e.,
the positions of the sparse DOA entries corresponding
to the respective DOAs are shared by all the frequency
subbands. That is, signal observations obtained from the
virtual sensors as a result of difference coarray are fused
in the context of group sparse reconstruction.
In this paper, we consider a more challenging situation

in which a subset of the subbands is distorted due to, e.g.,
calibration error, filter misfunction, and/or narrowband
interference contamination. A direction finding method
with sensor gain and phase uncertainties is proposed in
[18] which can simultaneously estimate the DOAs of sig-
nals and array parameters. However, this method requires
that the array perturbation to be small and, due to the joint
iteration between DOA and array parameters, it suffers
from suboptimal convergence. In [19], a DOA estimation
method is developed to utilize partially calibrated array
by minimizing a certain cost function. Both methods in
[18, 19] have a high computational complexity due to
the requirement of spatial search and iterations. By mod-
eling the imperfections of the partially calibrated array,
an ESPRIT-based method is proposed in [20] that avoids
the spatial search and iterations, thus leading to a low
computational complexity.
When a subset of the subbands are distorted, the mani-

fold matrix is distorted in these subbands. In this case, the
abovementioned DOA estimation methods [18–20] that
are developed under the conventional group sparse recon-
struction framework and exploit data information across
all the subbands will lead to performance degradation.
Because the manifold matrix is distorted at the sub-

bands, the residual errors follow an impulsive Gaussian
mixture distribution, i.e., some of the error points are
far from the mean value of the error distribution which
can be viewed as outliers. The effect of such outliers
will be amplified in the process of DOA estimation due
to the minimum mean square error (MMSE) criterion
used in the conventional sparse reconstruction scheme.
Similarly, the group sparsity property will be distorted
and, as a result, the performance of group sparsity-based
DOA estimation will be degraded. In order to achieve

robust reconstruction performance, the outliers caused by
the subband distortion must be suppressed. As described
in [21, 22], the correntropy can be treated as a gener-
alized correlation function characterized by the kernel
bandwidth, which controls the observation window and
provides an effective mechanism to eliminate the detri-
mental effect of outliers. Intrinsically different from the
threshold-based methods, the correntropy can be applied
to nonlinear and non-Gaussian signal processing. Based
on the content of correntropy, a new cost function,
referred to as maximum correntopy criterion (MCC), is
proposed in [22] that achieves robust results for observa-
tions corrupted with non-Gaussian noise and other types
of outlier observations. The MCC has been successfully
applied in various applications, such as radar localization
[23] and ellipse fitting problem [24].
Motivated by this fact, the objective of this paper

is to develop a novel robust group compressive sens-
ing and sparse reconstruction algorithm that can be
applied for DOA estimation when the amplitude and
phase information is destroyed for a subset of the sub-
bands. The proposed approach uses the MCC, instead
of the conventionally used least square measure, to fuse
the data observed at different subbands. By applying a
weighting vector that is automatically optimized in the
proposed method, the observations at the distorted sub-
bands are adaptively suppressed, leading to a robust sparse
reconstruction and DOA estimation performance in the
presence of distorted subband signals.
The reminder of this paper is organized as follow-

ing. In Section 2, we present the signal model based on
multi-frequency signals. In Section 3, we first introduce a
group sparse representation scheme for DOA estimation
utilizing multi-frequency signal model and then briefly
review the CMT-BCS algorithm, which is used for group
sparsity-based DOA estimation. In Section 4, the effect
of narrowband interference to the group sparse recon-
struction algorithm is examined, and the MCC content
is introduced. The proposed robust group sparse recon-
struction algorithm for robust DOA estimation utilizing
multi-frequency signal is then provided. The performance
of the proposed algorithm is evaluated through computer
simulations in Section 5. Finally, the conclusion of this
paper is drawn in Section 6.
Notations: We use lower-case (upper-case) bold charac-

ters to denote vectors (matrices). In particular, IN denotes
theN×N identity matrix, 1N denotes aN×1 all-one vec-
tor, and 0m×n denotes an all-zero matrix or, when n = 1,
an all-zero vector. (·)∗ denotes complex conjugate, and
(·)T and (·)H respectively denote the transpose and con-
jugate transpose of a matrix or vector. vec(·) denotes the
vectorization operator that turns a matrix into a vector
by concatenating all the columns, and diag{x} denotes a
diagonal matrix with the elements of x constituting the
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diagonal entries. ‖·‖2 denotes the �2-norm of a vector,
whereas ‖·‖1 denotes the �1-norm. E[ ·] denotes the sta-
tistical expectation operator. ⊗ denotes the Kronecker
product, ◦ presents theHadamard product, and� denotes
Khatri-Rao product. �x� is the smallest integer greater
than or equal to x.

2 Signal model
Assume there are K far-field sources impinging on an
M-element uniform linear array (ULA) with an interele-
ment spacing of d. The signals are assumed to occupy
a frequency band consisting of L consecutive or dis-
connected subbands respectively centering at frequencies
f1, f2, · · · , fL. In this section, no signal distortions are con-
sidered. The effect of signal distortion of a subset of
frequency subbands is discussed in Section 4.
At frequency fl, l = 1, · · · , L, the array received signal at

the sampling time t can be expressed as

x̃[l](t) = exp
(
j2π flt

) K∑

k=1
s(k)[l] (t)a[l](θk) + ñ[l](t), (1)

where θk is the DOA of the kth source and s(k)[l] (t) is
the corresponding signal coefficient at frequency fl. Dif-
ferent source signals s1[l](t), · · · , sK[l](t) are assumed to be
uncorrelated. In addition, for the lth frequency, a[l](θk)
is the steering vector corresponding to the kth signal,
expressed as

a[l](θk) =
[
1, e−j 2πd

λl
sin θk , · · · , e−j 2πd

λl
(M−1) sin θk

]T
, (2)

where λl = c/fl is the wavelength corresponding to fl and
c is the propagation velocity. Furthermore, ñ[l](t) denotes
the additive white Gaussian noise vector.
After down converting the array received signal vec-

tor x̃[l](t) to baseband, followed by low-pass filtering, the
baseband signal corresponding to the lth subband can be
represented as

x[l](t) =
K∑

k=1
s(k)[l] (t)a[l](θk) + n[l](t)

= A[l]s[l](t) + n[l](t),

(3)

with l = 1, · · · , L, where A[l] = [
a[l](θ1), · · · ,a[l](θK )

]
,

s[l](t) =
[
s(1)[l] (t), · · · , s(K)

[l] (t)
]T

, and n[l](t) is the zero-
mean noise term with variance matrix σ 2

[l]IM.
The covariance matrix of the received signal corre-

sponding to the lth subband is expressed as

Rx[l] = E
[
x[l](t)xH[l](t)

]
= A[l](θ)Rs[l]AH

[l](θ) + σ 2
[l]IM,

(4)

where Rs[l] = E[ s[l](t)sH[l](t)]= diag{σ 2
1[l], · · · , σ 2

K [l]} is
the source covariance matrix with σ 2

k[l] denoting the kth
source power at the lth subband. In practice, the covari-
ance matrix in Eq. (4) can be estimated utilizing the
collected T samples, i.e.,

R̂x[l] = 1
T

T∑

t=1
x[l](t)xH[l](t). (5)

3 DOA estimation based on group sparse
reconstruction

In this section, the group sparse property of the received
signals across different subbands is exploited to estimate
the DOAs through a group sparsity-based solution. A
Bayesian sparse learning method, termed CMT-BCS [17],
is utilized to effectively solve the sparse reconstruction
problem.

3.1 Group sparse signal representation
In order to implement the CS-based DOA estimation, we
vectorize the covariance matrix R̂x[l] to anM2 × 1 vector,
which is expressed as

y[l] = vec
(
R̂x[l]

)
= Â[l](θ)b[l] + σ 2

[l]i, (6)

where Â[l](θ) =
[
Â[l](θ1), · · · Â[l](θK )

]
, â[l](θk) =

a∗
[l](θk) ⊗a[l](θk) is the generalized steering vector , b[l] =
[
σ 2
1[l], · · · , σ 2

K [l]

]T
, and i = vec(IM).

Denote the discretized search grid of the DOA as θ̃ =
[ θ̃1, θ̃2, · · · , θ̃Q]. We assume that the number of the grid
points Q is much greater than the number of sources,
i.e., Q 	 K . Then, the manifold dictionary matrix corre-
sponding to the signal at the lth subband can be expressed
as

Ã[l] =
[
Â[l]

(
θ̃1
)
, · · · , Â[l](θ̃Q)

]
, (7)

where Â[l](θ̃q) = a∗
[l](θ̃q) ⊗ a[l](θ̃q). Then, the sparse

representation of y[l] in Eq. (6) can be expressed as

y[l] = Ã[l]b̃[l] + σ 2
[l]i, (8)

where vector b̃[l] defines the spatial power spectrum over
different grid points.
For different subband l, l = 1, · · · , L, the elements of b̃[l]

take different values but all L vectors have a common sup-
port corresponding to the K sources which sparsely locate
in the spatial domain. Thus, the underlying problem can
be regarded as a group sparse reconstruction problem of
locating the non-zero entries of b̃[l], l = 1, · · · , L.
By stacking vectors y[1], · · · , y[L] into a single vector y =

[ yT[1], · · · , yT[L]]T , we have the following sparse representa-
tion vector

y = Ãb̃ + z, (9)
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where Ã = diag{Ã[l], · · · , Ã[L]} is a block diagonal matrix,
b̃ =[ b̃[1], · · · , b̃[L]], and z = [ σ 2

[1]i
T , · · · , σ 2

[L]i
T ]T . Note

that b̃ has only LK non-zero entries corresponding to the
elements of σ 2

k[l], where k = 1, · · · ,K and l = 1, · · · , L.
The respective positions of non-zero entries in b̃ represent
the targets’ DOAs. The elements of b̃ satisfy the group
sparse property, i.e., the non-zero entries corresponding
to the different frequency combinations share the same
support.
Thus, the DOA estimation can be achieved by solving

the following �1-norm minimization problem

min
b̃

∥
∥
∥ξ(b̃)

∥
∥
∥
1

s.t.
∥
∥
∥y − Ãb̃

∥
∥
∥
2

< ε,
(10)

where ξ(·) is an operation that obtains the �2-norm of
the L-element entries corresponding to each spatial grid
points and ε is a user-specific tolerance factor. The CS-
based DOA estimation methods have been successfully
used for multi-frequency and wideband DOA estima-
tion problems [6, 25]. As we described earlier, a number
of group sparse reconstruction algorithms can solve the
above �1-norm minimization problem. In this paper, the
CMT-BCS algorithm [17], which effectively handles com-
plex group sparse problems in the context of MT-BCS, is
utilized due to its superior performance and robustness to
dictionary coherence.

3.2 CMT–BCS algorithm
The entries of sparse vector b̃[l] in Eq. (8) which char-
acterizes the lth task are assumed to be drawn from the
following zero-mean Gaussian distributions:

b̃q[l] ∼ N (bq[l]|0,αqI2), q ∈ [1, · · · ,Q] (11)

where b̃q[l] is a 2 × 1 vector which is consisted by the real-
part coefficient br[l],q and imagery-part coefficient bi[l],q of
the qth element of b̃[l]. αq is the variance of Gaussian prob-
ability distribution function (pdf). It should be note that
the parameter α =[α1, · · · ,αQ]T is shared by all the L
groups. Thus, the qth vector bq[l] tends to be zero with
probability 1 across the L groups when αq is set to zero
[14].
To deal with the complex-valued variables in the context

ofMT-BCSwhich was originally developed to handle real-
valued problems [14], the real and imaginary components
of a complex variable are treated as two separate variables
in [16] without utilizing the fact that their nonzero entries
usually appear at the same positions. The CMT-BCS algo-
rithm treats the real and imaginary components as group
sparse and αq is shared and jointly estimated for both real
and imagery components [17].

To promote the sparsity of b̃[l], a Gamma prior is placed
on α−1

q , i.e.,

α−1
q ∼ Gamma

(
α−1
q |a, b

)
, (12)

where Gamma(x−1|a, b) = 
(a)−1bax−(a−1)e− b
x , and 
(·)

denotes the Gamma function.
It has been demonstrated in [15] that a proper selection

of the hyper-parameters a and b encourages a sparse rep-
resentation for the coefficients in b̃[l]. We set a = b = 0 as
a default choice which avoids a subjective choice of a and
b and leads to simplifications of computation. Considering
that the covariance matrix is obtained on basis of received
data samples in Eq. (5), a Gaussian prior N (0,β0I2) is
also placed on the additive noise. Similarly, β−1

0 is placed
on the Gamma prior with hyper-parameters c and d, i.e.,
β−1
0 ∼ Gamma(β−1

0 |c, d). We also let c = d = 0 as a
default choice.

Define b̆RI[l] =
[(

b̆R[l]
)T

,
(
b̆I[l]
)T]T

with b̆R[l] =
[
bR[l],1, . . . , b

R
[l],Q

]T
and b̆I[l] =

[
bI[l],1, . . . , b

I
[l],Q

]T
respec-

tively denoting the real and imaginary parts. The poste-
rior probability density function for b̆RI[l] can be evaluated
analytically based on the Bayes’ rule as

Pr
(
b̆RI[l] |yRI[l] , Â[l],α,β0

)
= N

(
b̆RI[l] |μ[l],�[l]

)
, (13)

where

μ[l] = β−1
0 �[l]�

T
[l]y

RI
[l] , (14)

yRI[l] =
[
Re
(
yT[l]
)
, Im

(
yT[l]
)]T

, (15)

�[l] =
[
β−1
0 �T

[l]�[l] + F−1
]−1

, (16)

�[l] =
⎡

⎣
Re
(
Ã[l]
)

−Im
(
Ã[l]
)

Im
(
Ã[l]
)

Re
(
Ã[l]
)

⎤

⎦ , (17)

F = diag
{
α1, · · · ,αQ,α1, · · · ,αQ

}
. (18)

It is noted that, the real and imaginary parts share the
same α to ensure their group sparsity. Once the param-
eters α and β0 are evaluated, the mean and variance of
each signal powers corresponding to different spatial grid
points can be derived. The logarithm of marginal likehood
function is expressed as

{α,β0} = argmax
α,β0

L (α,β0) , (19)

where
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L (α,β0) =
L∑

l=1
log Pr

(
b[l]|α,β0

)

= −1
2

L∑

l=1

[
2M2 log(2π) + log

(
C[l]
)

+
(
yRI[l]
)T

C−1
[l] y

RI
[l]

]

(20)

and C[l] = β0I2M2 + �[l]F�T
[l]. β0 and α can be evaluated

by maximizing Eq. (20) via the expectation maximization
(EM) algorithm. α and β0 can be expressed as [17]:

αq =

√√
√
√√
√
√

∑L
l=1

(
b̃RI[l],q

)T
b̃RI[l],q +

(
b̃RI[l],Q+q

)T
b̃RI[l],Q+q

∑L
l=1 trace

[(
C∗
[l]

)−1 (
�T

[l]q�[l]q
)] ,

(21)

β0 =
∑L

l=1

{
trace

[
�[l]�[l]�

T
[l]

]
+
∥
∥∥yRI[l] − �[l]μ[l]

∥
∥∥
2

2

}

2QL
,

(22)

where �[l]q denotes the qth column of �[l] and b̃RI[l]q =
[
bR[l]q, b

I
[l]q

]T
is a vector consisted of the real and imagi-

nary part of the corresponding qth entry of b̃[l].

4 Robust DOA estimation
TheCMT-BCS sparse reconstruction algorithm described
in Section 3 provides effective DOA estimation only when
there is no distortions. When the observed signals at
some frequencies are contaminated with distortions to
yield incorrect amplitude and phase information, these
methods will result in erroneous DOA estimation. In
this section, we propose an MCC-based robust group
compressive sensing method for reliable DOA estima-
tion in such scenarios. In the following, we first ana-
lyze the effect of narrowband distortions on the group
sparsity-based DOA estimation and then introduce the
concept of the MCC [21, 22]. Finally, the proposed robust
group compressive sensing method for DOA estimation is
presented.

4.1 Effect of narrowband distortion
As we discussed earlier, narrowband distortions may
result from calibration error and filter misfunction. In
addition, local interferer scattering that does not corre-
spond to a clear array manifold would yield a similar
effect (Fig. 1). Let L be a subset of the frequency sub-
bands which are contaminated by narrowband distortions
or interference. Denote the cardinality of L as |L| = Lo

Fig. 1 Array signals with narrowband interference scattering

where Lo < L. At subband lo ∈ L, the received signal
vector becomes

x̃[lo](t) = exp
(
j2π flo t

) K∑

k=1
s(k)[lo](t)a

o
[lo] (θk) + ñ[lo](t),

(23)

where ao[lo](θk) is the distorted steering vector contam-
inated by the loth subband interference, which can be
expressed by theHadamard product of steering vector and
a N × 1 distortion vector v[lo] with unknown amplitude
and phase, i.e., ao[lo](θk) = a[lo](θk) ◦ v[lo] .
After converting x̃[lo](t) to baseband, the corresponding

received signal vector can be represented as

x[lo](t) =
K∑

k=1
s(k)[lo](t)a

o
[lo](θk) + n[lo](t)

= Ao
[lo]s[lo](t) + n[lo](t),

(24)

where Ao
[lo] = A[lo] ◦V [lo] is the distorted manifold matrix

and V = v[lo]1TK is the distortion matrix. The correspond-
ing vectorized covariance matrix of (24) can be written as

y[lo] = vec
(
R̂x[lo]

)
= Âo

[lo]b
o
[lo] + σ 2

[l]i, (25)

where R̂x[lo] = 1/T
∑T

t=1 x[lo](t)xH[lo](t), Â
o
[lo] =

(
Ao
[lo]

)∗ �
Ao
[lo], respectively.
With the existence of distortion matrix V [lo], the group

sparse property in (9) will be destroyed. In addition, under
the sparse representation scheme, the distorted manifold
matrix leads the residual errors, elo = y[lo] − Ã[lo]b̃[lo], fol-
lowing the impulsive Gaussian mixture distribution. Note
that both the ξ(·) operation and the constraint opera-
tion in (10) use l2-norm operations which will generally
amplify the effect of outliers so that the estimates DOAs
become biased or erroneous unless the distortions is
properly suppressed or compensated.
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4.2 Maximum correntropy criterion
The correntropy between two arbitrary random variables
X and Y is defined by [22]

Vδ = E [κδ(X − Y )] , (26)

where

κδ(X − Y ) = exp
(

− (X − Y )2

2δ2

)
(27)

is the Gaussian kernel function with user-defined kernel
size δ that controls the observation window. By adjust-
ing the kernel size, the impulsive Gaussian noise can be
effectively eliminated [22]. In practice, the correntropy is
calculated by a finite number of samples of xn and yn for
n = 1, . . . ,N , i.e.,

V̂δ = 1
N

N∑

n=1
κδ(xn − yn). (28)

In order to derive theMCC, we first give a simple regres-
sion model for two random variables y(n) and x(n) as an
example:

y(n) = f (x(n), p) + z(n) (29)

with n ∈[ 1, · · · ,N], where p is a parameter of function
f, and z(n) is a noise process. If the probability density
function of noise variable z(n) follows the Gaussian dis-
tribution, the optimal solution of the above regression
problem in the minimum mean square error (MMSE)
sense is found by

min
p

J(p) =
N∑

n=1

[
f (x(n), p) − y(n)

]2. (30)

However, when the noise process z(n) follows a non-
Gaussian distribution with large outliers, the solution
obtained under the above MMSE criterion is no longer
optimal. In this case, we consider the optimal solution
under the following MCC [22]:

max
p

J ′(p) =
N∑

n=1
exp

(

−
[
f (x(n), p) − y(n)

]2

2δ2

)

. (31)

It is shown in [22] that the MCC outperforms MMSE in
the impulsive Gaussian mixture noise case since corren-
tropy is inherently insensitive to outliers and the MCC
attains the same efficiency compared with MMSE under a
Gaussian noise process.

4.3 Proposed robust DOA estimation technique
In this subsection, we apply the MCC to develop a
robust group sparse reconstructionmethod, which is used
to provide reliable DOA estimation in the presence of
distortion in a subset of frequency subbands. Consider
that the loth subband, where lo ∈ L, is distorted with
the corresponding manifold matrix Ã[lo]. Define yo =

[
yT[1], · · · , yT[lo], · · · , yT[L]

]T
. If the block diagonal dictio-

nary matrix designed in Eq. (9) is utilized, the entries of
residual error vector yo − Ãb̃ follow impulsive Gaussian
mixture distribution rather than zero-mean Gaussian dis-
tribution. Thus, the solution computed from the �1-norm
minimization problem in (10) is no longer optimal.
In order to solve this problem, the constraint function

in (10) needs to be modified. By utilizing the MCC, the
constrained �1-norm minimization problem is modified
as [23]

min
b̃

∥∥
∥ξ(b̃)

∥∥
∥
1

s.t.
LM2∑

m=1
exp

⎛

⎜
⎝−

∣
∣
∣yom − Ãmb̃

∣
∣
∣
2

2δ2

⎞

⎟
⎠ > ε1,

(32)

where yom is the mth element of yo and Ãm is the mth row
of dictionary matrix Ã. Similar as ε in (10), ε1 is a user-
specific tolerance parameter.
However, the inequality constraint in Eq. (32) is both

non-linear and nonconvex, and thus, it is difficult to solve
this nonconvex optimization problem. In order to achieve
an optimal solution of (32), we introduce the following
proposition [26].

Proposition 1 For κ(x) = exp
(
−|x|2

δ2

)
, there exists a

conjugate function ϕ such that

κ(x) = max
p

(
p
|x|2
δ2

− ϕ(p)
)
, (33)

and for a fixed x, the maximum value is reached at
p = −κ(x).

By exploiting Proposition 1, we can solve the above
nonconvex optimization problem in an iterative method.
Using the result presented in Proposition 1, there exists a
conjugate function ϕ(ω) for the Gaussian kernel function
κ
(
yom − Ãmb̃

)
; thus, the constraint function in (32) can be

modified as

M2∑

m=1

(
ωm
(
|yom − Ãmb̃|2

)
− ϕ(ωn)

)
> ε2, (34)

where ω = [
ω1, · · · ,ωLM2

]
is a weighting row vector to

be optimized and ε2 is a user-specific parameter. Compar-
ing (34) and (33), it is clear that ωm in (34) plays the role
of parameter p in (33). Based on Proposition 1, inequality
(34) achieves its supreme when ωm is set as
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ωm = exp
(

−|yom − Ãmb̃|2
2δ2[l]

)

, (35)

where l = � m
M2 �. Note that the received signal is divided

into L groups corresponding to L subband signals, and it is
necessary to automatically adjust the kernel size δ[l] based
on the individual subband signals rather than the whole
received signals. According to Proposition 1, inequality
(34) and the constraint function in (32) are equal when the
value of ω is specified [26].
In addition, the conjugate function ϕ(ωm) is a function

of parameter ωm. Because ωm keeps constant in one iter-
ation, ϕ(ωm) also keeps constant in each iteration. In this
case, the sparse vector b̃ still can be determined when the
constraint function in (34) arrives its maximum value with
ignoring the value of ϕ(ωm). Hence, the inequality (34) can
be reformulated as

LM2∑

m=1

(
ωm
(
|yom − Ãmb̃|2

))
> ε3, (36)

where ε3 is a user-specific parameter as similar before.
For description convenience, the vector ω is divided

into L groups, i.e., ω = [
ω[1], · · · ,ω[L]

]
, where ω[l] =[

ωM2(l−1)+1, · · · ,ωM2l
]
corresponds to the lth subband. It

is desired that, when there is no distortion in the lth sub-
band, the corresponding ω[l] is a 1×M2 vector consisting
of elements close to 1. Otherwise, for lo ∈ L, ω[l0] should
be set to a 1×M2 vector with small value elements. Thus,
the weighting vector ω is adaptively optimized to mitigate
the effect of the narrowband distortions.
After the weighting vector w is determined, the opti-

mization problem in (32) can be solved through the
following optimization problem

min
b̃

∥
∥
∥ξ
(
b̃
)∥∥
∥
1

s.t. −
LM2∑

m=1

(
ωm

∣
∣∣ym − Ãmb̃

∣
∣∣
2
)

< ε4,
(37)

where ε4 is a user-specific tolerance parameter. The
exploitation of the MCC effectively suppresses the effect
of the narrowband interference, which leads to a robust
DOA estimation based on group sparse reconstruction
scheme.
In summary, the proposed robust DOA estimation algo-

rithm performs the following iterative process:

1. Initialization: Set the initial kernel size as δ[l] = ∞,
and b̃ = 0LM2×1.

2. Compute the initial values of ωn based on Eq. (35).
3. Solve the modified �1-norm minimization problem

(37) utilizing group sparse reconstruction algorithm.

As shown in Section 3, the CMT-BCS algorithm is
applied in this step.

4. Update the initial kernel size δ[l] following the
Silverman’s rule [22, 23]:

δ[l] = 1.06 × min{δE ,R /1.34 } × (M2)−0.4, (38)

where δE and R stand for the standard deviation and
error interquartile range of (yom − Ãmb̃), respectively,
wherem ∈[ (l − 1)M2 + 1, lM2] [22].

Repeat steps 2 to 4 until a user-specific number of
iteration is reached or the iterations are converged.

4.4 Computational complexity
In this subsection, we analyze the computational com-
plexity of the proposed method in terms of the num-
ber of multiplications required in each iteration depicted
in the previous subsection. The computational complex-
ity to calculate the values of ωm in step 2 requires
O{LM2(LQ + 1)} multiplications. In step 3, the num-
bers of multiplications required for the computation
of parameters α and β0 are O{M2LQ(1 + 2M4)} and
O
{
L(4Q2M2 + 4Q2M4 + M2 + 2QM2)

}
, respectively. In

addition, O{LM2} multiplications are required to update
the kernel size.

5 Simulation results
In this section, simulation results are presented to demon-
strate the performance of the proposed algorithm. In
the following simulations, we consider a 7-element ULA.
Three far-field targets (K = 3) impinge on the array from
directions of −20◦, 5◦, and 25◦, respectively. Assume that
each signal occupies five frequency subbands (L = 5).
The ratio between the wavelength λl and the interelement
spacing d for the five subbbands is respectively 1.2, 1.6,
2.0, 2.4, and 2.8. Assume that the noise power is equal
at the five subbands, and the input signal-to-noise ratio
(SNR) is 5 dB. The number of snapshot is T = 200, and
the dictionary matrix consists of steering vectors corre-
sponding to a uniformly sampled grid between −60◦ to
60◦ with a step size of 0.1◦. We assume that the fifth sub-
band is interfered with an omni-directional narrowband
signal with an input interference-to-noise ratio (INR) of
10 dB. The iteration number we used is 10.
We first provide the sparse spatial spectrums obtained

from the two Bayesian compressive sensing algorithms
when there is no narrowband interference in Fig. 2. The
true DOAs are marked with red vertical lines. From
Fig. 2a, b, it is clear that the CMT-BCS algorithm [17]
achieves an outstanding performance compared with the
MT-BCS algorithm [11]. Although the DOA estimates
obtained from the MT-BCS altorithm are approximately
accurate, there exists a spurious peak close to the true
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(a) Estimated from the MT-BCS algorithm
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(b) Estimated from the CMT-BCS algorithm

Fig. 2 Estimated spatial spectrum using the conventional method
implemented by the aMT-BCS and b CMT-BCS methods, where no
narrowband distortions are present

DOA peaks. Correspondingly, the CMT-BCS algorithm
achieves an accurate spatial spectrum without fake peaks.
In Fig. 3, we provide the estimated spatial spectra using

the two BCS algorithms which are not robust to the
presence of narrowband signal interference. It is easy to
see that both of the algorithms fail to achieve an accu-
rate DOA estimation. From Fig. 3a, which provides the
estimated spatial spectrum obtained from the MT-BCS
algorithm, we can see that there exists many spurious
peaks which have higher peak values than the true DOA
peaks. In Fig. 3b, the spatial spectrum estimated from the
CMT-BCS algorithm only captures one signal arrival with
a bias, whereas it fails to estimate the DOAs of the other
two signals. On the other hand, two fake spurious peaks
are generated instead.
The estimated spatial spectrum obtained from the pro-

posed algorithm is given in Fig. 4. The two sparse recon-
struction algorithms are respectively utilized in step 3 of
the proposed algorithm. From the two plots in Fig. 4,
we can see that the narrowband interference signal is
eliminate efficiently and accurate DOA estimations are
obtained. However, there exist spurious components in
the estimated spatial spectrum when the MT-BCS algo-
rithm is applied. On the other hannd, no such spurious
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(a) Estimated from the MT-BCS algorithm
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(b) Estimated from the CMT-BCS algorithm

Fig. 3 Estimated spatial spectrum in the presence of narrowband
interference using the conventional method implemented by both
aMT-BCS and b CMT-BCS algorithms

components are in the spatial spectrum obtained from the
CMT-BCS algorithm.
Define the root mean square error (RMSE) as follows:

RMSE(θ) =
√√
√
√ 1

K

K∑

k=1

(
E
[(

θ̂k − θk
)2])

, (39)

where θ̂k is the estimated DOA of the kth source. The
RMSE versus SNR is provided in Fig. 5 where the
results are averaged over 100 independent trails using
the proposed robust DOA estimation algorithm and
the input SNR varies from −5 to 25 dB. It is clearly
shown that the proposed method achieves a robust esti-
mation and the reconstruction performance is signifi-
cantly improved by using the CMT-BCS reconstruction
algorithm.
In the next example, we compare the performance of

the proposed method under different proportions of dis-
torted subbands in Fig. 6. We consider that three cases
of subband distortion, i.e., 1 subband (20%), 2 subbands
(40%), and 3 subbands (60%), are randomly distorted.
While the RMSE performance generally degrades as the
number of distorted subbands increases, the proposed
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(a) Estimated from the MT-BCS algorithm
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(b) Estimated from the CMT-BCS algorithm

Fig. 4 Estimated spatial spectrum in the presence of narrowband
interference using the proposed method implemented by both a
MT-BCS and b CMT-BCS algorithms

method still provides robust DOA estimation in all the
three considered cases.

6 Conclusions
In this paper, a robust group compressive sensing algo-
rithm was developed to achieve reliable DOA estimation
in the presence of narrowband signal distortion due to
interference and calibration errors. We first construct the
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Fig. 5 Comparison of the RMSE performance versus the input SNR
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Fig. 6 Comparison of the RMSE performance versus distortion
proportion

group sparse signal model utilizing the received multi-
frequency signals. Then, we review the complex muti-
task Bayesian compressive sensing (CMT-BCS) technique
to solve the complex value group sparse reconstruction
problem. Consider narrowband signal distortions that
affect themanifoldmatrix in some of the frequency bands.
In this case, the residual error between the observa-
tions and estimated signals follows the impulsive Gaussian
mixture distribution which is characterized as outliers.
Thus, it leads to performance degradation of DOA esti-
mation when conventional group sparse reconstruction
methods are used. In order to achieve robust DOA esti-
mation, a robust group sparse reconstruction method is
developed based on the maximum correntopy criterion.
In this approach, an adaptive weight is applied to each
subband observation to mitigate such outliers caused by
the narrowband distortion. The reliable DOA estimation
capability is verified in such challenging situations where
conventional group compressive sensing methods fail.
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