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Abstract—Conventional space-time adaptive processing suffers
from the requirement of a large number of secondary samples. In
this paper, a novel method is proposed to accurately estimate the
clutter covariance matrix based on a small number of secondary
samples by exploiting the common clutter support across nearby
range cells in the angle-Doppler domain. By taking advantage
of the intrinsic sparsity of the clutter in the angle-Doppler
domain, the recently developed sparse Bayesian learning tech-
nique is employed for high-resolution clutter profile estimation.
The proposed method does not require the independent and
identically distributed secondary sample assumption, and the
required number of secondary data samples can be significantly
reduced. In addition, we propose a sparse reconstruction based
approach to acquire the two-dimensional motion parameters of
moving targets by exploiting their group sparsity in the velocity
domain in the multi-static passive radar systems. Simulation
results verify the effectiveness of the proposed algorithm.

Index Terms—Group sparsity, motion parameter estimation,
multi-static passive radar, space-time adaptive processing (STAP),
sparse Bayesian learning (SBL)

I. INTRODUCTION

Passive radar (PR) systems, which utilize broadcast, nav-
igation, and wireless communication signals as sources of
opportunity, have recently attracted great interest due to their
distinct advantages over conventional active radar systems,
primarily in terms of their low cost and covertness [1]. PRs are
expected to play an increasing role in future reconnaissance
systems [2].

Moving target indication (MTI) and tracking are commonly
applied in radar applications aiming at target detection and
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motion parameter estimation. The latter has been extensively
studied, particularly for active radar platforms, and has ben-
efited from time-frequency analysis [3–5], and motion and
range migration compensations [6–8]. However, for airborne
radar receivers, those algorithms are effective only when
clutter suppression is achieved.

Space-time adaptive processing (STAP) is considered an
effective technique to MTI in cluttered environments. STAP, in
essence, performs signal processing in the joint angle-Doppler
domain to better separate moving targets from clutter [9, 10].
Application of STAP techniques requires a large number of
secondary data samples from other range gates to estimate
the clutter covariance matrix (CCM) [9]. More specifically,
for a STAP system consisting of N antennas and L azimuth
samples, the well-known Reed-Mallett-Brennan’s (RMB) rule
states that 2NL independent and identically distributed (i.i.d.)
secondary data samples are required to achieve an output SINR
that is within 3 dB loss from the Clairvoyant solution [11].
Although a number of reduced-rank STAP algorithms have
been developed to robustly estimate the CCM with a smaller
number of secondary data samples (e.g., [10, 12–14]), the
required number of secondary data samples is still at least
twice the rank of the dominant clutter subspace for a satis-
factory performance. By jointly exploiting the reduced-rank
technique and the structure of the covariance matrix [15, 16],
this number can be further reduced. However, this approach
is still considered impractical in passive radar systems due
to the narrow signal bandwidth and the corresponding low
range resolution. For example, a Digital Video Broadcasting-
Terrestrial (DVB-T) channel occupies a 7.6 MHz bandwidth in
the 450–900 MHz band and its corresponding bistatic range
resolution is approximately 20 m. The range resolution be-
comes even coarser when signals with a narrower bandwidth,
such as the Digital Audio Broadcasting (DAB) broadcast and
Global System for Mobile Communications (GSM) signals,
are used. With a much lower range resolution as compared
to conventional active radar systems, it is often difficult to
acquire a sufficient number of i.i.d. secondary data samples
required for the estimation of a full-rank CCM [17, 18].

In order to relax the condition on the number of secondary
samples, a more recent approach is to exploit the latest
advances of sparsity reconstruction and compressive sensing
(CS) techniques. By taking advantage of the intrinsic sparsity
of the clutter in the angle-Doppler domain, the sparse clutter
spectrum can be recovered by using only one or a few samples
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[19–23]. In essence, we formulate the sparse clutter profile
estimation as a regularized optimization problem, and then
construct the CCM based on the estimated clutter profiles to
achieve effective clutter suppression. In [19], clutter suppres-
sion is achieved by assuming the knowledge of the support
of the clutter ridge in the angle-Doppler plane. By applying
a mask to the assumed clutter ridge, moving targets are
estimated as the sparse solution in the angle-Doppler domain
outside this clutter ridge. In [20], the clutter at each secondary
range cell is separately estimated in the Bayesian framework.
The estimated clutter at each range cell is used to compute the
CCM and perform STAP in the traditional sense. In [21, 22],
two approaches are proposed for the clutter profile estimation
by utilizing multiple data samples where the clutter profile is
estimated separately in each range cell. The former averages
the estimated clutter profiles to construct the CCM, whereas in
the latter method, the maximum value is chosen for each angle-
Doppler entry from all range cells being evaluated. In [23],
the STAP processor is assumed to be persymmetry in both
spatial and azimuthal domains, and a complex sparse clutter
estimation problem is cast into a group sparsity formulation
to be solved in the multi-task Bayesian CS framework. We
maintain that none of the above methods utilizes the group
sparsity of the clutter across range cells for improved clutter
support or profile estimation. Except [19] in which the support
of the clutter ridge in the angle-Doppler plane is assumed to be
known, the other aforementioned algorithms assume that the
moving target signals in the range cell under test are excluded
in the reconstructed clutter profiles. While this assumption may
hold true for weak target signals due to the non-linear behavior
of sparse reconstruction, it is nevertheless difficult to guarantee
such an outcome in various situations.

A separate issue arising in the sparse reconstruction of
the clutter profile is its angle-Doppler domain resolution. In
addition to satisfying the sparsity requirement, most existing
CS algorithms, such as greedy algorithms like the orthogonal
matching pursuit (OMP) [24] and regularized optimization
algorithms like the LASSO [25], generally expect a low
coherence measurement matrix. A much higher number of
measurement samples would be required when the measure-
ment matrix is highly coherent [26–28]. On the other hand,
sparse Bayesian learning (SBL) methods, which are generally
developed under the relevance vector machine (RVM) frame-
work [29], form a different class of effective tools for sparse
signal reconstruction. These methods are known to achieve
improved performance in many applications, particularly when
the measurement matrix is of a high coherence [30]. High-
resolution sparse reconstruction problems are encountered in
the underlying STAP [22, 23] as well as a large class of radar
applications, such as in direction-of-arrival (DOA) estimation
[31, 32], microwave imaging [33–35], and synthesis of linear
array [36, 37]. While the original SBL framework is developed
to handle real-valued data, a number of methods have been
made available to process complex-valued data in the context
of the SBL framework [34, 38]. In [34], the complex-valued
problem is reformulated as fictitious real-valued tasks with
interrelationship between the real and imaginary components.
The idea that common parameters are shared by the real

and imaginary components is taken into account in [38].
In this paper, we use the SBL method developed in the
context of complex Gaussian distribution [39] to estimate the
complex-valued clutter profiles. This method directly models
the complex-valued sparse reconstruction problem in the con-
text of complex Gaussian distributions, and the problem is
solved using the standard RVM approach [29].

In this paper, we propose a novel approach to accurately
estimate the CCM and implement STAP based on a small
number of secondary data samples. By exploiting the group
sparsity that nearby range cells share the same non-zero
clutter support in the angle-Doppler domain, we first use the
secondary data samples to estimate the common non-zero
clutter support that excludes the target signals. The estimated
clutter support is then used to estimate the clutter profile in
the range cell under test with the target signals excluded. The
proposed method does not require the i.i.d. secondary sample
assumption, and the number of secondary data samples can
be significantly reduced. The SBL algorithm is introduced to
improve clutter profile reconstruction, particularly when the
measurement matrix has a high coherence.

A number of methods have been developed to consider
the group sparse problems and multi-channel observations.
In the block orthogonal matching pursuit (BOMP) [40] and
group Lasso (GLasso) [41], the group sparsity is considered
by evaluating the l2-norm of the member entries in each group.
The multi-task CS algorithm [42] is a sparse Bayesian learning
method where the group sparsity is accounted using the shared
priors. The M-FOCUSS algorithm [43] is another popularly
used group sparse reconstruction method that is developed
under the multiple measurement vector (MMV) model. There
are different approaches that deal with multichannel observa-
tions. Reference [44] considers the joint sparse signal model
to account for multiple aspect observations in a wide-angle
synthetic aperture radar (SAR) imaging. The sparsity similarity
between different aspect angles is considered through the
change in the scattering magnitude at each pixel. A similar
technique is applied in [45] to achieve enhanced image from
multichannel complex-valued images while preserving the
cross-channel information.

In this paper, considering the fact that the clutter profiles
share the same non-zero clutter support across nearby range
cells, we incorporate group sparsity into sparse Bayesian
learning. This incorporation is generally performed within the
multi-task CS framework [42]. In this case, the group sparsity
is encouraged by exploiting a common precision parameter
for each discretized clutter entry corresponding to all range
cells. We extend the multi-task CS algorithm, which is devel-
oped under real-valued data model, to process complex-valued
variables by using complex Gaussian distributions [39]. It is
important to note that the observation model is characterized
by the MMV model which assumes identical measurement
matrices for observations from nearby range cells in each
bisatic pair. It is shown that, while only an approximate
solution of the aforementioned precision parameter can be
obtained in the general multi-task model, we are able to derive
an analytical solution of these parameters under the MMV
model.
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Another important task of a radar STAP system is the target
detection and motion parameter estimation of moving targets.
Unlike conventional mono-static radars, which only estimate
the radial velocity as the result of single-direction Doppler
frequency, the multi-static operation of a passive radar system
enables two-dimensional (2-D) motion parameter estimation
[46, 47]. In addition, multiple moving targets may be present
in a region and are inseparable in range due to the low range
resolution, rendering motion parameter estimation difficult.
The task of target detection and motion parameter estimation
becomes possible only after effective suppression of the clutter.
In this paper, we propose a novel sparse reconstruction based
approach to acquire 2-D motion parameters by exploiting the
group sparsity in the velocity domain. The proposed approach
enables 2-D velocity estimation of each moving target and
outperforms other techniques that non-coherently combine
multi-static STAP outputs.

To summarize, the key contribution of the paper is two-
fold: (1) We propose a novel approach for reliable and
high-resolution CCM estimation based on a small number
of secondary samples by using the group SBL approach to
exploit the group sparsity of clutter profiles across the nearby
range cells. There is no requirement of i.i.d. property of the
secondary samples. (2) We obtain the 2-D motion parameters
of multiple moving targets by utilizing the group sparsity
in the velocity domain and coherently combining multi-static
measurements.

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). In particular, IN denotes the N×
N identity matrix. (.)∗ represents complex conjugate, whereas
(.)T and (.)H , respectively, denote the transpose and conjugate
transpose of a matrix or vector. diag(x) represents a diagonal
matrix that uses the elements of x as its diagonal elements ,
and std(x) denotes the standard deviation of x. ‖ · ‖22 implies
the Euclidean (l2) norm of a vector, whereas ‖ · ‖1 denotes
the l1 norm. Pr(·) expresses the probability density function
(pdf), and CN (x|a, b) denotes the random variable x follows
a complex Gaussian distribution with mean a and variance
b. In addition, ⊗ is the Kronecker product, and vec(·) is the
vectorization operator.

II. SYSTEM MODEL

A. Radar Geometry and Signal Model

Consider a multi-static radar scene consisting of K station-
ary transmitters and a moving receiver as depicted in Fig.
1. The ith transmitter is assumed to be located at a known
position pTi = [pTi,x, pTi,y, pTi,z]

T and uses a single antenna
to emit a signal at frequency fi, i = 1, ...,K. The radar
receiver, which utilizes an N -element uniform linear array
(ULA) with inter-element spacing d, moves in a straight line
with a constant horizontal velocity vR.

For convenience of notation and without loss of generality,
we assume that the receiver moves in the x-direction. The
initial position of the receiver is expressed in the Cartesian
coordinate system as pR(0) = [pR,x(0), 0, HR]T , and the
velocity vector is vR = [vR, 0, 0]T . As such, the position of
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Fig. 1. Multi-static passive radar geometry.

the receiver at time instant t is expressed as

pR(t) = [pR,x(0) + vRt, 0, HR]T . (1)

The signal vector received at the receive array is the super-
position of the signals corresponding to the K transmitters,
expressed as,

x(t) =

K∑
k=1

xk(t)+n(t) =

K∑
k=1

xks(t)+

K∑
k=1

xkc(t)+n(t), (2)

where xk(t) is the combined received signal corresponding to
the kth illuminated source. It consists of two components: the
target signal xks(t) and the clutter xkc(t). In addition, n(t)
is the additive noise, which is characterized as i.i.d. complex
Gaussian with zero mean. The target signal and the clutter will
be described in the next two subsections.

Note that, in the above expression, we have assumed that
the received signal is properly conditioned. That is, the direct-
path signal from the transmitters to the receiver is perfectly
suppressed through, for example, spatial filtering utilizing the
known geometric relationship between each illuminator and
the receiver. In addition, we assume that the signal waveform
transmitted from each illuminator is perfectly reconstructed
as the result of channel error correction coding. These are
standard assumptions commonly used for passive radar [46,
48].

B. Target Signal

Assume that Q ground moving targets are located in close
proximity in bistatic ranges, rendering them unresolvable. The
elevation coordinate of all targets is assumed to be 0. The
qth ground moving target is located at pq = [xq, yq, 0]T with
a velocity of vq = [vxq, vyq, 0]T . The desired signal xs(t)
received at the receiver is expressed as

xs(t) =

K∑
k=1

xks(t)

=

K∑
k=1

Q∑
q=1

√
PTk

Gkqσkq

rTkqrqR
sk[t− τTkq(t)− τqR(t)]

×e−j2πfk[τTkq(t)+τqR(t)]ak(φq),
(3)

where PTk
is the transmit signal power of the kth illuminator,

Gkq represents the antenna gain of the kth illuminator in the
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direction of the qth target, and σkq is a complex reflection
coefficient associated with the radar cross section (RCS) of
the qth target and depends on the specific illuminator k
because the RCS varies with the aspect angle. In addition,
sk(t) is the waveform transmitted from the kth illuminator,
τTkq(t) = rTkq(t)/c and τqR(t) = rqR(t)/c are the time
delays respectively corresponding to the range between the
kth illuminator and the qth moving target,

rTkq(t) = ‖pTk
− pq(t)‖, (4)

and the range between the qth moving target and the receiver,

rqR(t) = ‖pq(t)− pR(t)‖, (5)

where c is the velocity of light. Furthermore,

ak(φq) = [1, ejκkd sin(φq), ..., ejκk(N−1)d sin(φq)]T ∈ CN (6)

is the steering vector of the receive array toward the direction
of the target with a DOA φq , which is defined as the cone
angle of the qth target with respect to the x-axis. In the above
expression, κk = 2π/λk is the wavenumber with λk = c/fk
denoting the wavelength of the signal transmitted from the kth
illuminator. Note that, the DOA is assumed to be time-invariant
in the sense that its change during the coherent processing
interval (CPI) is negligible.

For a given area, specified by delay τi,n for the ith bistatic
pair, we perform matched filtering by using the reconstructed
waveform of the signal emitted from the ith illuminator as the
reference signal. The matched filter output at the L azimuth
time instants tl = lT , l = 0, ..., L− 1, is given by

y
(n)
is (tl) =

∫ tl+T

tl

xs(t)s
∗
i (t− τi,n)ej2πfiτi,ndt

=

Q∑
q=1

√
PTiGiqσiq

rTiqrqR
ai(φq)

∫ tl+T

tl

si[t− τTiq(t)−τqR(t)]

×s∗i (t− τi,n)e−j2πfi[τTiq
(t)+τqR(t)−τi,n]dt,

(7)
where rTiq and rqR in the denominator are assumed to be
constant by neglecting the effect of variation of rTiq and rqR
on the amplitude within the short CPI. The small phase change
within the matched filtering window [48] permits choosing the
delay τi,n to align the received signal with the reference signal
during the center of the CPI, i.e., τi,n = (τTin + τnR) + (L−
1)T/2. By ignoring the range migration issue due to the short
CPI, the above expression is simplified as

y
(n)
is (tl) =

Q∑
q=1

√
PTiGiqσiq

rTiqrqR
ρiai(φq)e

j2πνiq [tl−(L−1)T/2],

(8)
where ρi = ρi(0), with

ρi(τ) =

∫ tl+T

tl

si(t)s
∗
i (t+ τ)dt (9)

denoting the signal auto-correlation function, which is inde-
pendent of tl as most digital waveforms have a stable auto-
correlation property [2]. In addition, νiq denotes the Doppler
frequency of the qth moving target which is determined by the

change rate of the combined bistatic range, expressed as

νiq = − 1

λi
· d
dt

[rTiq(t) + rqR(t)]

= − 1

λi
·
[

[pTi
− pq(0)]T · vq

‖pTi − pq(0)‖
+

[pR(0)− pq(0)]T · vq
‖pR(0)− pq(0)‖

+
[pR(0)− pq(0)]T · vR
‖pR(0)− pq(0)‖

]
, (10)

where pq(0) is the the initial position of the qth moving target.
The total Doppler frequency νiq can be regarded as the com-
bination of two components. The first one, which corresponds
to the first two terms in Eq. (10), represents the contribution
of moving target, whereas the second component, given as
the third term in Eq. (10), represents the contribution of the
moving receiver. Note that the first component disappears for
stationary clutter, which is discussed in the following sub-
section.

Conventional mono-static STAP systems detect moving
targets and estimate the target Doppler frequencies projected
onto the observation direction, thus failing to acquire the 2-D
motion parameters. In the multi-static operation, on the other
hand, 2-D motion parameters can be estimated due to different
transmitting aspect angles. It is clear from Eq. (10) that, while
the second and third terms are common to all transmitters,
the first term varies with the illuminator positions due to the
diverse observation aspect angles. These illuminator-dependent
Doppler frequencies provide sufficient information for the
receiver to acquire 2-D motion parameters of moving targets.
Motion parameter estimation is discussed in Section V.

Stack y
(n)
is (tl) over the L collected azimuth time samples

as

ȳis =
[
[y

(n)
is (t0)]T , [y

(n)
is (t1)]T , ..., [y

(n)
is (tL−1)]T

]T
=

Q∑
q=1

√
PTiGiqσiq

rTiqrqR
ρih(νiq, φq),

(11)
where

h(νiq, φq) = b(νiq)⊗ a(φq) ∈ CNL (12)

is the spatio-temporal signature of the qth target, and

b(νiq) =
[
e−j2πνiq(L−1)T/2, e−j2πνiq(L−3)T/2, ...,

ej2πνiq(L−1)T/2
]T ∈ CL (13)

is the temporal signature vector of the same target.

C. Clutter

The clutter received at the receiver is considered as a sum-
mation of Nc statistically independent scatterers, expressed as,

xc(t) =

K∑
k=1

xkc(t)

=

K∑
k=1

Nc∑
m=1

√
PTk

Gkmσkm

rTkmrmR(t)
sk[t− τTkm(t)− τmR(t)]

×e−j2πfk(τTkm+τmR(t))ak(φm),
(14)
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where, similar to the target signal, rTkm is the range from
the kth illuminator and the mth clutter scatterer with m ∈
1, · · · , Nc, rmR(t) is the range from the same scatterer to
the receiver, τTkm and τmR(t) are respectively the delays
corresponding to rTkm and rmR(t). In addition, σkm is the
reflectivity of the mth clutter scatterer with respect to the kth
illuminator, and ak(φm) is its corresponding steering vector
observed at the receive array. Similar to processing the target
signals, the matched filter output of the clutter signals at
azimuth time tl = lT , l = 0, ..., L − 1, corresponding to the
ith bistatic pair and the nth range bin, is expressed as

y
(n)
ic (tl) =

Nc∑
m=1

√
PTi

Gimσim

rTimrmR(tl)
ρiai(φm)ej2πνim(tl−(L−1)T/2),

(15)
where

νim = − 1

λi

d

dt
rmR(t) = − 1

λi
vR cosφm (16)

is the Doppler frequency of the mth clutter scatterer and is
determined by the scatterer-receiver path, where φm is the
cone angle between the direction of the scatterer and the array
baseline. It should be noted in Eq. (16) that the clutter Doppler
frequency depends on the receiver velocity and the transmit
frequency, but is independent of range cells. This characteristic
provides a feasible way to acquire the clutter profiles in the
angle-Doppler domain by exploiting the group sparsity across
the nearby range cells.

Stacking y
(n)
ic (tl) over the L collected azimuth time samples

yields

ȳic =
[
[y

(n)
ic (t0)]T , [y

(n)
ic (t1)]T , ..., [y

(n)
ic (tL−1)]T

]T
=

Nc∑
m=1

√
PTi

Gimσim

rTimrmR(tl)
ρih(νim, φm),

(17)
where

h(νim, φm) = b(νim)⊗ ai(φm) ∈ CNL (18)

is the spatio-temporal signature of the mth scatterer, and

b(νim) =
[
e−j2πνim(L−1)T/2, e−j2πνim(L−3)T/2, ...,

ej2πνim(L−1)T/2
]T
∈ CL

(19)
is the temporal signature vector of the mth clutter scatterer.

III. GROUP SPARSE BAYESIAN LEARNING METHOD

Because of the group sparsity of the clutter profile in the
angle-Doppler domain across nearby range cells, group sparse
reconstruction approaches can be applied and are considered
effective for clutter profile estimation. In this paper, we use
the group SBL method developed in the context of complex
Gaussian distribution [39] to reconstruct the sparse clutter
profile. This approach is briefly summarized below.

We discretize the angle-Doppler domain into a grid with Nd
Doppler samples and Ns azimuth samples. Denote wk as an
M×1 vector that includes vectorized clutter entries defined in
the entire angle-Doppler domain, where M = NdNs. Consider
a general multi-task model where the complex measurement

vector of spatio-temporal samples in the kth bistatic pair is
described as

yk = Ψkwk + εk, k ∈ [1, · · · ,K], (20)

where the dimension of vector yk is N0 = NL, Ψk ∈ CN0×M

is the kth measurement matrix, and εk denotes an additive
complex Gaussian noise. When K = 1, it is a canonical
sparse reconstruction problem for the coefficient vector. The
likelihood of the observed data yk can be expressed as,

Pr(yk |wk,Ψk, β0 ) = CN (yk |Ψkwk, β0IN )

=
1

(πβ0)N0
exp

(
− 1

β0
‖yk −Ψkwk‖22

)
,

(21)

where β0 is the variance of the complex Gaussian noise.
The prior distribution of the weight vector wm· =
[wm1, · · · , wmK ], which is the mth row of W =
[w1, · · · ,wK ] ∈ CM×K , is modeled as a zero-mean complex
Gaussian distributions with unknown precision (reciprocal of
variance) αm, i.e.,

wm· ∼ CN (wm·|0, α−1
m IK), (22)

where {αm}Mm=1 is a nonnegative parameter controlling the
group sparsity of wm·. When αm = ∞, the mth row wm·
becomes zero. During the learning procedure, most elements
of αm tend to be infinite, due to the mechanism of automatic
relevance determination [29]. Thus sparsity at the group level
is encouraged.

In the group SBL framework, the posterior distribution for
wk can be evaluated analytically based on the Bayes’ rule as

Pr(wk|yk,Ψk,α, β0) = CN (wk|µk,Σk),

where

µk = β−1
0 ΣkΨ

H
k yk, k ∈ [1, · · · ,K], (23)

Σk =
(
β−1

0 ΨH
k Ψk + A

)−1

, (24)

where A = diag(α1, · · · , αM ). Once the parameters α and β0

are estimated, the maximum a posteriori (MAP) estimate of
wk, denoted by ŵk, can be obtained from the posterior mean
as,

ŵk = µk, k ∈ [1, · · · ,K]. (25)

With known α and β0, the mean and covariance of each
scattering coefficient are derived in (23) and (24). The as-
sociated learning problem, in the context of the RVM, thus
becomes searching for the parameters α and β0. The empirical
Bayesian estimate for α is determined by maximizing the
marginal likelihood [29, 49], or equivalently, its logarithm

{α, β0} = argmax
α,β0

L(α, β0), (26)
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where

L(α, β0) =

K∑
k=1

log Pr(yk|α, β0)

≡
K∑
k=1

− log |Ck| − yHk C−1
k yk, (27)

in which Ck = β0I + ΨkA
−1ΨH

k . Following the fast greedy
algorithm based on the marginal likelihood maximization
criterion [50], we acquire the approximate solution of αm in
the multi-task model as [42]

α
(new)
m



≈ K
K∑
k=1

1

a2
k,m

(b2k,m − ak,m)

,

if

K∑
k=1

1

a2
k,m

(b2k,m − ak,m) > 0,

=∞,

if

K∑
k=1

1

a2
k,m

(b2k,m − ak,m) ≤ 0,

(28)
where ak,m , ψHk,mC−1

k,−mψk,m, bk,m , ψHk,mC−1
k,−myk,

ψk,m represents the mth column in Ψk, and Ck,−m is Ck

with the contribution of atom ψk,m removed.
When Ψ1 = · · · = ΨK = Ψ, the model in Eq. (20) reduces

to a typical multiple measurement vector (MMV) model [43].
In this case, unlike approximate solutions in the multi-task
model, we can derive an analytical solution of αm as,

α(new)
m =


Ka2

m

K∑
k=1

b2k,m −Kam
, if

∑K
k=1 b

2
k,m > Kam,

∞, if
∑K
k=1 b

2
k,m ≤ Kam,

(29)

where am , ψHmC−1
−mψm, ψm represents the mth column

in the common measurement matrix Ψ, and C−m is C =
β0I + ΨA−1ΨH with the contribution of atom ψm removed.
It is observed that these two solutions of α(new)

m are consistent.
Following the approach of MacKay [49], we differentiate

Eq. (26) with respect to β0 and set the result to zero, yielding

β
(new)
0 =

K∑
k=1

‖yk −Ψkµk‖22

K∑
k=1

[
N0 −M +

M∑
m=1

αmΣk,(mm)

] , (30)

where Σk,(mm) denotes the (m,m)th entry in the matrix Σk.
Instead of going through all the elements in the M groups

in each iteration, the group SBL algorithm described above
operates in a constructive manner, i.e., sequentially adds
(or deletes) candidate atom to the model until all relevant
atoms, for which the associate weights are non-zero, have
been included. Therefore, the computational complexity of the
algorithm isO(KMm2

0), with m0 denoting the sparsity, which
is on the same order as the multi-task CS [42]. The complexity

is linearly proportional to M and thus is comparable to that
of the well-known M-FOCUSS [43].

IV. CLUTTER PROFILE ESTIMATION AND SUPPRESSION

A. Group-Sparsity Representation of Clutter Profile across
Range Cells

Because the non-zero support of clutter profiles is shared
across nearby range cells, we first employ a small number of
secondary samples to learn the common clutter support. The
exact clutter profile in the range cell under test is then obtained
through the SBL method by only considering the clutter entries
within the learned clutter support.

According to the signal and clutter model described in
Section II, the output of the matched filter of the received
signal in the range cell under test for the ith bistatic pair is
expressed as

ȳ
(t)
i = ȳ

(t)
ic + ȳ

(t)
is + ȳ

(t)
in = Φ̄i(w̄

(t)
ic + w̄

(t)
is ) + ȳ

(t)
in , (31)

where the superscript (t) is used to emphasize the range under
test, w̄

(t)
ic and w̄

(t)
is are, respectively, M × 1 vectorized clutter

and signal entries in the angle-Doppler domain. In addition,
ȳ

(t)
in denotes its noise component. On the other hand, the

matched filter output of received signals in the nlth secondary
sample, where the described target signals are absent, is
expressed for the ith bistatic pair as,

ȳ
(nl)
i = ȳ

(nl)
ic + ȳ

(nl)
in . (32)

To ensure the exclusion of the target in the secondary
samples, the range cells corresponding to these samples should
be sufficiently separated from the range cell under test by one
or multiple guard cells in each side [9]. Note that passive radar
systems exploit narrowband signals and thus causing a coarse
range cell resolution, implying a low probability for a target
to move across multiple range cells within the CPI.

Rewrite the clutter term in Eq. (32) as the product of an
overdetermined dictionary matrix Φ̄i and sparse vector w̄

(nl)
ic ,

we have
ȳ

(nl)
i = Φ̄iw̄

(nl)
ic + ȳ

(nl)
in , (33)

where w̄
(nl)
ic ∈ CNdNs .

In this paper, we consider a small number of secondary
data samples from range cells that are close to that under
test, and thus it is well justified that they share the same
non-zero clutter support, i.e., their scatterers are located in
the same positions in the angle-Doppler domain. However,
the exact values of the scatterers generally differ. Note that
the common support assumption is much more relaxed and
practical compared to the i.i.d. requirement. We only need a
small number of secondary samples in this case. The sparse
clutter entries w̄

(nl)
ic are separately computed for each bistaic

pair.

B. Clutter Support Estimation and Clutter Suppression

The group SBL algorithm described in Section III can
be used to recover the sparse clutter profiles described as
an MMV model in Eq. (33) and subsequently acquire the
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common clutter support Φ̄i,cs, which is a submatrix of Φ̄i

and acts as a collection of the columns whose corresponding
coefficients in w̄

(nl)
ic are non-zero. One way to confine the

clutter estimate for the range cell under test is to project the
received signal to the clutter profile through the weighted least
square (WLS) method, expressed as,

ŵ
(t)
ic = (Φ̄

H
i,csU0Φ̄i,cs)

−1Φ̄
H
i,csU0y, (34)

where ul is the lth diagonal entry of the diagonal weighted
matrix U0 and its value is chosen to be the reciprocal of noise
variance. A more reliable solution is to estimate the clutter
profile w

(t)
ic by solving the following equation based on the

SBL algorithm, similar to that depicted in Section III,

ȳ
(t)
i = Φ̄i,csw

(t)
ic + ȳ

(t)
in . (35)

The posterior mean, as depicted in Eq. (23), will be used as
the estimate of w

(t)
ic . Note that, when compared with Eq. (33),

the measurement matrix Φ̄i is replaced by Φ̄i,cs corresponding
only to the clutter support and w

(t)
ic is a corresponding subvec-

tor. The target signal term disappeared in Eq. (35), because it
is out of the clutter support. As such, the estimated coefficient
vector ŵ

(t)
ic only involves clutter components, whereas the

target signals are excluded.

Once the clutter coefficient vector ŵ
(t)
ic is estimated, the

corresponding CCM is expressed as [9, 22]

R̂(i)
z =

M∑
m=1

|ŵ(t)
ic (νim, φm)|2h(νim, φm)hH(νim, φm)+β̂i,0INL,

(36)
where β̂i,0 represents the noise power in the ith bistatic pair,
which is adaptively estimated from the observation data as
described above in Eq. (30).

Based on this result, we acquire the weight vector for the
range cell under test in the ith bistatic pair as [9]

ui =

[
R̂

(i)
z

]−1

h0(ν̄p, φm)

hH0 (ν̄p, φm)
[
R̂

(i)
z

]−1

h0(ν̄p, φm)
, (37)

where h0(ν̄p, φm) is the spatio-temporal signature of the
hypothesized target corresponding to Doppler frequency ν̄p
and spatial angle φm.

V. MOTION PARAMETER ESTIMATION IN THE
MULTI-STATIC PASSIVE SYSTEM

In the conventional mono-static STAP, the Doppler fre-
quency of a moving target only reflects its radial velocity,
whereas its 2-D motion parameters cannot be estimated. In
the multi-static passive radar system, on the other hand, the
2-D motion parameters can be estimated due to observations
from multiple transmitter-receiver pairs with diverse bistatic
aspect angles.

Eq. (10) is rewritten according to the geometry of the multi-

static passive system, as depicted in Fig. 1, as

νiq = ν
(T )
iq + ν

(R)
iq , (38)

ν
(T )
iq = − 1

λi

[pTi
− pq(0)]T · vq

‖pTi − pq(0)‖

= −cosφTi
vxq + sinϕTi

cos θTi
vyq

λi
, (39)

ν
(R)
iq = − 1

λi

[
[pR(0)− pq(0)]T · vq
‖pR(0)− pq(0)‖

+
[pR(0)− pq(0)]T · vR
‖pR(0)− pq(0)‖

]
= − 1

λi
[cosφrvxq + sinϕr cos θrvyq + cosφrvR] ,

(40)

where φTi and φr are the respective cone angles of the ith
transmitter and the receiver, whereas θTi

and θr , ϕTi
and ϕr

are respectively the depression angles and azimuth angles of
the ith illuminator and the receiver. In Eq. (38), we divide the
entire Doppler frequency into two parts, where ν(T )

iq is induced
by the relative motion of the qth moving target with respect to
the ith illuminator. Thus, it varies with the illuminator position
and, as such, enables the estimation of 2-D motion parameters.
The other term, ν(R)

iq , is induced by the motions of the target
and the receiver platform and is invariant to the illuminators.

In the following two subsections, we respectively consider
the motion parameter estimation in the presence of a single
and multiple moving targets.

A. Parameter Estimation in Single Moving Target Case

We first consider a simple case where only one moving
target exists in the spatial angle φm. In the conventional STAP,
the estimated weight vector is first used to whiten the clutter
profile and perform matched filtering on the spatio-temporal
signature of the hypothesized target, and individual constant
false alarm rate (CFAR) detection is then applied. We can then
acquire the corresponding Doppler frequency of the moving
target in each bistatic pair. From Eq. (38), we obtain

ν = Dv + e, (41)

with

D =


cosφr + cosφT1

λ1

sinϕr cos θr + sinϕT1
cos θT1

λ1
...

...
cosφr + cosφTK

λK

sinϕr cos θr + sinϕTK
cos θTK

λK

,
(42)

where ν = [ν1, · · · , νK ]T , v = [vx, vy]T , and e =
[−cosφrvR/λ1, · · · ,−cosφrvR/λK ]T . Therefore, the 2-D
motion parameters can be obtained as the least square (LS)
solution to Eq. (41), expressed as

v = (DHD)−1DH(ν − e). (43)

Note that the LS algorithm described in Eq. (43) is effective
only when the signal power is sufficiently high to allow target
detection in each bistatic pair. It may become difficult, how-
ever, to detect the moving target and acquire its corresponding
Doppler frequency for each bistatic pair when the signals are
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noisy.

B. Parameter Estimation in Multiple Moving Target Case

Multiple moving targets may appear in the same spatial
angle φm and are unresolvable in bistatic ranges due to a
coarse range resolution. In this case, the application of the
LS algorithm for motion parameter estimation in the presence
of multiple targets requires proper association of the Doppler
frequencies with the corresponding targets [46]. The com-
plexity of procedure increases exponentially as the number of
targets increases. On the other hand, as we discussed earlier for
the single-target case, the LS algorithm works only when the
Doppler frequency corresponding to each bistatic pair can be
reliably estimated. To perform multi-target motion parameter
estimation that is robust for noisy signals, a novel joint
parameter estimation method based on sparse reconstruction
techniques is proposed.

We first acquire the spatio-temporal weight vector of hy-
pothesized target in the ith bistatic pair specified by the
Doppler frequency ν̄p and the spatial angle φm as,

upi(φm) =

[
R̂

(i)
z

]−1

h(ν̄p, φm)

hH(ν̄p, φm)
[
R̂

(i)
z

]−1

h(ν̄p, φm)
, (44)

where

h(ν̄p, φm) = b(ν̄p)⊗ a(φm), (45)

b(ν̄p) =
[
e−j2πν̄p(L−1)T/2, e−j2πν̄p(L−3)T/2, ...,

ej2πν̄p(L−1)T/2
]T
, (46)

for p ∈ [1, · · · , P ] with P denoting the total number of the
hypothesized Doppler frequency points corresponding to the
same spatial angle φm. The STAP output corresponding to the
ith bistatic pair can be expressed as,

gpi(φm) = uHpi(φm)ȳ
(t)
i . (47)

In the traditional threshold detection technique, the existence
of a target is determined for each individual bistatic pair by
choosing a proper threshold. For weak signals, however, target
detection based on an individual bistatic pair is not reliable.
Consider the fact that, although motion-induced Doppler fre-
quencies differ for each bistatic pair due to the different bistatic
angles and carrier frequencies, they share the same motion
parameters in the velocity domain and thus have the group
sparsity. In the proposed algorithm, we project the spatio-
temporal signature to the 2-D velocity vector of v = [vx, vy]T

in the velocity space. We uniformly discretize 2-D velocity
parameters [−vxmax, vxmax] and [−vymax, vymax] to form an
Nx × Ny grid. Given a certain spatial angle φm, the spatio-
temporal steering vector of the moving target with motion
parameters of v(a)

x and v(b)
y in the ith bistatic pair is denoted

as

h
(a,b)
i (φm) = b(f

(a,b)
is (φm))⊗ a(φm), (48)

where

f
(a,b)
is (φm) = − 1

λi

[
(cosφTi + cosφm)v(a)

x

+ (sinϕTi
cos θTi

+ sinϕm cos θr)v
(b)
y

]
+

cosφmvR
λi

(49)

is the Doppler frequency for a ∈ [1, · · · , Nx] and b ∈
[1, · · · , Ny]. We construct a dictionary matrix Θ(mi) ∈
CP×NxNy for the mth spatial angle φm under test in the ith
bistatic pair and express the entry of Θ(mi) in the pth row and
the lth column as,

θ(mi)(p, l) = uHpi(φm)h
(a,b)
i (φm), (50)

where l = (a − 1)Nx + b, p ∈ [1, · · · , P ], and l ∈
[1, · · · , NxNy].

According to Eq. (31) and Eq. (47), we have,

gpi(φm) = uHpi(φm)ȳ
(t)
is + n̄pi, (51)

n̄pi = uHpi(φm)ȳ
(t)
ic + uHpi(φm)ȳ

(t)
in . (52)

The role of the STAP weight vector upi(φm) based on the
estimated CCM in Eq. (36) is to suppress the clutter and
enhance the target signals through matched filtering. The terms
caused by the clutter signal ȳ

(t)
ic and the noise signal ȳ

(t)
in in

the output gpi(φm) can be defined as a new noise signal n̄pi
in Eq. (52) in the new model. As a result, the output signal
vector gi = [g1i, · · · , gPi]T ∈ CP can be expressed as,

gi = Θ(mi)ω(mi) + n̄i, i ∈ [1, · · · ,K] (53)

where ω(mi) ∈ CNxNy and n̄i = [n̄pi, · · · , n̄Pi]T . The motion
parameter estimate problem can thus be formulated as the
sparse reconstruction problem of ω(mi) from gi. It should
be pointed out that the vectors {ω(mi)}Ki=1 share the same
velocity supports across all bistatic pairs because the true
motion parameters are shared by all illuminators in the velocity
domain, although their corresponding Doppler frequencies in
each bistatic pair are different. It is interesting to note that
Eq. (53) is a group sparse reconstruction problem. Therefore,
it can be solved using the aforementioned group SBL method,
and the estimated motion parameters are the posterior mean
depicted in Eq. (23). However, consider the fact that the
number of moving targets in each range cell is usually small
and can be estimated, other CS methods, such as the BOMP
algorithm, may also yield good performance with a lower
computational complexity, provided that the their velocities
are not very close.

VI. SIMULATION RESULTS

Consider a multi-static passive radar system including K =
4 stationary illuminators and 1 moving receiver. As depicted
in Fig. 2, the illuminators are located several kilometers away
from the scene center with a height of 150 m, and their
respective aspect angles are 0◦, 90◦,−150◦ and −45◦. These
illuminators emit DVB-T signals with their respective carrier
frequencies from 800 MHz to 860 MHz with a 20 MHz
frequency interval. The initial position of the receiver is [0,
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Fig. 2. Geometry of multi-static passive in the simulations.

6 ,8] km, and the receiver is equipped with a 20-element
ULA whose inter-element spacing is half of the minimum
wavelength. The velocity of the receiver is vR = [100, 0, 0]
m/s. The azimuth sampling frequency is 600 Hz, yielding an
unaliased observation of Doppler frequency between −300 Hz
and 300 Hz. 30 azimuthal samples are used to perform STAP.
As such, a total number of NL = 600 spatio-temporal samples
is adopted.

In the group SBL reconstruction processing, we empirically
initialize β0 = 10−4 × std(y)2, the threshold η = 10−6

for stopping the algorithm, and the maximum number of
iterations is 5000. As the clutter is usually much stronger
than the noise, the above values of parameters β0 and η are
suited in the underlying clutter profile reconstruction problem.
In this case, a large value of threshold η will degrade the
reconstruction performance because the algorithm would be
terminated before a finer steady state performance could be
reached. Compared to η, the impact of the noise variance β0

on the reconstruction performance is less direct. A discussion
about this impact is available at [51].

A. Clutter Profiles Estimation

1) Clutter Profiles with Group Sparsity: In Fig. 3, we show
the clutter profiles in the 1st bistatic pair with nt = 4 nearby
secondary samples in the angle-Doppler domain, where each
scatterer coefficient is drawn from a complex Gaussian distri-
bution. The angle-Doppler profile of the clutter is discretized
into a grid of Nd = 90 Doppler bins from −300 Hz to 300 Hz
and Ns = 40 angle bins from −180◦ to 180◦, yielding 3600
entries. It is shown in [52] that the value of NsNd should
be chosen between 4NL and 16NL. In our simulations, the
clutter profiles in each angular bin are represented by two
adjacent non-zero random complex entries in each bistatic
pair, and thus the total number of non-zero entries is 80, as
shown in Fig. 3. It is observed that these clutter profiles in the
nearby range cells share the same group sparsity. In addition, a
complex Gaussian noise is added and the clutter-to-noise ratio
(CNR) is 40 dB.

2) Reconstruction of Clutter Profiles Based on Group SBL
: In the following, the group SBL algorithm is compared with
several state-of-the-art group sparse reconstruction algorithms,
including BOMP [40], GLasso [41], and M-FOCUSS [43]. To
quantitatively evaluate the performances of those algorithms,

we introduce the normalized mean square error (NMSE),
defined as‖ϑ̂− ϑgen‖2/‖ϑgen‖2, to be the performance metric,
where ϑ̂ is the estimate of the scatterer coefficient vector ϑgen.

In this simulation, one neighboring secondary sample in
each bistatic pair is used to estimate the common clutter
support. Fig. 4(a) shows the original clutter profile support
in the 1st bistatic pair, whereas Figs. 4(b)–4(f) shows the
estimated support from different algorithms, where the BOMP
algorithm assumes the knowledge of the true sparsity. The
BOMP fails to recover the clutter profile and leads to a large
number of spurious clutter entries around the true positions
because of the high coherence in the measurement matrix.
Fig. 5(a) shows the NMSE of the reconstructed clutter profile
to quantitatively compare the performance of the different
methods in reconstructing the clutter profile in the nearby
range cells. It is observed that the M-FOCUSS algorithm offers
a lower reconstruction error than that by GLasso, and the group
SBL method yields the least spurious entries with a minimum
NMSE. These results clearly demonstrate the superiority of
the group SBL method over other methods in the presence of
highly coherent measurement matrix.

To demonstrate the advantage of group sparsity, we sep-
arately perform the SBL algorithm and acquire individual
clutter support in each range cell. In the latter case, the overall
clutter support is obtained as the union of the individual clutter
supports corresponding to each range cell. This technique is
referred to as the single SBL (S-SBL). It is shown in Fig.
4(f) that, without taking the advantage of the group sparsity
between multiple range cells, the S-SBL yields a poor clutter
support estimation.

Once the clutter support is estimated, the clutter profiles
in the range cell under test can be acquired by using the
WLS algorithm in Eq. (34) and the CS algorithms in Eq.
(35). The corresponding NMSEs are respectively shown in
Figs. 5(b) and 5(c). It is observed that the reconstruction error
obtained from the WLS algorithm, shown in Fig. 5(b), is
generally higher than that obtained from the corresponding
sparse reconstruction method as shown in Fig. 5(c). Due to
superiority of the CS method over the WLS method, we use
the CS method for the processing in the sequel.

Fig. 6(a) shows the clutter profile of the range cell under
test in the 1st bistatic pair. By using the method proposed
in Section IV, we estimate the clutter coefficients based on
the clutter supports which are respectively obtained from
the BOMP, GLasso, M-FOCUSS, S-SBL, and group SBL
algorithms. The results are respectively depicted in Figs. 6(b)-
6(f). To quantitatively evaluate the performance of clutter
scatterer coefficients, the output signal-to-inference-plus-noise
ratio (SINR) loss, which is defined as the difference between
output SINR and the output signal-to-noise ratio (SNR) [9], is
evaluated, and the results are depicted in Fig. 5(d). It is ob-
served that the SINR loss of the group SBL algorithm closely
approaches the Clairvoyant solution. This is attributed to the
group SBL algorithm which, under the MMV model based
on nonparametric Bayesian model, can acquire an improved
clutter profile estimation, even though the measurement matrix
is highly coherent.

To summarize, the proposed method avoids the restrictive
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Fig. 3. Clutter profiles with 4 nearby secondary samples.

requirement of a high number of the secondary data samples as
in the conventional STAP and acquires an accurate estimation
of the CCM for clutter suppression by utilizing only a small
number of secondary samples.
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Fig. 4. Estimated clutter profile support in the 1st bistatic pair and
estimated NMSE. (a) Original clutter support. (b) Reconstructed
clutter support using BOMP. (c) Reconstructed clutter support using
GLasso. (d) Reconstructed clutter support using M-FOCUSS. (e)
Reconstructed clutter support using group SBL. (f) Reconstructed
clutter support using S-SBL.

3) Effect of Clutter Correlation on Reconstructed Clut-
ter Profile: All simulations above are performed under the
assumption that the clutter scattering coefficients in nearby
range cells and range cell under test are independent. In
practice, this assumption may not be met in the real-world
clutter environment. In this case, we investigate effect of
the correlated clutter on the sparse clutter reconstruction in
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Fig. 5. Clutter reconstruction and output SINR loss Performances. (a)
NMSE of the reconstructed clutter profiles in the nearby range cells
obtained from different methods. (b) NMSE of the estimated clutter
profile in the range cells under test using the WLS algorithm. Each
curve corresponds to a different clutter support estimation method.
(c) NMSE of the reconstructed clutter profiles in the range cells
under test using the CS algorithm. Each curve corresponds to a
different clutter support estimation method. (d) Output SINR loss
corresponding to Fig. 5(c).

the proposed method. Fig. 7 shows the reconstructed average
NMSE versus correlation of the clutter scattering coefficients,
which varies from 0 to 0.9. It is observed that the proposed
method has outstanding reconstruction performance with a
very small NMSE, no matter what the correlation is. As a
result, we can conclude that the proposed method is robust to
the clutter correlation.

B. Motion Parameter Estimation

1) Parameter Estimation in Single Moving Target Case:
In the following simulation, a moving target located at spa-
tial angle φm = 106.86◦, with x- and y-axis velocities of
(15.0, 10.2) m/s, is added in the under test range cell. The
Doppler frequencies corresponding to the four bistatic pairs
are respectively −131.76 Hz, −121.93 Hz, −45.70 Hz, and
−108.37 Hz. These Doppler frequencies are shown in vertical
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Fig. 6. Estimated clutter profile in the range cells under test in the
1st bistatic pair. (a) Original clutter profile. (b) Estimated clutter
profile using BOMP. (c) Estimated clutter profile using GLasso. (d)
Estimated clutter profile using M-FOCUSS. (e) Estimated clutter
profile using S-SBL. (f) Estimated clutter profile using the proposed
method.
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dash lines in Fig. 8(a). The signal-to-clutter ratio (SCR) is −36
dB. Fig. 8(a) shows the output amplitudes of the conventional
STAP in which the weight vector is obtained using the group
SBL algorithm under the MMV model. In the traditional
way, the maximum peaks will be selected. The corresponding
estimated frequencies are respectively −129.20 Hz, −128.38
Hz, −44.51 Hz and −115.02 Hz for the four bistatic pairs
through 32 times of interpolation operation. We computer the
motion parameters by utilizing the WLS approach described
in Eq. (43) and acquire the result of vx = 15.30 m/s and
vy = 10.12 m/s. The estimated Doppler frequencies in the
2nd and 4th bistatic pairs have an offset of about 6.45 Hz and

6.65 Hz, respectively, yielding velocity estimation errors. The
CS-based method proposed in Section V effectively alleviates
this effect by utilizing multiple transmitters configuration in
the passive radar system. The group SBL is used to estimate
the 2-D motion parameters, where the ranges of vx and vy are
both from −50.0 m/s to 50.0 m/s and the velocity step is 0.5
m/s. We acquire the estimated motion parameter of vx = 15.0
m/s and vy = 10.0 m/s.
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Fig. 8. Motion parameter estimation of moving targets. (a) Single target; (b)
Multiple targets.

2) Parameter Estimation in the Multiple Moving Targets
Case: Next, we consider a more general case with multi-
ple moving targets and a low SNR. We add an additional
moving target with motion parameters vx = −5.6 m/s and
vy = 18.0 m/s in the same spatial angle φm = 106.86◦.
All other parameters remain the same as those in the single
target case. Fig. 8(b) shows the output amplitudes in each
bistatic pair, where T1 and T2 represent the corresponding
Doppler frequencies from the 1st and 2nd moving targets,
respectively. The vertical lines respectively denote the true
Doppler frequencies of those two targets corresponding to
the four bistatic pairs. It is noted that the output amplitude
corresponding to the 2nd moving target in the 4th pair, which
is located around a true Doppler frequency of −89.33 Hz, is
nearly zero. In this case, the Doppler frequency offset caused
by the target motion parameter is only −6.2 Hz and, as such,
the moving target signal is unresolvable from the clutter and is
thus substantially suppressed by the designed spatio-temporal
filter. The individual Doppler frequencies are difficult to be
accurately estimated in this case and, as such, the LS algorithm
completely fails to determine the motion parameters.

Before we present the results obtained from the group SBL
algorithm, we perform a conventional non-coherent image
fusion method to estimate motion parameters of multiple
targets [46]. Fig. 8(b) shows the output amplitude distributions
with respect to the Doppler frequency in each bistatic pair.
Based on the relationship in Eq. (49) between the Doppler
frequencies and motion parameters, we represent those am-
plitude distributions in the vx and vy domain, as shown in
Figs. 9(a)−9(d). One Doppler frequency corresponds to a line
in the velocity domain according to the linear relationship
in Eq. (49) and the strength of the line is represented by
the output amplitude in each Doppler frequency point. The
slope of the line is completely determined by the geometry
of the illuminators and the receiver, and thus differs for each
bistatic pair. For comparison, we depict a heat image in Fig.
9(e) as the result of an intuitional non-coherent method that
exploits those acquired images in each bistatic pair. However,
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this method has poor velocity resolution. As can be observed,
the combined strength formed from a relatively weak target
may still be weaker than the sidelobes of a strong target due
to the difference in the target signal power. Accordingly, it is
difficult to estimate the correct motion parameters. Fig. 9(f)
shows the result obtained from the proposed method. It is clear
that the proposed algorithm successfully estimates the motion
parameters with [15.0, 10.5] m/s for the 1st moving target and
[−5.5, 18.5] m/s for the 2nd moving target.
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Fig. 9. Motion parameter estimation in the multiple moving target
case. (a)–(d) Outputs amplitude distribution in the 4 bistatic pairs.
(e) Motion parameter estimation based on non-coherent fusion. (f)
Motion parameter estimation based on the proposed method.

VII. CONCLUSION

Conventional space-time adaptive processing (STAP) suffers
from the high number requirement of independent identically
distributed (i.i.d.) secondary data samples for a reliable esti-
mation of statistical clutter covariance matrix (CCM) so as to
achieve effective clutter suppression in the range cell under
test. One possible solution to relax this condition is to utilize
the range cell data under test to estimate its CCM. The sparse
Bayesian learning (SBL) technique provides a feasible means
for accurate reconstruction of the clutter profile in the angle-
Doppler domain, particularly when the measurement matrix
has a high coherence.

In this paper, a novel method was proposed to estimate
the CCM based on a small number of secondary samples.
The common clutter support was estimated by exploiting
the fact that this support is shared across neighboring range
cells. This estimate is used in the range cell under test to
acquire the clutter profile with the target signal excluded.
This strategy does not require i.i.d. secondary samples, neither

does it include the target signals in the estimated CCM. The
group sparse problem is effectively solved using the group
SBL algorithm in the multiple measurement vector model to
achieve accurate and robust performance in the presence of
highly coherent measurement matrix that relates the spatio-
temporal measurements and the angle-Doppler domain clutter
profile.

Another important contribution of this paper was the group
sparsity-based two-dimensional motion parameter estimation
of a single or multiple ground moving targets. While the
traditional least-square solutions provide a simple approach to
achieve this objective, they are infeasible when dealing with
multiple target case, or when the Doppler estimation from each
individual bistatic pair is unreliable. The proposed technique,
on the other hand, achieves improved motion parameter esti-
mation in such challenging situations.
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