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Traditional adaptive beamformers are very sensitive to model mismatch, es-

pecially when the training samples for adaptive beamformer design are con-

taminated by the desired signal. In this chapter, we reconstruct a signal-free

interference-plus-noise covariance matrix for adaptive beamformer design. Ex-

ploiting the sparsity of sources, the interference covariance matrix can be recon-

structed as a weighted sum of the outer products of the interference steering

vectors, and the corresponding parameters can be estimated from a sparsity-

constrained covariance matrix fitting problem. In contrast to classical compres-

sive sensing and sparse reconstruction techniques, the sparsity-constrained co-

variance matrix fitting problem can be effectively solved as a modified least

squares solution by using the a priori information on the array structure. Ex-

tensive simulation results demonstrate that the proposed adaptive beamformer

almost always provides the near-optimal output performance regardless of the

input signal power.

8.1 Introduction

Adaptive beamforming is an effective spatial filtering technique that adjusts the

beamforming weight vector to increase the strength of the signal of interest while

suppressing interference and noise. As a ubiquitous task in array signal process-

ing, adaptive beamforming has been widely used in radar, sonar, wireless com-

munications, radio astronomy, seismology, speech processing, medical imaging,

and many other areas (see, for example, [1–5] and the references therein). Unlike

conventional data-independent beamformers (e.g., fixed or switched beamform-

ers), adaptive beamformers depend on the array received data and hence are

expected to provide better capability for interference suppression and signal en-

hancement. Nevertheless, it is also well known that adaptive beamformers are ex-

tremely sensitive to model mismatch, especially when the training samples used

for the calculation of the beamforming weight are contaminated by the desired

signal. In practice, such model mismatch commonly occurs. For example, the

data covariance matrix cannot be accurately estimated due to the limited num-

ber of training samples, and the steering vector of the desired signal may also be

imprecise or even unknown due to look direction error, imperfect calibration, and
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other effects. Whenever model mismatches exist, classical adaptive beamformers

(e.g., Capon beamformer [6]) will suffer severe performance degradation. To this

end, adaptive beamformer design with robustness against model mismatch has

been an intensive research topic in the past decades, and various robust adap-

tive beamforming techniques have been proposed (see, for example, [4, 7, 8] and

the references therein). Based on the principle of adaptive beamforming, these

robust adaptive beamformers can be classified into two major categories.

In the first category, robust adaptive beamforming techniques process the

sample covariance matrix, because the exact interference-plus-noise covariance

matrix is usually unavailable in practical applications. The sample covariance

matrix is a maximum likelihood estimate of the data covariance matrix, and

thus leads to the optimal output of the resulting adaptive beamformer when the

sample size tends to infinity. Unfortunately, the sample size is often limited in

practice, thus resulting in significant performance degradation, especially when

the desired signal is present in the training samples [9, 10]. The most popular

robust beamforming technique in this category is the diagonal loading tech-

nique [9, 11–13], which adds a scaled identity matrix to the sample covariance

matrix to reduce the conditional number. A major problem with diagonal load-

ing is that there is no clear rule to choose the optimal diagonal loading factor

in different scenarios. In order to adaptively choose the diagonal loading factor

rather than in an ad hoc way, several user parameter-free adaptive beamforming

algorithms were proposed (see, for example, [14] and the references therein). The

shrinkage estimation approach [15] in the sense of minimizing mean square error

(MSE) can automatically compute the diagonal loading levels without the need

to specify any user parameters. However, this approach leads to an estimate of

the statistical covariance matrix of the array received data rather than the re-

quired interference-plus-noise covariance matrix. In such a case, the performance

degradation becomes severe with the increase of the desired signal power, even

when the desired signal steering vector is exactly known. The eigenspace de-

composition technique [16, 17] is another popular approach for robust adaptive

beamforming applicable to arbitrary steering vector mismatch case. The key idea

of this technique is to use the projection of the presumed steering vector onto

the sample signal-plus-interference subspace. This approach requires the knowl-

edge of the dimension of the signal-plus-interference subspace. It is known that

this approach suffers severe performance degradation from the subspace swapa

when the signal-to-noise ratio (SNR) is low [18, 19]. It also suffers from the sig-

nal self-nulling problem, especially at high SNR levels. A sparsity-based iterative

adaptive approach (IAA) [20] can iteratively update the spatial power estimates

in the whole observation field and subsequently update the covariance matrix

used for adaptive beamformer design. Although it does improve the power esti-

mate, the IAA beamforming algorithm is not robust against direction-of-arrival

a A subspace swap occurs when the measured data is better approximated by some
components of the noise subspace than by some components of the signal subspace, i.e.,

there is a switch of vectors between the estimated signal and noise subspaces.
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(DOA) mismatch because its weight is simply that of the scanning grid point

corresponding to the assumed DOA of the desired signal.

In the second category, robust adaptive beamforming techniques process the

presumed desired signal steering vector, because the exact knowledge of the

steering vector is not easy to obtain in practice. In practical situations, steering

vector mismatch can easily occur due to look direction errors [21, 22] or im-

perfect array calibration and distorted antenna shape [23]. Besides these, other

common causes leading to steering vector mismatches include array manifold mis-

modeling because of source wavefront distortions resulting from environmental

inhomogeneities [24, 25], near-far problem [26], source spreading and local scat-

tering [27–30], as well as other effects [10]. In this category, the linear constrained

minimum variance (LCMV) beamformer [31] is most commonly used. It provides

robustness against uncertainty in the signal look direction by broadening the

main lobe of the beampattern. However, the additional imposed constraints re-

duce the degrees of freedom (DOFs) of the resulting adaptive beamformer. More

importantly, the LCMV beamformer becomes less robust when any other types

of steering vector mismatch beyond the look direction errors become dominant.

To improve the robustness of adaptive beamformers against arbitrary unknown

steering vector mismatches, the worst-case performance optimization-based tech-

nique [32–34] makes explicit use of an uncertainty set of the signal steering vector.

This method requires that the upper bound of the norm of the mismatch vector

is a priori unknown. Moreover, the worst operating conditions may not always

occur. Hence, this adaptive beamforming technique is also an ad hoc approach

and will suffer from performance degradation whenever the upper bound of the

norm of the mismatch vector is either overestimated or underestimated. Another

representative technique in this category is to estimate the desired signal steer-

ing vector by maximizing the beamformer output, under the constraint that the

convergence of the steering vector estimate to any interference steering vector or

their combinations is prohibited [35,36]. However, the imposed norm constraint

on the steering vector is too strict to be satisfied, particularly when there exist

local scattering encountered in, e.g., mobile communications and indoor speech

signal processing. In such cases, gain perturbations in different sensors cannot

be ignored, and then the norm constraint no longer holds.

As mentioned above, these two categories of adaptive beamforming techniques

were developed almost independently in the past decades. Obviously, these adap-

tive beamforming techniques are not optimal, because they respectively assume

that either the desired signal steering vector or the interference-plus-noise covari-

ance matrix is exactly known. Since the pioneering work of Vorobyov et al. [37],

adaptive beamforming has been required to be jointly robust against covariance

matrix uncertainty and steering vector mismatch [38–42]. It is worth noting

that, in [40], the interference-plus-noise covariance matrix is reconstructed by

integrating the outer products of interference steering vectors weighted by the

Capon spatial spectrum over a region separated from the desired signal direc-

tion, thus removing the desired signal component from the covariance matrix
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used for adaptive beamformer design. The reconstructed interference-plus-noise

covariance matrix is then used to correct the presumed signal steering vector

in order to maximize the beamformer output power under the only constraint

that the corrected steering vector does not converge to any interference steering

vector or their combinations. Based on the reconstructed interference-plus-noise

covariance matrix and the estimated desired signal steering vector, the resulting

adaptive beamformer provides a near-optimal output performance with a fast

convergence rate. However, the computational complexity of covariance matrix

reconstruction is high due to the integral operation. In addition, there is a cer-

tain level of performance loss when the number of training samples is small,

because the source power obtained from the Capon spatial spectrum is underes-

timated and, as a result, the estimated interference-plus-noise covariance matrix

is inaccurate.

In this chapter, we will elaborate adaptive beamforming via sparsity-based re-

construction of the interference-plus-noise covariance matrix [43]. By exploiting

the sparsity of sources in the observed spatial domain, the interference covari-

ance matrix is reconstructed as a linear combination of the outer products of

the interference steering vectors weighted by their individual power, which can

be estimated from a sparsity-constrained covariance matrix fitting problem. As

such, the proposed technique provides a signal-free interference-plus-noise co-

variance matrix to enable robust adaptive beamformer design that avoids the

signal self-nulling problem. It requires a low computational complexity as there

is no matrix inversion or eigen-decomposition involved in the sparsity-constrained

covariance matrix fitting problem. Hence, the proposed adaptive beamforming

technique is suitable for arbitrary number of training samples [44]. When the

number of training samples is larger than the number of array sensors, the for-

mulated sparsity-constrained covariance matrix fitting problem can be effectively

solved by using the known array structure, i.e., estimate the directions of sources

and their power in turn. The proposed adaptive beamformer is compared to exist-

ing state-of-the-art adaptive beamformers in terms of computational complexity,

output signal-to-interference-plus-noise ratio (SINR) performance, and conver-

gence rate. Numerical simulations clearly demonstrate the near-optimal output

performance and faster convergence rate of the proposed adaptive beamforming

algorithm exploiting the sparsity of sources in the spatial domain.

8.2 Adaptive beamforming criterion

In this section, we first build the narrowband array signal model, then briefly

review adaptive beamforming criteria and classical adaptive beamformers.
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Figure 8.1 System block diagram of the adaptive beamformer.

8.2.1 Array signal model

Consider a narrowband array consisting of M omni-directional sensors depicted

in Figure 8.1. The baseband received signal of the array at the time instant k,

x(k) = [x1(k), · · · , xM (k)]
T ∈ CM , can be represented as

x(k) = xs(k) + xi(k) + n(k), (8.1)

where xs(k), xi(k), and n(k) are statistically independent components of the

desired signal, interference, and noise, respectively. Here, ( · )T denotes the trans-

pose operator. Among them, the desired signal vector xs(k) is expressed as

xs(k) = ass(k), (8.2)

where s(k) is the desired signal waveform, and as ∈ CM is the corresponding

signal steering vector. Ideally, the steering vector is a function depending on the

array geometry as well as source direction, e.g., as , a(θs), where θs is the

direction of the desired signal impinging on the array. For example, the ideal

steering vector of a uniform linear array (ULA) has the form of

a(θ) =
[
1, e−j

2π
λ d sin θ, · · · , e−j 2π

λ (M−1)d sin θ
]T
, (8.3)

where θ is the DOA of the source, j =
√
−1 is the imaginary unit, λ is the

wavelength of the narrowband signal, and d = λ/2 is the inter-element spacing

of the array. Similarly, the steering vector of the interference has the similar

form with a different source direction. In contrast, there is no such form for the

additive noise because noise does not have a fixed direction.
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8.2.2 Adaptive beamforming criteria

The objective of adaptive beamforming is to design a data-dependent beam-

forming weight vector w = [w1, · · · , wM ]
T ∈ CM , such that the beamformer

output

y(k) = wHx(k) (8.4)

is the best estimate of the desired signal waveform s(k), where ( · )H denotes

the Hermitian transpose. To this end, a number of adaptive beamforming crite-

ria have been developed in the past decades. Among them, maximum SINR [6]

is the most popular one. Other feasible adaptive beamforming criteria include

minimum MSE [3], minimum least-squares error [45], and minimum mutual in-

formation [46]. The interested readers are referred to references [3, 4, 47] for the

detailed performance tradeoffs among different adaptive beamforming criteria. In

this chapter, the maximum SINR criterion will be mainly considered for adaptive

beamformer design.

The beamformer output for the SINR maximization problem, defined as

max
w

SINR ,
E
[ ∣∣wHxs(k)

∣∣2 ]
E
[
|wH (xi(k) + n(k))|2

]
=
σ2
s

∣∣wHas
∣∣2

wHRi+nw
, (8.5)

is mathematically equivalent to the minimum variance distortionless response

(MVDR) problem [6] as

min
w

wHRi+nw s.t. wHas = 1, (8.6)

where σ2
s , E

[
|s(k)|2

]
is the desired signal power, and

Ri+n , E
[
(xi(k) + n(k)) (xi(k) + n(k))

H ]
∈ HM (8.7)

is the interference-plus-noise covariance matrix. Here, E [ · ] denotes the statistical
expectation, and HM denotes theM×M Hermitian matrix. Using the Lagrange

multiplier method, the solution of the MVDR problem

wMVDR =
R−1
i+nas

aHs R−1
i+nas

, (8.8)

is easily obtained. The MVDR beamformer is sometimes referred to as the Capon

beamformer, which maximizes the output SINR.

Substituting the data covariance matrix

R = E
[
x(k)xH(k)

]
= σ2

sasa
H
s +Ri+n, (8.9)

into (8.6) in lieu of the generally unavailable interference-plus-noise covariance
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matrix Ri+n, the corresponding solution,

wMPDR =
R−1as

aHs R−1as
, (8.10)

is referred to as the minimum power distortionless response (MPDR) beam-

former. Using the matrix inversion lemma, the MPDR beamformer is proven to

be equivalent to the MVDR beamformer as

wMPDR =
1

aHs R−1as

(
Ri+n + σ2

sasa
H
s

)−1
as

=
1

aHs R−1as

(
R−1
i+n −

R−1
i+nasa

H
s R−1

i+n

σ−2
s + aHs R−1

i+nas

)
as

= αwMVDR, (8.11)

where the scalar coefficient α =
aH

s R−1
i+nas

aH
s R−1as

(
1 − aH

s R−1
i+nas

σ−2
s +aH

s R−1
i+nas

)
does not affect

the adaptive beamformer performance in terms of the output SINR. Hence, the

MPDR beamformer is also referred to as an MVDR beamformer in the majority

of the early literature.

In practical array applications including radar, however, the data covariance

matrix cannot be accurately estimated due to the limited training samples, and

the signal steering vector may not be precisely known because of the imper-

fect knowledge of the source location, propagation environment and/or array

calibration. In such cases, the MPDR beamformer suffers severe performance

degradation, which becomes obvious with the increase of input signal power.

Hence, the MPDR beamformer underperforms the MVDR beamformer in prac-

tical applications.

8.2.3 Adaptive beamformer design

Limited by the size of training samples, the exact data covariance matrix R

is not easy available in practical applications, not to mention the signal-free

interference-plus-noise covariance matrixRi+n. It is usually replaced by the sam-

ple covariance matrix

R̂ =
1

K

K∑
k=1

x(k)xH(k), (8.12)

where K is the number of snapshots (i.e., training samples). The resulting adap-

tive beamformer,

wSMI =
R̂

−1
ās

āHs R̂
−1

ās
, (8.13)

is called the sample matrix inversion (SMI) beamformer [48], where ās = a(θs)

is the presumed signal steering vector. Whenever there exists a desired signal

in the array received signal x(k), the SMI beamformer is in essence an MPDR



20 Adaptive Beamforming via Sparsity-Based Reconstruction of Covariance Matrix

beamformer (8.10) rather than an MVDR beamformer (8.8). As K → ∞, R̂ will

converge to R, and the corresponding output SINR will approach the optimal

value under stationary and ergodic assumptions. However, when K is small,

the large gap between R̂ and R is known to dramatically affect the output

performance of the SMI beamformer, especially when there is a desired signal in

the training samples [9, 10].

In order to reduce the sensitivity of the SMI beamformer to model mismatches,

many different beamforming algorithms have been developed in the past decades

and successfully applied in a wide range of areas (see, for example, [3,4,7,14] and

the references therein). In the following, several classical adaptive beamforming

algorithms are briefly reviewed.

8.2.3.1 Diagonal loading beamforming
Diagonal loading is the most popular adaptive beamforming approach that is

robust to the data uncertainty [9,13]. Replacing the sample covariance matrix R̂

in the SMI beamformer (8.13) by a diagonally loaded sample covariance matrix

R̂+ ξI, the resulting beamformer,

wDL-SMI =

(
R̂+ ξI

)−1
ās

āHs
(
R̂+ ξI

)−1
ās
, (8.14)

is referred to as the diagonal loading SMI (DL-SMI) beamformer, where ξ is a

diagonal loading factor, and I is an identity matrix.

The performance of the DL-SMI beamformer depends on the diagonal loading

factor ξ. It is usually chosen in an ad hoc way, typically about ten times the

noise power, i.e., ξ = 10σ2
n, where the noise power σ

2
n is assumed to be known [9].

Obviously, it is not optimal, not to mention that the instantaneous noise power

is not easy to know. In order to adaptively choose the loading factor, several

user parameter-free approaches have been proposed for adaptive beamforming

[14]. However, this method leads to an estimate of the data covariance matrix

rather than that of the interference-plus-noise covariance matrix. Regardless of

the value of the chosen diagonal loading factor, the performance loss of the DL-

SMI beamformer is inevitable, and this degradation becomes more severe with

the increase of the desired signal power [49]. The main reason is that the desired

signal component is always active in any kind of diagonal loading beamformer

and its effect becomes more pronounced with the increase of input SNR [40].

8.2.3.2 Eigenspace decomposition beamforming
Motivated by the success of DOA estimation [50], the idea of eigen-decomposition

has also been introduced for adaptive beamformer design [16,17]. Replacing the

presumed steering vector ās in (8.13) by the projection of ās onto the sample

signal-plus-interference subspace, the resulting eigenspace beamformer is given

by

wEIG = R̂
−1

PEās = EΛ−1EH ās, (8.15)
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where PE = EEH is the orthogonal projection matrix onto the signal-plus-

interference subspace. Here, the matrix E contains the signal-plus-interference

subspace eigenvectors of R̂, and the diagonal matrix Λ contains the correspond-

ing eigenvalues.

The eigenspace beamformer is robust to arbitrary steering vector mismatch.

However, this approach does not work well at low SNR as well as at high signal-

to-interference ratio (SIR) cases. In the former case, the estimation of the pro-

jection matrix onto the signal-plus-interference subspace breaks down because

of the high probability of subspace swaps. In the latter case, the desired signal

component denominates the sample covariance matrix, thus degrading the per-

formance of the adaptive beamformer. Furthermore, the eigenspace beamformer

also does not work well when the dimension of the signal-plus-interference sub-

space is high and/or difficult to determine.

8.2.3.3 Worst-case beamforming
The worst-case performance optimization-based adaptive beamforming [32] guar-

antees a distortionless response for all possible steering vectors in a predeter-

mined set. The worst-case adaptive beamforming problem can be formulated

as

min
w

wHR̂w s.t. max
∥es∥2≤ε

|wH (ās + es)| ≥ 1, (8.16)

where es = as − ās denotes the mismatch vector between the actual signal

steering vector as and the presumed signal steering vector ās, and ε is the upper

bound of the norm of the mismatch vector es. Here, ∥ · ∥2 denotes the ℓ2-norm,

also called the Euclidean norm. Because the constraint condition is nonlinear and

nonconvex, the worst-case adaptive beamforming problem (8.16) is a semi-infinite

nonconvex quadratic program, and is NP-hardb. By using the special structure of

the objective function and the constraints, the nonconvex optimization problem

can be reformulated as a second-order cone programming (SOCP) problem

min
w

wHR̂w s.t. wH ās ≥ ε ∥w∥2 + 1,

Im
(
wH ās

)
= 0, (8.17)

which is convex and can be efficiently solved in polynomial time using the well-

established interior point methods. Here, Im ( · ) denotes the imaginary part of a

complex number.

The worst-case beamformer is robust to arbitrary unknown signal steering vec-

tor mismatch with an upper-bounded norm. However, in practical applications,

neither the mismatch vector nor its upper bound is a priori known. Either over-

estimation or underestimation of the upper bound of the norm of the steering

vector mismatch will degrade the performance of the worst-case beamformer. In

addition, the worst-case beamformer also suffers the signal self-nulling problem

b In optimization theory, NP-hard problems represent a class of extremely difficult problems

that cannot be solved in polynomial time.



22 Adaptive Beamforming via Sparsity-Based Reconstruction of Covariance Matrix

because it uses the sample covariance matrix R̂ rather than the interference-

plus-noise covariance matrix Ri+n.

8.2.3.4 Iterative adaptive beamforming
The IAA algorithm [20] is a kind of sparse approach to beamforming by iter-

atively updating the spatial spectrum estimation and beamforming weighting

vectors based on a weighted least squares approach. Considering that the IAA

depends on the unknown spatial spectrum distribution, it must be implemented

in an iterative way. The initialization is done by a delay-and-sum (DAS) beam-

former, which is a spatial matched filter with a data-independent weight vector

wDAS = a(θ)
M , as ŝl(k) = aH(θl)x(k)/M, l = 1, · · · , L, k = 1, · · · ,K, from

which the power estimates are given by p̂l =
1
K

∑K
k=1|ŝl(k)|2, l = 1, · · · , L. Here,

L is the number of potential source locations in the observed field (or the num-

ber of scanning points), which is usually much larger than the true number of

sources. Then, the IAA algorithm repeats the following iterative process

R̄ = A(θ)diag(p̂)AH(θ)

for l = 1, · · · , L

wl =
R̄

−1
a(θl)

aH(θl)R̄
−1

a(θl)

p̂l = wH
l R̄wl

end for (8.18)

to converge, where A(θ) = [a(θ1),a(θ2), · · · ,a(θL)] ∈ CM×L is the array steer-

ing matrix, p̂ = [p̂1, p̂2, · · · , p̂L]T ∈ RL+ is the estimated spatial spectrum. Here,

RL+ denotes the set of L-dimensional vectors of nonnegative real numbers.

As such, the IAA algorithm can achieve the signal waveform (and hence sig-

nal power) estimation in a way of sparse signal representation. It does perform

well when there is no model mismatch. However, when there is a slight model

mismatch on the signal steering vector, e.g., signal look direction mismatch, per-

formance degradation would occur, and the degradation becomes severe with the

increase of the input SNR.

8.3 Covariance matrix reconstruction-based adaptive beamforming

In order to avoid, or at least mitigate, the signal self-nulling phenomenon preva-

lent in adaptive beamformers, in this chapter, we will elaborate a covariance

matrix sparse reconstruction method to provide an estimate of the signal-free

interference-plus-noise covariance matrix for adaptive beamformer design. In

such a case, the performance of the resulting adaptive beamformer will always

approach the optimal value in terms of the output SINR. Moreover, the pro-

posed adaptive beamformer has a faster convergence rate than classical adaptive

beamformers.
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8.3.1 Interference-plus-noise covariance matrix reconstruction

Similar to the signal covariance matrix in (8.9), i.e., Rs = σ2
sa(θs)a

H(θs), the

interference-plus-noise covariance matrix has the form of

Ri+n =

Q∑
q=1

σ2
iqa(θiq )a

H(θiq ) + σ2
nI, (8.19)

where Q is the number of interferers, a(θiq ) is the steering vector of the q-th in-

terference impinging from the DOA θiq and σ2
iq

is the corresponding interference

power. Hence, in order to have an accurate estimate of the interference-plus-noise

covariance matrix Ri+n, we need to know the steering vectors of all interferers

via DOAs and their individual power, together with the noise power. When these

pieces of information are unavailable, the interference-plus-noise covariance ma-

trix can be reconstructed as [40]

R̂i+n =

∫
Θ̄

pCapon(θ)a(θ)a
H(θ)dθ, (8.20)

where a(θ) is the steering vector associated with a hypothetical direction θ,

pCapon(θ) =
1

aH(θ)R̂
−1

a(θ)
(8.21)

is the Capon spatial spectrum estimator, and Θ̄ is the complement sector of Θ.

Here, Θ is a known or estimated angular sector in which the desired signal is

located. Hence, the covariance matrix estimator R̂i+n collects all interference

and noise in the out-of-sector Θ̄, which effectively excludes the desired signal

component.

Correspondingly, the adaptive beamformer based on interference-plus-noise

covariance matrix reconstruction

wRecon =
R̂

−1

i+nās

āHs R̂
−1

i+nās
, (8.22)

can dramatically improve the performance regardless of the desired signal power

(see [40] and accompanying simulations). Nevertheless, the estimation accuracy

of R̂i+n in (8.20) is poor because the Capon estimator (8.21) underestimates

the true power, especially when the number of snapshots is limited. On the

other hand, the computational complexity is high because the covariance matrix

reconstruction process introduces the unnecessary integral operation, where the

number of interferers is actually countable.

8.3.2 Sparsity-based interference-plus-noise covariance matrix reconstruction

Because of the DOF requirement, the number of array sensors is typically larger

than the true number of sources. Hence, besides the low-rank characteristic of

the array covariance matrix, the target sources in the observed field have the
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sparse nature. In such a case, this sparsity can be leveraged to reconstruct the

interference-plus-noise covariance matrix Ri+n, which will provide better esti-

mation accuracy and simplify the integral operation of (8.20) over the entire

complement sector Θ̄.

According to (8.19), the interference-plus-noise covariance matrix is a function

of the directions and power of interferers, as well as the noise power. The esti-

mation accuracy of these parameters will affect the performance of the adaptive

beamformer via the reconstructed interference-plus-noise covariance matrix. To

estimate the parameters of both the desired signal and interferers, we formulate

a sparsity-constrained covariance matrix fitting problem according to (8.9) as

min
p,σ2

n

∥∥∥R̂−APAH − σ2
nI

∥∥∥
F

s.t. ∥p∥0 = Q+ 1,

p ≥ 0,

σ2
n > 0, (8.23)

where p ∈ RL+ is the spatial spectrum distribution on the sample grids of the

observed spatial domain (e.g., {θ1, θ2, · · · , θL} ∈ Θ∪ Θ̄), P = diag(p) ∈ RL×L+ is

the corresponding diagonal matrix, A = [a(θ1),a(θ2), · · · ,a(θL)] ∈ CM×L is the

array manifold matrix, and ∥ · ∥F and ∥ · ∥0, respectively, denote the Frobenius

norm of a matrix and the ℓ0 “norm” of a vector. Note that, although it does

not satisfy the positive homogeneity, the ℓ0 “norm”, which counts the number of

non-zero elements in a vector, is an ideal measure of sparsity. According to the

sparse observation, the number of potential sources is much larger than the true

number of sources, i.e., L ≫ Q + 1. The idea behind (8.23) is intuitive in the

sense that it tries to find the sparsest spatial spectrum distribution p and the

noise power σ2
n such that the difference between the resulting covariance matrix

APAH + σ2
nI and the sample covariance matrix R̂ is minimized.

However, the true number of sources is a priori unknown. Even if known, it

is understood that (8.23) is a difficult combinatorial optimization problem due

to the nonconvex ℓ0 “norm” constraint, and is intractable even for moderately

sized problems. In the past decades, many approximation methods have been

proposed to solve this nonconvex optimization problem, such as greedy approx-

imations [51, 52] and lp (p ≤ 1) convex relaxations [53, 54]. When the solution

p is sufficiently sparse, the ℓ0 “norm” can be approximately replaced by the ℓ1-

norm. By introducing the ℓ1-norm convex relaxation, the nonconvex optimization

problem (8.23) can be formulated as a convex one

min
p,σ2

n

∥∥∥R̂−APAH − σ2
nI

∥∥∥
F

s.t. ∥p∥1 ≤ σ2
s +

K∑
k=1

σ2
ik
+ σ2

n + δ,

p ≥ 0,

σ2
n > 0, (8.24)

where the ℓ1-norm of p equals the power sum of all sources (i.e., σ2
s+

∑K
k=1 σ

2
ik
+

σ2
n), and a small number δ > 0 is added to the power constraint in order to allow
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a space for the optimization algorithm to search for p. However, in practical

applications, the true number of sources is not easy to know, not to mention

their power.

Alternatively, the above convex optimization problem can be reformulated as

a basis pursuit denoising (BPDN) problem [55] as

min
p,σ2

n

∥∥∥R̂−APAH − σ2
nI

∥∥∥
F
+ γ∥p∥1 s.t. p ≥ 0,

σ2
n > 0, (8.25)

where γ is a regularization parameter controlling the tradeoff between the spar-

sity of the spatial spectrum and the residual norm of covariance matrix fitting.

The optimization problem is convex and can be solved using standard and highly

efficient interior point methods. Besides the BPDN, the least absolute shrink-

age and selection operator (LASSO) [56] is another popular formulation based

on the ℓ1-norm relaxation. Note that, there is no matrix inversion or eigen-

decomposition required in the proposed sparsity-constrained covariance matrix

fitting problem. Hence, it is suitable for arbitrary number of snapshots from one

to infinity. However, the obtained solution is not absolutely sparse because of

the ℓ1-norm relaxation. In addition, the regularization parameter γ is difficult to

determine in different scenarios. Either overestimation or underestimation will

sacrifice the balance between data-fidelity and sparsity, which subsequently leads

to performance degradation of the resulting adaptive beamformer.

When the number of snapshots is larger than the number of array sensors,

we can decompose the sparsity-constrained covariance matrix fitting problem

into two associated sub-problems: 1) a source localization problem to find the

DOA support of sources; and 2) a power estimation problem operating on the

DOAs estimated in the first sub-problem. The combination of these two sub-

problems represents an approximation to the solution of the sparsity-constrained

covariance matrix fitting problem.

Compared to adaptive beamforming, DOA estimation is a more mature ar-

ray processing technique, and there are many sophisticated methods available

(see, for example, [3, 53] and the references therein). In general, the DOAs are

estimated either from a spectral search algorithm (e.g., for example, [50, 57]) or

from a search-free polynomial rooting algorithm (e.g., for example, [58] and the

references therein). For the convenience of explanation, here we simply use the

classical Capon spatial spectrum pCapon(θ) in (8.21) to estimate the DOAs of

sources. The estimated DOAs provide the support of the sparse vector defined

in the proposed sparsity-constrained covariance matrix fitting problem.

Let Θp denote the set of directions corresponding to the peaks of pCapon on

the entire observed spatial domain (i.e., Θ ∪ Θ̄), for which the cardinality is

usually greater than the true number of sources because of the spurious peaks

(i.e., |Θp| = ∥p∥0 > Q+1). Here, | · | denotes the cardinality of a set. In order to

minimize the ℓ0 “norm” ∥p∥0 to find the sparsest solution of (8.23), a common

method is to remove the spurious peaks by setting a threshold, such as the noise
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power, which can be approximately estimated as the minimum eigenvalue of the

sample covariance matrix (i.e., σ̂2
n = λmin

(
R̂
)
) [59], where λmin ( · ) denotes the

minimum eigenvalue of a matrix. In theory, there are M − Q − 1 eigenvalues

that equal the actual noise power σ2
n. However, in practical applications with a

limited number of snapshots, the minimum eigenvalue of the sample covariance

matrix is always smaller than the noise power. Hence, if the value of a peak

in the Capon spatial spectrum pCapon is lower than the threshold, it will be

regarded as a spurious peak and its corresponding direction will be removed from

the set Θp. After removing all the spurious peaks, the residual set is denoted

as Θ̃p =
{
θ̃p,1, · · · , θ̃p,Q̃

}
with cardinality |Θ̃p| = Q̃ ≤ |Θp|. In such a case,

∥p∥0 = Q̃ ≥ Q+ 1.

After finding the DOA support θ̃p =
[
θ̃p,1, · · · , θ̃p,Q̃

]T
, the sparsity-constrained

covariance matrix fitting problem (8.23) degenerates into an inequality-constrained

least squares problem:

min
p(θ̃p),σ2

n

∥∥∥R̂−A(θ̃p)P (θ̃p)A
H(θ̃p)− σ2

nI
∥∥∥
F

s.t. p(θ̃p) > 0,

σ2
n > 0, (8.26)

where P
(
θ̃p

)
= diag

(
p
(
θ̃p

))
is a diagonal matrix with the power distribution

p(θ̃p) ∈ RQ̃++ on the DOA support θ̃p, and A
(
θ̃p

)
=

[
a
(
θ̃p,1

)
, · · · ,a

(
θ̃p,Q̃

)]
∈

CM×Q̃ is the corresponding array manifold matrix. Here, RQ̃++ denotes the set of

Q̃-dimensional vectors of positive real numbers. The strict inequality constraint

enforced here indicates that the signal power on the found DOA support θ̃p
are always positive. The above inequality-constrained least squares problem is

convex and can be solved using highly efficient interior point methods.

It is noted that covariance matrix reconstruction-based adaptive beamformers

are not very sensitive to the estimation error in the noise power. Therefore, for

the sake of simplicity, the optimization variable of noise power σ2
n is taken to be

the minimum eigenvalue of R̂, which leads to a simplified inequality-constrained

least squares problem:

min
p(θ̃p)

∥∥∥R̂− λmin(R̂)I −A(θ̃p)P (θ̃p)A
H(θ̃p)

∥∥∥
F

s.t. p(θ̃p) > 0. (8.27)

Using the vectorization property, the above optimization problem can be further

simplified as

min
p(θ̃p)

∥∥∥vec(R̂− λmin(R̂)I
)
−
(
A(θ̃p)⊙A(θ̃p)

)
p(θ̃p)

∥∥∥
2

s.t. p(θ̃p) > 0,

(8.28)

where vec ( · ) denotes the vectorization operator, and ⊙ denotes the Khatri–Rao

product. Without the inequality constraint, the closed-form solution to (8.27) is

given by

p(θ̃p) =
[
GHG

]−1
GHr, (8.29)
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Figure 8.2 Spatial spectrum comparison.

where G = A
(
θ̃p

)
⊙ A

(
θ̃p

)
=

[
a
(
θ̃p,1

)
⊗ a

(
θ̃p,1

)
, · · · ,a

(
θ̃p,Q̃

)
⊗ a

(
θ̃p,Q̃

)]
=[

vec
(
a(θ̃p,1)a

H(θ̃p,1)
)
, · · · , vec

(
a(θ̃p,Q̃)a

H(θ̃p,Q̃)
)]

∈ CM2×Q̃ is obtained by stack-

ing the outer products of the sources steering vectors, and r = vec
(
R̂−λmin(R̂)I

)
∈

CM2

is vectorized from the sample covariance matrix subtracted by an estimated

noise covariance matrix. Here, ⊗ denotes the Kronecker product. Then, the es-

timated spatial spectrum of (8.23) is Q̃-sparse and is expressed as

p(θ) =

{
p(θ̃p) θ ∈ Θ̃p,

0 θ /∈ Θ̃p.
(8.30)

Namely, only Q̃ entries of the estimated spatial spectrum p(θ) are nonzero and

all other L − Q̃ entries are zero. An example of spatial spectrum comparison

between the proposed sparse spectrum (8.30) and the Capon spectrum (8.21) is

illustrated in Figure 8.2, where three sources impinge from DOAs of −50◦, −20◦

and 5◦ with the SNR of 30 dB, 30 dB and 20 dB, respectively. It is clear that

the proposed method achieves a more accurate estimate of the signal power.

However, when some sources are very weak, there may be negative entries

in p(θ̃p) (8.29), which is obtained by discarding the inequality constraint in

(8.27). Without loss of generality, assume that the q̃-th entry of p(θ̃p) is negative,

i.e., p(θ̃p,q̃) < 0. In such a case, the inequality constraint in (8.26) will not be

satisfied, and the closed-form solution in (8.29) should be modified. A simple

method is to force p(θ̃p,q̃) to be a small positive value δ > 0 (for example,

δ = 10−5 is used in our simulations), and the power estimation of other sources

θ̄p =
[
θ̃p,1, · · · , θ̃p,q̃−1, θ̃p,q̃+1, · · · , θ̃p,Q̃

]T ∈ RQ̃−1, will be modified as

p̄(θ̄p) =
[
Ḡ
H
Ḡ
]−1

Ḡ
H
r̄, (8.31)
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where Ḡ =
[
vec

(
a(θ̃p,1)a

H(θ̃p,1)
)
, · · · , vec

(
a(θ̃p,q̃−1)a

H(θ̃p,q̃−1)
)
,

vec
(
a(θ̃p,q̃+1)a

H(θ̃p,q̃+1)
)
, · · · , vec

(
a(θ̃p,Q̃)a

H(θ̃p,Q̃)
)]

∈ CM2×(Q̃−1), and r̄ =

vec
(
R̂ − λmin(R̂)I − δa(θ̃p,q̃)a

H(θ̃p,q̃)
)
∈ CM2

. In other words, we re-calculate

the source powers after fixing the power of weak sources, thus resulting in a

modified spatial spectrum as

p(θ) =


p̄(θ̄p) θ ∈ θ̄p,

δ θ = θ̃p,q̃,

0 θ /∈ θ̃p.

(8.32)

Using the Q̃-sparse spatial spectrum p(θ), the interference-plus-noise covari-

ance matrix can be sparsely reconstructed as

R̂i+n =
∑

θiq∈Θ̄∩Θ̃p

p(θiq )a(θiq )a
H(θiq ) + σ̂2

nI, (8.33)

where a(θiq )a
H(θiq ) is the outer product of the q-th interference steering vector

a(θiq ). Because there are at most Q̃ elements in the set Θ̄ ∩ Θ̃p, the integral

operation in (8.20) is effectively simplified to be a summation operation (8.33)

by using the sparse characteristics of sources in the observed spatial domain.

Note that there is no desired signal component in the reconstructed interference-

plus-noise covariance matrix.

Considering the possible look direction mismatch, the DOA of the desired

signal can be located by searching for the peak of pCapon in Θ, i.e., θ̃s =

argmax
θ∈Θ

pCapon(θ), and the corresponding steering steering vector is denoted

as ãs = a(θ̃s). When Θ∩ Θ̃p is empty, which is common at low SNRs, we simply

use the presumed signal steering vector for adaptive beamformer design, i.e.,

ãs = ās, even if there is a look direction mismatch.

Substituting the reconstructed interference-plus-noise covariance matrix R̂i+n

and the estimated signal steering vector ãs into the MVDR beamformer (8.8)

together, we can propose the adaptive beamformer as

w =
R̂

−1

i+nãs

ãHs R̂
−1

i+nãs
. (8.34)

The proposed adaptive beamforming algorithm based on sparse reconstruction

of the interference-plus-noise covariance matrix is summarized in Table 8.1.

The computational complexity of the proposed adaptive beamforming algo-

rithm is O
(
LM2

)
with L ≫ M , which is mainly dominated by the spectral

search. If a search-free DOA estimation technique [58] is adopted, the compu-

tational complexity can be further decreased to O
(
max

(
M3, Q̃2M2

))
, where

O
(
M3

)
is the complexity of DOA estimation andO

(
Q̃2M2

)
is the complexity of

power estimation. Therefore, the proposed adaptive beamforming algorithm has

complexity slightly higher than the DOA estimation algorithm. Meanwhile, the
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Table 8.1 Adaptive beamforming algorithm based on sparse reconstruction of
interference-plus-noise covariance matrix

Step 1: Estimate the DOAs of the sources by, e.g., searching for the peaks of the
Capon spatial spectrum pCapon(θ) (8.21);

Step 2: Solve the least squares problem (8.27) to obtain the Q̃-sparse spatial
spectrum p(θ) (8.30) or (8.32);

Step 3: Reconstruct the interference-plus-noise covariance matrix R̂i+n (8.33)
and estimate the signal steering vector ãs;

Step 4: Compute the proposed adaptive beamformer w (8.34).

computational complexity of the covariance matrix reconstruction-based adap-

tive beamforming algorithm [40] is O
(

|Θ̄|
|Θ̄∪Θ|LM

2
)
. Note however that, if the

spatial estimate of the sources in the entire region is desired, the SMI beam-

former has the complexity of O
(
LM2

)
as well.

8.4 Simulation results

In our simulations, a ULA with M = 10 omni-directional sensors spaced half

wavelength apart is considered. It is assumed that there is one desired signal

from the presumed direction θ̄s = 5◦ and two uncorrelated interferers from −50◦

and −20◦, respectively. The interference-to-noise ratio (INR) at each sensor is

equal to 30 dB. The additive noise is modeled as a complex circularly symmetric

Gaussian zero-mean spatially and temporally white process. When comparing

the performance of the adaptive beamforming algorithms with respect to the

input SNR, the number of snapshots is fixed to be K = 30. In the performance

comparison of mean output SINR versus the number of snapshots, the SNR in

each sensor is set to be fixed at 20 dB. For each data point (SNR or number of

snapshots), 500 Monte Carlo trials are performed.

The proposed interference-plus-noise covariance matrix sparse reconstruction-

based beamformer (8.34) is compared to the SMI beamformer [48], the DL-SMI

beamformer [9], the eigenspace decomposition-based beamformer [16], the worst-

case performance optimization-based beamformer [32], the IAA beamformer [20],

and the interference-plus-noise covariance matrix reconstruction-based beam-

former [40]. All the tested beamformers are adaptive beamformers, i.e., their

weight vectors depend on the received array data. The diagonal loading factor ξ

in the DL-SMI beamformer (8.14) is assumed to be ten times the noise power,

where the noise power is regarded as a priori known. The eigenspace-based beam-

former (8.15) is assumed to know the exact number of interference sources. In

the worst-case beamformer (8.16), the upper bound of the mismatched vector is

ad hoc chosen to be ε = 0.3M as suggested in [32]. Without loss of generality, the

angular sector covering the direction of the desired signal in the reconstruction-
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based beamformers, is set to be Θ =
[
θ̄s − 5◦, θ̄s + 5◦

]
(namely, [0◦, 10◦]), and

the corresponding out-of-sector is Θ̄ =
[
−90◦, θ̄s − 5◦

)
∪
(
θ̄s + 5◦, 90◦

]
(namely,

[−90◦, 0◦)∪(10◦, 90◦]). The sampling grid is uniform in Θ∪Θ̄ with 0.1◦ increment

between adjacent grid points. As a benchmark, the optimal SINR (8.5) is also

shown in all figures, which is calculated from the exact interference-plus-noise

covariance matrix and the actual desired signal steering vector. Considering that

the output performance of the interference-plus-noise covariance matrix (sparse)

reconstruction-based beamformers is very close to the optimal SINR regardless

of the input signal power [40, 43], we also compare the output performance in

terms of deviation from the optimal SINR. For fair comparison, the actual steer-

ing vector of the desired signal is normalized so that ∥a∥22 = M(= 10) [32, 33].

The CVX software [60] is used to solve the related convex optimization problems.

8.4.1 Example 1: Exactly known signal steering vector

In the first example, we consider an ideal scenario where the steering vectors

of both the desired signal and the interferers are exactly known. Namely, there

is no steering vector mismatch. Note that, even in this ideal case, the presence

of the desired signal in the training samples may still substantially degrade the

output performance of adaptive beamformers as compared with the signal-free

training case [3, 32, 40]. However, it can be seen from Figure 8.3(a) that the

output performance of adaptive beamformers based on interference-plus-noise

covariance matrix reconstruction is almost always equal to the optimal SINR for

all SNR values between −30 dB and 50 dB (i.e., SIR ranges from −60 dB to 20

dB), which illustrates the high dynamic range. In particularly, the output SINR

of the proposed interference-plus-noise covariance matrix sparse reconstruction-

based adaptive beamformer is approximated as

SINR ≈ ∥a∥22 SNR =M × SNR, (8.35)

which achieves the design goal of the adaptive beamformer and outperforms the

other tested beamformers. From Figure 8.3(b), the average SINR performance

loss of the proposed adaptive beamformer is about 0.002 dB. In contrast, there

is an average performance loss of 0.158 dB for the interference-plus-noise covari-

ance matrix reconstruction-based adaptive beamformer [40], which is because the

Capon spatial spectrum estimator underestimates the interferences power and

reduces the estimation accuracy of the interference-plus-noise covariance matrix.

It should be noted that the signal power is 100 times higher than the interference

power in the case of SNR = 50 dB, which can be used to illustrate the situa-

tion when the SIR approximately approaches to infinity. Figure 8.3(c) shows

the convergence rates of the tested adaptive beamformers versus the number of

snapshots K. It is clear that the adaptive beamformer based on interference-

plus-noise covariance matrix (sparse) reconstruction converges much faster than

the other tested adaptive beamformers.

In Figure 8.4, we compare the beampattern of the proposed beamformer with
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Figure 8.3 First example: Exactly known steering vectors.
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Figure 8.4 First example: Beampattern comparison.

those of the other tested beamformers for K = 30 and SNR = 20 dB, where

the vertical solid line denotes the direction of the desired signal and the vertical

dashed lines denote the directions of interference. It is evident that the beampat-

tern of the proposed adaptive beamformer almost exactly matches that of the

optimal one.
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8.4.2 Example 2: Fixed signal DOA mismatch

In the second example, a scenario with fixed signal DOA mismatch is considered.

We assume that the actual DOA of the desired signal is 8◦ while the assumed one

is 5◦. Correspondingly, there is a fixed DOA mismatch of 3◦ for the desired signal.

By comparing Figure 8.5(a) with Figure 8.3(a), we can see that, when the input

SNR is 20 dB, there is about 18 dB performance loss for both the SMI beam-

former and the DL-SMI beamformer. There is no obvious performance change for

the worst-case beamformer, while the eigenspace-based beamformer suffers clear

performance loss when the signal power is higher than the interference power.

Compared with the performance loss (about 2 dB) of the interference-plus-noise

covariance matrix reconstruction-based beamformer, there is almost no perfor-

mance loss for the proposed adaptive beamformer based on covariance matrix

sparse reconstruction when the input SNR is above 0 dB. When the SNR is lower

than 0 dB, the performance loss is mainly because of the DOA estimation ac-

curacy of the Capon spatial spectrum. The output performance of the proposed

beamformer can be further improved by introducing more sophisticated DOA

estimation methods especially for low SNR cases. Similarly, as shown in Figure

8.5(c), the output performance of the proposed adaptive beamformer is close to

the optimal SINR when the number of snapshots is larger than the number of

array sensors.

8.4.3 Example 3: Random sources DOA mismatch

In the third example, a more practical scenario with random DOA mismatches

is considered. More specifically, random DOA mismatches of both the desired

signal and the interferers are assumed to be uniformly distributed in [−4◦, 4◦].

That is to say, the actual DOA of the desired signal is uniformly distributed

as U
[
θ̄s − 4◦, θ̄s + 4◦

]
(i.e., U [1◦, 9◦]), and the DOAs of the interferers are uni-

formly distributed as U [−54◦,−46◦] and U [−24◦,−16◦], respectively. Note that,

random DOAs of the signal and interferers change from trial to trial but remain

fixed from snapshot to snapshot.

It can be seen from Figure 8.6(a) that the output performance of the proposed

beamformer is much closer to the optimal SINR than other tested beamform-

ers. When the input SNR is less than −10 dB, there is an approximately 0.6

dB performance loss because there may be no peak in the angular sector Θ for

the Capon spectrum or the peak’s value is less than the threshold; therefore,

there presents a random DOA mismatch for the desired signal by using the pre-

sumed DOA θ̄s, the center of the desired signal sector Θ. In addition, due to

the limited sampling grid, the performance of the proposed beamformer does

not exactly converge to the optimal one when the input SNR is higher than 0

dB. In detail, the maximum estimation error of source DOAs is 0.05◦, which is

half of the grid increment of 0.1◦. Such DOA estimation error will degrade the

output performance of the proposed beamformer because both the reconstructed
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(c) Output SINR versus number of snapshots

Figure 8.5 Second example: Fixed signal DOA mismatch.
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Figure 8.6 Third example: Random sources look direction mismatch.
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interference-plus-noise covariance matrix R̂i+n and the modified signal steering

vector ãs depend on the DOA estimation. The possible solutions to mitigate

the effect of grid limitation include the grid refinement method [53] and the off-

grid direction estimation method [61, 62]. In addition to achieving a faster con-

vergence rate than the interference-plus-noise covariance matrix reconstruction-

based beamformer [40], the proposed interference-plus-noise covariance matrix

sparse reconstruction-based beamformer offers a stable output performance with

the increase of SNR while others do not, as shown in Figure 8.6(c).

8.4.4 Example 4: Coherent local scattering

In the fourth example, we consider a scenario where the spatial signature of

the desired signal is distorted by local scattering effects. Specifically, the desired

signal is assumed to be a plane wave with the presumed steering vector ās,

whereas the actual steering vector as is formed as the superposition of five signal

paths including four coherent scattered paths as

as = ās +
4∑
t=1

ejψta(θt), (8.36)

where a(θt), t = 1, 2, 3, 4, correspond to coherently scattered paths. The steering

vector of the t-th path, a(θt), can be modeled as a plane wave from the direc-

tion of θt. The DOAs of scattered paths follow independent normal distribution

θt ∼ N
(
θ̄s, 4

◦) , t = 1, 2, 3, 4, and the phases of scattered paths follow inde-

pendent uniform distribution ψt ∼ U [0, 2π) , t = 1, 2, 3, 4. Note that the tested

adaptive beamformers are implemented in a block adaptive manner, which means

that both θt and ψt, t = 1, 2, 3, 4 change from run to run but do not change from

snapshot to snapshot. From Figure 8.7, the output performance loss of the pro-

posed beamformer is less than 0.7 dB, which is much smaller than that suffered

by the other tested beamformers.

8.4.5 Example 5: Wavefront distortion

In the fifth example, we consider the situation where the desired signal spatial

signature is distorted by wave propagation effects in an inhomogeneous medium.

We assume independent-increment phase distortions of the desired signal wave-

front [25, 63]. In each Monte Carlo run, each of these phase distortions is inde-

pendently drawn from a Gaussian random generator N (0, 0.04), which remains

fixed from snapshot to snapshot. From Figure 8.8, it is clear that the proposed

beamformer provides more stable and near-optimal output performance than the

other tested beamformers regardless of the input signal power or the number of

snapshots.
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Figure 8.7 Fourth example: Coherent local scattering.
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Figure 8.8 Fifth example: Wavefront distortion.
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8.4.6 Example 6: Incoherent local scattering

In the sixth example, we assume incoherent local scattering of the desired signal,

which is common in array applications due to the multipath scattering effects

caused by the presence of local scatters. In such a case, the desired signal is

assumed to have a time-varying spatial signature as [32,40]

as(k) = s0(k)ās +
4∑
t=1

st(k)a(θt), (8.37)

where st(k) ∼ N (0, 1), t = 0, 1, 2, 3, 4, are independent and identically dis-

tributed (i.i.d.) zero-mean complex Gaussian random variables changing from

snapshot to snapshot, θt ∼ N (θ̄s, 4
◦), t = 1, 2, 3, 4, are the random DOAs chang-

ing from run to run while remaining fixed from snapshot to snapshot. This cor-

responds to the case of incoherent local scattering [30], where the rank of the

signal covariance matrix Rs is higher than one. In the general-rank case, the

output SINR should be rewritten as [10]

SINR =
wHRsw

wHRi+nw
, (8.38)

which is maximized by [10]

w = P{R−1
i+nRs}, (8.39)

where P { · } stands for the principal eigenvector of a matrix.

It can be seen from Figure 8.9(a) that the proposed beamformer outperforms

all other tested beamformers especially at high SNR. The performance loss of

the proposed beamformer is less than 0.1 dB. In contrast, there is about 7.5 dB

performance loss for the interference-plus-noise covariance matrix reconstruction-

based beamformer. The main reason is that the signal-of-interest leaks into the

out-of-sector Θ̄ due to the incoherent local scattering, and then the reconstructed

interference-plus-noise covariance matrix R̂i+n (8.20) is contaminated by the

leaked desired signal component.

8.4.7 Discussion

From the above extensive simulation results illustrated for different scenarios, it

is clear that the proposed adaptive beamformer based on interference-plus-noise

covariance matrix sparse reconstruction consistently enjoys the best performance

as compared to other tested beamformers. More specifically, benefitted from the

interference covariance matrix reconstruction which excludes the desired sig-

nal component, the output performance of the proposed beamformer is always

close to or equal to the optimal SINR regardless of the input SNR. In contrast,

there is a slight output performance degradation for the interference-plus-noise

covariance matrix reconstruction-based beamformer because the Capon spatial

spectrum estimator underestimates the power of interferers and thus decreases
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Figure 8.9 Sixth example: Incoherent local scattering.
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the estimation accuracy of the interference-plus-noise covariance matrix. On the

other hand, other tested beamformers use the signal-contaminated covariance

matrix, and thus degrade the output performance particularly when the input

SNR is high. Another significant advantage of the proposed adaptive beamformer

is that it achieves faster convergence, and only requires the number of snapshots

to be slightly higher than the number of array sensors in order to approach the

optimal SINR. In contrast, if an average performance loss of less than 3 dB is

required for the SMI beamformer, the number of signal-free snapshots must be

at least twice the number of array sensors [48]. However, in the underlying prob-

lem where the snapshots are contaminated by the desired signal, the convergence

becomes much slower, i.e., a much higher number of snapshots are required [17].

Note that, although the ULA is adopted in the above simulations, the idea of

covariance matrix sparse reconstruction proposed in this chapter for the adaptive

beamformer design can be generalized to arbitrary arrays, e.g., the coprime array

[64–67]. Benefitted from the larger array aperture due to the sparse deployment,

the coprime array adaptive beamforming algorithm proposed in [67] achieves

high robustness against model mismatches with a significant reduction in the

number of antennas and the associated radio frequency chains.

It is also worth noting that the extension of the proposed narrowband adaptive

beamforming technique to the broadband adaptive beamforming is straightfor-

ward [3]. For example, applying fast Fourier transform (FFT) to the broadband

signal yields narrowband components, which can then be independently pro-

cessed using the proposed (narrowband) covariance matrix sparse reconstruction-

based adaptive beamforming technique. Subsequently, the time-domain broad-

band beamformer output is obtained by applying an inverse FFT to the output

of the individual narrowband beamformers.

8.5 Conclusion

In this chapter, we proposed a simple, effective robust adaptive beamforming

algorithm based on interference-plus-noise covariance matrix sparse reconstruc-

tion. Specifically, by exploiting the sparsity of sources distributed in the observed

spatial domain, accurate interference-plus-noise covariance matrix reconstruction

can be achieved by estimating the sparse spatial spectrum distribution from a

sparsity-constrained covariance matrix fitting problem, which provides a signal-

free interference-plus-noise covariance matrix for the beamformer design. The for-

mulated sparsity-constrained covariance matrix fitting problem can be effectively

solved with a priori information of the estimated source DOAs rather than ℓ1-

norm relaxation-type approximations. Simulation results evidently demonstrate

the effectiveness of the proposed algorithm. Compared to the existing techniques,

the performance of the proposed method is nearly optimal over a wide range of

input SNR and various error conditions. In addition, the proposed technique also

has low computational complexity.
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