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Abstract

We propose efficient target localization methods for a passive radar system

using time-of-arrival (TOA) information of the signals received from mul-

tiple illuminators, where the position of the receiver is subject to random

errors. Since the maximum likelihood (ML) formulation of this target local-

ization problem is a non-convex optimization problem, semi-definite relax-

ation (SDR)-based optimization methods in general do not provide satisfac-

tory performance. As a result, approximated ML optimization problems are

proposed and solved with SDR plus bisection methods. For the case without

position error, it is shown that the relaxation guarantees a rank-one solu-

tion. The optimization problem for the case with position error involves only
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a relaxation of a scalar quadratic term. Simulation results show that the pro-

posed algorithms outperform existing methods and provide root mean-square

error performance very close to the Cramer-Rao lower bound.

Keywords: Radar signal processing, passive radar, target localization,

convex optimization, semi-definite relaxation.

1. Introduction

In recent years, multi-static passive radar (MPR) systems, which utilize

multiple broadcast signals as sources of opportunity, have attracted signifi-

cant interests due to their low cost, covertness, and availability of rich illu-

minator sources [1, 2, 3, 4]. Compared to conventional active radar systems

which typically operate in a monostatic mode and emit stronger signals with

a wide signal bandwidth, MPR systems use broadcast signals which in gen-

eral are very weak and have an extremely narrow bandwidth. These features

make it difficult to exploit a MPR system for accurate target position esti-

mation. In addition, MPR receivers may often be implemented on aerial or

ground moving vehicles. In this case, the radar platform may only have in-

accurate knowledge about its own instantaneous position. This uncertainty

is caused by the accuracy limitation of the positioning system as well as

multipath propagations.

Target localization is an important task that has received extensive at-

tention in various applications, such as wireless communications, sensor net-

works, urban canyon, and through-the-wall radar systems [5, 6, 7, 8]. Specif-

ically, multi-lateration techniques utilize the range information observed at
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multiple positions, which are distributed over a region, to uniquely localize

a target. Depending on the applications, range information can be obtained

using time-of-arrival (TOA), time-delay-of-arrival (TDOA), and received sig-

nal strength indicator (RSSI). On the other hand, the observation positions

may be achieved using fixed receivers, or synthesized using a single moving

platform. In the latter case, the receiver positions are subject to inaccuracy.

In all these applications, maximum likelihood (ML) estimation is consid-

ered as a powerful method of estimating the targets’ location, which in gen-

eral is a non-convex optimization problem. When the measurement noise is

sufficiently small, the ML estimation problem may be solved using linearized

least squares (LLS) estimation methods [5, 7]. The key steps of the LLS es-

timation methods are linearizing the objective function using Taylor’s series

expansion at some initial guess of target position and updating it with the

least squares (LS) solution in an iterative approach. Like in many iterative

optimization techniques for non-convex problems, however, the accuracy of

the LLS estimator highly depends on the initial guess of the target’s location.

This has motivated researchers to consider more efficient designs. One such

approach is the semi-definite relaxation (SDR) technique [6, 9, 10, 11], which

converts a non-convex optimization problem into a convex one by relaxing

certain rank constraints. It is worth noting that SDR-based approaches out-

perform computationally efficient two-step weighted least squares method

proposed in [12], especially when the noise level is high and the sensor posi-

tions are not perfectly known.

The accuracy (or tightness) of SDR techniques, however, is problem spe-
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cific, as shown in [13] for the TOA based optimization problems. For exam-

ple, in optimization problems based on TDOA [9] and TOA [10], where an

unknown time instant of the source’s signal transmission is also optimized,

SDR relaxations may not be tight and, thus, the penalty function approach

is introduced. This is true also for robust designs where sensor positions

are subject to certain random errors [9, 10]. In this context, neglecting the

second-order noise terms [12], the authors in [14] proposed to use an approx-

imate ML function in the SDR-based source localization problem.

In this paper, we pursue approximated ML estimation approach in devel-

oping efficient target localization algorithms in a MPR system using TOA

information of signals received from multiple illuminators and the target. As

discussed above, the range resolution is poor because of the narrow signal

bandwidth and weak signal levels, and the receiver position is subject to in-

accurate knowledge of its own position. Therefore, an optimization problem

is also formulated for the case where the receiver position is subject to es-

timation error. The underlying optimization problems are still non-convex,

but can be reformulated as convex problems using SDR and solved in con-

junction with the bisection method. When no position error is present, the

SDR provides a rank-one solution. With position estimation error, the cor-

responding optimization problem involves only a relaxation of a quadratic

scalar term.

The target localization problem and optimization technique described in

this paper differs from existing literature in a number of ways. In contrast

to the optimization problems in [6] and [13], where the objective function
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is solely a function of monostatic range, the objective function in our case

involves bistatic range, which makes accurate target position estimation much

more challenging. Further, unlike [9] and [10], where SDR of several variables

and a penalty function approach are employed, our approach involves SDR

of only one variable, though in conjunction with the bisection approach. For

these reasons, the proposed method outperforms methods in [9, 10] and does

not require refinement through local optimization. Moreover, although we

employ ML approximation approach, the effect of the approximation renders

our optimization problem to be different from [14] due to different system

models. As a result, a new optimization method that solves relaxed SDR

problem in conjunction with bisection method is proposed for both cases

where receiver position is perfectly and imperfectly known.

The rest of the paper is organized as follows. The system model of the

MPR system is described in Section 2, whereas the proposed optimization

methods for target localization are presented in Section 3.2. The computa-

tional complexity of the proposed method is compared with the approach of

[9] in Section 4. Numerical results are provided in Section 5 and conclusions

are drawn in Section 6.

Notations: Upper (lower) bold face letters will be used for matrices (vec-

tors); (·)T , In, ||·||, tr(·), A � 0, diag(·) denote transpose, n × n identity

matrix, Euclidean norm, matrix trace operator, positive semi-definiteness of

A, and diagonal matrix, respectively.
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2. System Model

We consider a standard MPR system with M illuminators of opportunity,

which can be broadcast stations for digital-video broadcasting - terrestrial

(DVB-T) [15] or base stations for global system for mobile communications

(GSM) [16]. Because the deployment scenario of these broadcast and base

stations is publicly available, their numbers and locations are considered to

be precisely known. A narrow-band multi-frequency (NBMF) transmission

is considered, where the illuminators use well separated carrier frequencies

fi, i = 1, ...,M , and the bandwidths of their transmitted waveforms are much

smaller than fi, ∀i. The radar receiver observes the direct signals from all

M illuminators and the reflected signal from a single target. The target is

assumed to be stationary1. By virtue of NBMF transmission, separation of

the different signals based on carrier frequencies (or equivalently illuminators)

is feasible after demodulation and filtering [17]. It is worthwhile to note that

this feature is in contrast to a multiple-input multiple-output (MIMO) radar

system where transmitters use a same carrier frequency but coordinate to

form orthogonal waveforms [18], [19].

The TOA of the direct signal from the ith illuminator at the receiver,

where 1 ≤ i ≤M , is given by

τd,i =
1

c
||ti − r̃||, (1)

where c is the speed of light, ti and r̃ are column vectors of length n that

1Algorithms for multiple and moving targets will be reported elsewhere.
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represent, respectively, the coordinates of the ith illuminator and the re-

ceiver. Depending on applications, n is 2 for a two-dimensional coordinate

system and 3 for a three-dimension coordinate system. Note that {ti, ∀i}

are assumed to be stationary and precisely known. The TOA of the target

reflected signal corresponding to the ith illuminator is given by

τb,i =
1

c
{||ti − p||+ ||r̃− p||} , (2)

where p is the n×1 vector representing the location information of the target.

Because the passive radar exploits non-cooperative illuminators, it does not

know the exact timing of the signal emission at each illuminator 2. Rather,

the radar receiver reconstructs the direct path signal with enough accuracy

by applying demodulation and forward error correction technique [20]. The

estimated direct path is used to correlate the reflected signal from the targets

to estimate the TDOA between these two paths, given by τb,i − τd,i [21]. As

a result, the effective TDOA between τd,i and τb,i can be estimated as

τ̄i = τb,i − τd,i + n̄i =
1

c
[||ti − p||+ ||r̃− p|| − ||ti − r̃||] + n̄i, (3)

where n̄i is the zero-mean Gaussian estimation error due to measurement

noise. The Gaussian distribution reasonably models the measurement noise

[22] and is commonly in TDOA/TOA measurements (e.g., [9], [10] and [13]).

For notational simplicity, we denote τi = cτ̄i and ñi = cn̄i. In this case, the

2This is also one of the important features that differentiates the passive radar system

from MIMO radar systems where the transmitters and receivers are synchronized [18],

[19], i.e., the time of signal transmission is known at the MIMO radar receiver.
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ML estimate of the target location is expressed as

p̂ = argmin
p

M
∑

i=1

[τ̃i − ||ti − p|| − ||r̃− p||]2 , (4)

where

τ̃i = τi + ||ti − r̃||. (5)

Note that the knowledge of the true position of the receiver, r̃, may be

inaccurate. Denote the estimated receiver position by r. The relationship

between r̃ and r is expressed as

r̃ = r+ e, (6)

where e is the random estimation error for the receiver position.

3. Proposed Optimization Approaches

The unconstrained minimization problem (4) is non-convex. Thus, it is

difficult to obtain the global optimum solution with a reasonable complexity.

The SDR-based optimization methods applied in [9, 10] may not be tight

enough in general and, thus, may often fail to provide performance suffi-

ciently close to CRLB. In this section, and motivated by [12], we propose an

alternative approach that approximates the ML target localization problem.

However, this approximate ML problem is shown to be less sensitive to the

SDR and perform better than the methods that solve the exact ML problem.
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3.1. Optimization without Receiver Position Error

We first consider the case where the receiver position is exactly known,

i.e., r̃ = ri. Denote τi = τ oi + ñi, where τ
o
i is the noise-free observation. Then,

from (3), we have

τ oi = ||ti − p||+ ||r− p|| − ||ti − r|| (7)

or equivalently

τ̃ oi − ||r− p|| = ||ti − p||. (8)

Squaring both sides of (8) and substituting τ̃ oi = τ̃i − ñi into (8), we obtain

τ̃ 2i − 2(τ̃i − q)ñi + ñ2
i − 2τ̃iq + ||r||

2 − ||ti||
2 − 2(r− ti)

Tp = 0, (9)

where q = ||r− p||. Neglecting the second-order terms of the noise, ñ2
i , and

stacking (9) for all i, we obtain the following expression

u−Bz ≈ Dñ, (10)

where

u =
[

||r||2 − ||t1||
2 + τ̃ 21 , · · · , ||r||

2 − ||tM ||
2 + τ̃ 2M

]T
,

B = 2



















(r− t1)
T τ̃1

(r− t2)
T τ̃2

...
...

(r− tM)T τ̃M



















,

D = 2diag(τ̃1 − q, τ̃2 − q, · · · , τ̃M − q),

z = [pT , q]T ,

ñ = [ñ1, ñ2, · · · , ñM ]T . (11)
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By virtue of the underlying NBMF transmission, which exploits non-overlapping

spectra, it can be readily assumed that the entries of ñ are statistically inde-

pendent. We further assume that the entries of ñ are identically distributed,

so that ñ is a vector of zero-mean i.i.d. Gaussian random variables with co-

variance matrix σ2
nIM . We maintain that approaches developed in this paper

can be easily extended to correlated and non-identically distributed Gaussian

noise. From (10), the noise vector can be approximated as

ñ ≈ D−1(u−Bz). (12)

As a result, the ML target localization problem can be approximated as the

following minimization problem

min
z

1

σ2
n

(u−Bz)TD−1D−1(u−Bz)

s.t. q , z(n + 1) = ||r− p||, (13)

where z(n + 1) stands for the (n + 1)th element of z. After omitting the

constant scaling factor 1
σ2
n

, (13) can be expressed as

min
z

M
∑

i=1

(ui − bT
i z)

2

(τ̃i − q)2

s.t. q = ||r− p||, (14)

where ui is the ith element of u and bT
i is the ith row of B. We define

p , z̃ = [z(1), · · · , z(n)]T , b̃T
i = [bi(1), · · · , bi(n)] and vi = bi(n + 1), where

bi(k) is the kth element of bT
i . The objective function (13) can be expressed

as

fob =

M
∑

i=1

[

ui

τ̃i − q
−

b̃T
i z̃

τ̃i − q
−

viq

τ̃i − q

]2

, (15)
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which, after some manipulations, can be expressed as

fob = [z̃T , 1]G(q)[z̃T , 1]T (16)

where the (n+ 1)× (n + 1) matrix G(q) is given by

G(q) =













M
∑

i=1

b̃ib̃
T
i

(τ̃i − q)2

M
∑

i=1

b̃i(viq − ui)

(τ̃i − q)2

M
∑

i=1

b̃T
i (viq − ui)

(τ̃i − q)2

M
∑

i=1

(viq − ui)
2

(τ̃i − q)2













. (17)

Thus, the minimization problem (14) is given by

min
z̃,q

tr











z̃

1



 [z̃T , 1]G(q)







s.t. q2 = ||r− p||2 ←→ q2 = tr











z̃

1



 [z̃T , 1]





In −r

−rT rT r











, (18)

which is clearly a non-convex optimization problem. We define Z̃ = z̃z̃T ,

which is relaxed as Z̃ � z̃z̃T , i.e., Z̃ − z̃z̃T is positive semi-definite. This

yields the following optimization problem

min
z̃,Z̃,q

tr











Z̃ z̃

z̃T 1



G(q)







s.t. q2 = tr











Z̃ z̃

z̃T 1









In −r

−rT rTr











,





1 z̃T

z̃ Z̃



 � 0. (19)

For a given q, (19) is a convex optimization problem w.r.t. z̃ and Z̃. However,

the joint optimization problem (w.r.t. q, z̃ and Z̃) is not convex. On the
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other hand, since q is a scalar (also positive), it is still easy to find the

global optimum solution of (19) by using an exhaustive search over q, where

(19) is solved over a fine grid of q and z̃ is selected for which the objective

function is minimum. To reduce the complexity of solving the optimum value

of q, we propose to employ a line search (e.g., bisection search) over q for

solving the optimization problem (19). Since it is very difficult to analytically

prove that the bisection search guarantees the global minimum for (19), we

pursue a numerical approach. Let [z̃∗j , Z̃
∗
j ] be an optimal solution of (19) for

a given q = qj , where j = {1, · · · , J}. Let f̃ob(q) =
{

fob(z̃
∗
j , Z̃

∗
j , qj)

}J

j=1
be

the resulting function w.r.t. {qj}. In the considered simulation scenario (see

Fig. 2 of Section 5) with perfectly known receiver position and an arbitrary

noise realization, it can be observed from Fig. 1 that f̃ob(q) is an unimodal

function. This suggests that the bisection approach accurately finds the

global minimum in (19).

Assume that the optimum q lies in the interval [ql, qu]. It is obvious in

the underlying problem that ql = 0. The algorithm (Algorithm 1) for solving

(19) is then provided below.

1) Initialize ql, qu and set ǫ > 0.

2) Solve (19) with q = ql and q = qu.

3) If fob(ql) < fob(qu), set qu = ql+qu
2

; otherwise set ql =
ql+qu

2
.

4) Go to step 2 until |qu − ql| ≤ ǫ.

Remark 1: Let [z̃∗, Z̃∗, q∗] be an optimal solution of the problem (19).
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Notice that the number of equality constraints is L = 1. According to

the Shapiro-Barvinok-Pataki (SBP) result [23], there exists an optimal solu-

tion Z̃∗ such that rank(Z̃∗)(rank(Z̃∗) + 1) ≤ 2L. Since L = 1 in (19) and

rank(Z̃∗) 6= 0, we find that Z̃∗ is rank-one.

The CRLB for the case without receiver position error is given by (see

Appendix 7.1)

CRB = tr(F−1), (20)

where

F =
1

σ2
n

∂s̃T

∂p
ETE

∂s̃

∂pT
,
∂s̃T

∂p
=

[

r− p

||r− p||
,

t1 − p

||t1 − p||
, · · · ,

tM − p

||tM − p||

]

,(21)

s̃ = [q = ||r− p||, s1 = ||t1 − p||, · · · , sM = ||tM − p||]T , E = [1M , IM ].

3.2. Optimization with Receiver Position Error

In the presence of random position error (i.e., r̃ = r+ e), we can express

the measured range difference for the signal of ith illuminator as

τ ri = ||ti − p||+ ||(r+ e)− p|| − ||(r+ e)− ti||+ ñi. (22)

We consider that e is small when compared to (r − p) and (r − ti), ∀i, i.e.,

||e|| ≪ ||r− p||, ||r− ti||, ∀i. Using Taylor’s series expansion, we get

||(r+ e)− p|| = ||r− p||+ eT
r− p

||r− p||
+O(||e||),

||(r+ e)− ti|| = ||r− ti||+ eT
r− ti

||r− ti||
+O(||e||), (23)

where O(||e||) stands for higher-order terms of ||e||. Substituting (23) into

(22), we obtain

τ ri ≈||ti − p||+ ||r− p|| − ||r− ti||+ eT
[

r− p

||r− p||
−

r− ti

||r− ti||

]

+ ñi. (24)
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Define τ̃ ri = τ ri + ||r− ti||, w = r−p

||r−p||
, wi =

r−ti
||r−ti||

and w̃i = w −wi. Then,

(24) can be expressed as

(τ̃ ri − ñi)− ||r− p|| − eT w̃i ≈ ||ti − p||. (25)

Squaring both sides of (25) and after some derivations, we get

(τ̃ ri )
2 + ||r||2 − ||ti||

2 − 2(ri − t)Tp− 2τ̃ ri q + ñ2
i + 2ñie

T w̃i

+eT w̃iw̃ie ≈ 2ñi(τ̃
r
i − q) + 2(τ̃ ri − q)eT w̃i. (26)

Neglecting the second order terms of noise and the cross-order term between

noise and position error, for i = 1, · · · ,M , (26) can be expressed in the vector

form as

u−Bz ≈ Dñ+Ce, (27)

where

C = 2



















(τ̃ r1 − q)w̃T
1

(τ̃ r2 − q)w̃T
2

...

(τ̃ rM − q)w̃T
M



















. (28)

Notice that (27) can be expressed as

D−1(u−Bz) ≈ ñ+D−1Ce. (29)

Assume that the position error e is Gaussian distributed with zero-mean and

covariance matrix Q. Since e and ñ are independent, we obtain

E
{

(ñ+D−1Ce)(ñ+D−1Ce)T
}

= σ2
nIM +D−1CQCT (D−1)T . (30)
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Particularly, under the assumption Q = σ2
eIn, where σ

2
e is the variance of the

elements of e, the ML localization problem can be approximately expressed

as

min
z

{

(u−Bz)TD−1
(

σ2
nIM + σ2

eD
−1CCTD−1

)−1
D−1(u−Bz)

}

s.t. q , z(n + 1) = ||r− p||. (31)

The objective function of the optimization problem (31) can be simplified to

frob =
1

4
(u−Bz)T

(

σ2
nDDT + σ2

eCCT
)−1

(u−Bz), (32)

where

DDT =diag
(

(τ̃ r1 − q)2, (τ̃ r2 − q)2, · · · , (τ̃ rM − q)2
)

, (33)

and

CCT =



















(τ̃ r1 − q)2w̃T
1 w̃1 (τ̃ r1 − q)(τ̃ r2 − q)w̃T

1 w̃2 · · · (τ̃ r1 − q)(τ̃ rM − q)w̃T
1 w̃M

(τ̃ r2 − q)(τ̃ r1 − q)w̃T
2 w̃1 (τ̃ r2 − q)2w̃T

2 w̃2 · · · (τ̃ r2 − q)(τ̃ rM − q)w̃T
2 w̃M

...
...

...
...

(τ̃ rM − q)(τ̃ r1 − q)w̃T
Mw̃1 (τ̃ rM − q)(τ̃ r2 − q)w̃T

Mw̃2 · · · (τ̃ rM − q)2w̃T
Mw̃M



















.

(34)

Since wTw = 1 and wT
i wi = 1, ∀i, we have

w̃T
i w̃i = 2

[

1−
(r− p)T

q
wi

]

, ∀i

w̃T
i w̃k = 1−

(r− p)T

q
(wi +wk) +wT

i wk, ∀i, k, i 6= k. (35)

Introducing an auxiliary variable γ > 0 and defining

B̃ , B[1:M,1:n], b̃ , B[1:M,n+1],p , z̃, (36)
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(31) can be expressed as

min
{z̃,q,γ}

γ

s.t. γ ≥ (u− B̃z̃− b̃q)T
(

σ2
nDDT + σ2

eCCT
)−1

(u− B̃z̃− b̃q),

q2 = rT r− 2rT z̃+ z̃T z̃. (37)

Using the Schur-complement theorem [24], the inequality constraint of (37)

can be expressed as





σ2
nDDT + σ2

eCCT (u− B̃z̃− b̃q)

(u− B̃z̃− b̃q)T γ



 � 0. (38)

Defining z̄ = z̃T z̃ and using the relaxation z̄ ≥ z̃T z̃, the optimization problem

(37) can be expressed as

min
{z̃,q,γ,z̄}

γ

s.t.





σ2
nDDT + σ2

eCCT (u− B̃z̃− b̃q)

(u− B̃z̃− b̃q)T γ



 � 0

q2 = rTr− 2rT z̃+ z̄,




In z̃

z̃T z̄



 � 0. (39)

For a given q, the optimization problem (39) is convex. The joint optimiza-

tion is then solved in conjunction with the bisection search over q. The

algorithm (Algorithm 1), as shown for the case without position errors, can

then be applied to solve (39).

When the assumed receiver position is subject to errors, the CRLB can
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be expressed as (see Appendix 7.2)

C̃RB = tr
(

(

Fp − Fpr̃F
−1
r̃ FT

pr̃

)−1
)

(40)

where Fp = F,

Fpr̃ =
1

σ2
n

∂s̃T

∂p
ETE

∂s̃

∂r̃T
,

Fr̃ =
1

σ2
n

∂s̃T

∂r̃
ETE

∂s̃

∂r̃T
,

∂s̃T

∂r̃
=

[

r̃− p

||r̃− p||
, 01×n, · · · , 01×n

]

. (41)

4. Complexity Analysis

We present the computational complexity of the proposed optimization

algorithms using the approach in [25]. For a given q, the number of iterations

required for solving (19) is upper bounded by Õ
(

(n+ 1)
1

2

)

, whereas the work

load per iteration is upper bounded by Õ ((n2 + n)2(n+ 1)2). The bisection

search w.r.t. q requires L̄ = log2
(

qu−ql
ǫ

)

iterations. This means that the over-

all complexity for the case without position errors is approximately Õ
(

n6.5L̄
)

.

It is interesting to note that the complexity of Algorithm 1 does not depend

on M . In a similar manner, for a given q, we can show that the complexity of

(39) in terms of number of iterations is Õ
(

(n+M + 2)
1

2

)

, whereas the com-

plexity per iteration is Õ ((n + 2)2((n+ 1)2 + (M + 1)2)). This means that

the total complexity of (39) is approximately Õ ((n+M)0.5n2(n2 +M2)).

For the case without position errors, the SDP approach (before local opti-

mization) of [9] requires Õ
(

(n+M + 3)
1

2

)

iterations, where the complexity

per-iteration is given by Õ (((M + 1)2 +M + n+ 2)2((M + 2)2 + (n + 1)2)).
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For a gradient-based local optimization, such as steepest-descent method,

Õ(ǫ−2) iterations are required to keep the norm of the gradient below ǫ [26].

Thus, the total complexity is given by Õ ((n+M)0.5(M2 +M + n)2(M2 + n2))

plus Õ(ǫ−2). On the other hand, for the case with position errors, the SDP

approach (before local optimization) in [9] requires Õ
(

(n+ 1 + 2(M + 2))
1

2

)

iterations. The corresponding computational complexity of each iteration is

given by Õ (((M + 1)2 +M + n+ 4)2 (2(M + 2)2 + (n+ 1)2)), which results

in a total complexity of Õ ((n + 2M)0.5(M2 +M + n)2(2M2 + n2))+Õ(ǫ−2).

Note that in practice n << M . For this case, the total complexity between

the proposed and SDP methods is compared in Table 1.

It can be observed from this table that, as long as L̄ ≤
(

M
n

)6.5
for the

case without errors and L̄ ≤
(

M2

n

)2

for the case with errors, the complexity

of the proposed method does not exceed that of the SDP.

5. Numerical results

Computer simulations are conducted to demonstrate the effectiveness of

the proposed method. The stationary target and receiver are located at

positions p = [600, 550]T meters and r = [−200, 10] meters, respectively.

The illuminators are located at the following positions





800 900 1000 1100 1100 1100 1100

200 200 200 200 300 400 500



meters.

A two-dimensional coordinate system for the locations of the target, illumi-

nators and receiver is shown in Fig. 2.
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The CVX toolbox [27] is used to solve the convex optimization problems

(19) and (39). These optimization problems are solved within a framework

of bisection algorithm outlined in Algorithm 1. We run Algorithm 1 and

corresponding algorithm for (39) by taking ql = 2 m, qu = 1000 m and ǫ = 1

m. Note that smaller values of ǫ can be taken for improving convergence

accuracy, whereas larger values of qu can be taken if we do not have even a

coarse knowledge of the target-receiver range. Both settings in general result

in higher computational complexity, since the bisection search requires more

iterations. We compare the proposed method with both the SDP method

that employs local optimization [9] and the LLS method. Notice that the

SDP method [9] without local optimization gives very poor results in our

simulation scenarios, and thus, only the results after local optimization are

shown. As suggested in [9], the penalty parameter for this method is varied

between 10−3 and 10−7. The solution of the LLS method at a given estimate

p0 is given by

p = (ATA)−1AT (τmo − h), (42)
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where

A =















aT
1 ,

(p0 − t1)
T

||p0 − t1||
+

(p0 − r̃)T

||p0 − r̃||
...

aT
M ,

(p0 − tM)T

||p0 − tM ||
+

(p0 − r̃)T

||p0 − r̃||















,

h =











||p0 − t1||+ ||p0 − r̃|| − ||t1 − r̃||+ pT
0 a1

...

||p0 − tM ||+ ||p0 − r̃|| − ||tM − r̃||+ pT
0 aM











,

τmo = [τ1, · · · , τM ]T or [τ r1 , · · · , τ
r
M ]T . (43)

For the LLS method, we take an initial estimate as p0 = [10, 10]T m3,

determine p using (42), and update p0 iteratively until ||p − p0|| ≤ 1 m.

We first consider the case in which the observed data set is contaminated by

measurement noise, whereas the receiver position is perfectly known. The

measurement noise follows a zero-mean Gaussian distribution with a variance

of σ2
n. All results are obtained fromN = 200 independent realizations of noise

and position error.

Fig. 3 shows the root mean-square error (RMSE) of the estimated target

position as a function of σn. The RMSE is defined as

RMSE =

√

√

√

√

1

N

N
∑

n=1

||p̂(n) − p||2, (44)

3We also tested the LLS method with other values of p0 but found that the performance

does not improve w.r.t. other methods, especially at higher values of noise. As a result,

for the sake of conciseness, we show the LLS performance using only the abovementioned

value of p0.
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where p̂(n) is the estimated target position for the nth simulation and p is the

actual target position. The performance of the proposed method is compared

with the SDP method that refines its solution with local optimization. The

RMSE performance of the LLS method is also shown in Fig. 3. It is observed

from this figure that the proposed method outperforms both SDP and LLS

methods and provides performance very close to the CRLB. For σn ≥ 38 m,

the performance of the LLS approach deviates much faster from CRLB than

the other two methods.

In Fig. 4, the performance of the proposed robust method is depicted

for the case where the receiver position is subject to a position error, the

elements of which are independent and uniformly distributed between −d m

and +d m. As in the case without position error, RMSE of the LLS method

starts to rise rapidly for σn ≥ 38 m, whereas that of the proposed method and

SDP (with local optimization) remain stable. It can be observed from Fig. 4

that the proposed method provides better RMSE performance than the SDP

method and overall performance very close to the CRLB. It is important to

emphasize that the results for SDP method without local optimization are

not shown since such approach fails to produce reasonable results for both

the cases with and without the receiver position error.

6. Conclusions

We considered the problem of localizing a target using time-of-arrival in-

formation measured at a receiver from the signals of multiple illuminators in

a multistatic passive radar system. The localization problems are formulated
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using an approximate maximum likelihood estimate of the target location.

The resulting non-convex problems are reformulated as convex problems us-

ing the semi-definite relaxation approach and solved in a framework of bi-

section algorithm. The optimization problems are examined for the cases

when only measurement errors are present and when both the measurement

and receiver position errors are present. Simulation results verify the supe-

rior performance of the proposed method over the semidefinite programming

method based on exact maximum likelihood estimate of the target location.

7. Appendix

7.1. Derivation of CRLB when receiver position is perfectly known

The log-likelihood function can be expressed as

L(p)=−
1

2σ2
n

M
∑

i=1

(τ̃i − (q + si))
2, si , ||ti − p||, ∀i, (45)

=−
1

2σ2
n

{

||τ̃ ||2 − 2τ̄ T s̃ + s̃TETEs̃
}

, (46)

where

τ̃ = [τ̃1, · · · , τ̃M ]T , τ̄ T =

[

∑

i

τ̃i, τ̃
T

]

,

s̃ = [q, s1, · · · , sM ]T ,E = [1M , IM ]. (47)

The Fisher information matrix is given by

F = −



















E
{

∂2L(p)
∂p2

1

}

E
{

∂2L(p)
∂p1∂p2

}

· · · E
{

∂2L(p)
∂p1∂pn

}

E
{

∂2L(p)
∂p2∂p1

}

E
{

∂2L(p)

∂p2
2

}

· · · E
{

∂2L(p)
∂p2∂pn

}

...
...

...
...

E
{

∂2L(p)
∂pn∂p1

}

E
{

∂2L(p)
∂pn∂p2

}

· · · E
{

∂2L(p)
∂p2n

}



















, (48)
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where pl denotes the lth element of p. Since

∂L(p)

∂pl
= −

1

σ2
n

{

−τ̄ T ∂s̃

∂pl
+ s̃TETE

∂s̃

∂pl

}

, (49)

we have

∂2L(p)

∂p2l
=−

1

σ2
n

{(

∂2s̃

∂p2l

)T

(ETEs̃− τ̄ ) +

(

∂s̃

∂pl

)T

ETE
∂s̃

∂pl

}

,

∂2L(p)

∂pj∂pl
=−

1

σ2
n

{(

∂2s̃

∂pj∂pl

)T

(ETEs̃− τ̄ ) +

(

∂s̃

∂pj

)T

ETE
∂s̃

∂pl

}

. (50)

Notice that it can be readily shown that E
{

ETEs̃− τ̄
}

= 0. Thus, we get

E

{

∂2L(p)

∂p2l

}

=−
1

σ2
n

(

∂s̃

∂pl

)T

ETE
∂s̃

∂pl
,

E

{

∂2L(p)

∂pj∂pl

}

=−
1

σ2
n

(

∂s̃

∂pj

)T

ETE
∂s̃

∂pl
, (51)

where

∂s̃

∂pl
=

[

∂q

∂pl
,
∂s1

∂pl
, · · · ,

∂sM

∂pl

]T

=

[

pl − tl

||p− t||
,
r1,l − pl

||p− r1||
, · · · ,

rM,l − pl

||p− rM ||

]T

. (52)

Note that ri,l is the lth element of ri. Substituting (52) and (51) into (48),

F is obtained. This completes the derivation of the CRLB when there are

no errors in receiver position.

7.2. Derivation of CRLB when receiver position is imperfectly known

When receiver position is erroneous, let β = [pT , r̃T ]T denote the esti-

mated parameter. Assume that the TDOA and receiver position measure-

ments are independent. The corresponding log-likelihood function can be
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expressed as

L(β)=−

{

1

2σ2
n

[||τ̃ ||2 − 2τ̄ T s̃ + s̃TETEs̃] +
1

2σ2
e

||r− r̃||2
}

. (53)

The Fisher information matrix is given by

Fβ =





Fp FT
pr̃

Fpr̃ Fr̃



 , (54)

where

Fp = −E

{

∂2L(β)

∂p∂pT

}

,

Fpr̃ = −E

{

∂2L(β)

∂p∂r̃T

}

, (55)

Fr̃ = −E

{

∂2L(β)

∂r̃∂r̃T

}

.

It is clear from Appendix 7.1 that Fp = F = 1
σ2
n

∂s̃T

∂p
ETE ∂s̃

∂pT . On the other

hand, differentiation of L(β) w.r.t. to r̃ gives

∂L(β)

∂r̃T
= −

[

1

σ2
n

(

−τ̄ T ∂s̃

∂r̃T
+ s̃TETE

∂s̃

∂r̃T

)

+
1

σ2
e

(r̃− r)T
]

. (56)

It follows that the derivative of ∂L(β)
∂r̃T

with respect to p is given by

∂2L(β)

∂p∂r̃T
= −

1

σ2
n

[

(

s̃TEET − τ̄ T
) ∂2s̃

∂p∂r̃T
+

∂s̃T

∂p
ETE

∂s̃

∂r̃T

]

. (57)

Since E
{

s̃TEET − τ̄ T
}

= 0, it is clear that

Fpr̃ = −E

{

∂2L(β)

∂p∂r̃T

}

=
1

σ2
n

∂s̃T

∂p
ETE

∂s̃

∂r̃T
, (58)

where n× (M + 1) matrix ∂s̃T

∂r̃
is given by

∂s̃T

∂r̃
=

[

r− p

||r− p||
, 0n×1, · · · , 0n×1

]

. (59)
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Moreover, the derivative of ∂L(β)
∂r̃T

with respect to r̃ is given by

∂2L(β)

∂r̃∂r̃T
= −

{

1

σ2
n

[

(

s̃TEET − τ̄ T
) ∂2s̃

∂r̃∂r̃T
+

∂s̃T

∂r̃
ETE

∂s̃

∂r̃T

]

+
1

σ2
n

∂r̃T

∂r̃

}

(60)

which means that

Fr̃ = −E

{

∂2L(β)

∂r̃∂r̃T

}

=
1

σ2
n

∂s̃T

∂r̃
ETE

∂s̃

∂r̃T
+

1

σ2
e

In. (61)

The derivation of CRLB for the case with receiver position error is then

complete.
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Method Type Complexity (n≪M)

Proposed Without errors, problem (19) Õ
(

n6.5L̄
)

SDP Without errors [9] Õ (M6.5) + Õ (ǫ−2)

Proposed With errors, problem (39) Õ
(

M2.5n2L̄
)

SDP With errors [9] Õ (M6.5) + Õ (ǫ−2)

Table 1: Comparison of complexity between different methods.
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Figure 1: f̃ob(q) versus q.
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Figure 3: RMSE performance versus noise variance (no position error).
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Figure 4: RMSE performance versus noise variance with uniformly distributed receiver

position error d = 12 m.
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