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Abstract—In this letter, we propose a multi-task compressive sensing
algorithm for the reconstruction of clustered sparse entries based on
hierarchical Bayesian framework. The algorithm is based on a paired
spike-and-slab prior, which is extended to a general multi-task model. The
proposed algorithm has the capability of modeling both inter-task and
intra-task dependencies of the observation data. The latter is achieved by
imposing a clustered prior on non-zero entries and finds applications in
radar where targets exhibit spatial extent. Simulation results demonstrate
that the proposed algorithm outperforms existing state-of-the-art group
sparse Bayesian learning algorithms.

I. INTRODUCTION

Sparse signal recovery and the related compressive sensing (CS)
problems have attracted significant attention in recent years [1], [2].
CS techniques have the capability of recovering signals from a small
number of measurement samples with a high probability, given that
the signals are sparse or can be sparsely represented in some known
domain.

A typical CS model with a single measurement vector (SMV) y €
RE is given by

y =®w +¢g, D

where ® € REXM K « M, is a known dictionary matrix, and
e € R¥ is an unknown zero-mean Gaussian noise vector. The
objective of sparse signal reconstruction is to estimate the sparse
weight vector w € R from y. Any K columns of & are assumed to
be linearly independent to satisfy the unique representation property
which ensures sparse signal recovery with a high probability [2].

In many applications, the weight vector w exhibits group sparsity.
Such problems are described by a multi-task CS model as [3],

yi=®w +e, lc[l,--- L] )

In this model, w; has the same sparsity support, i.e., the respective
positions of the non-zero entries are the same for different /. Denote
Wy as the mth element of w;. Then, the above group sparsity implies
that w,,; share the same sparsity for all € [1,--- , L], whereas their
values are generally different. For some applications, ®; may take
the same value, i.e., ®; = ®,VI. In this case, the model is also
referred to as multiple measurement vector (MMYV) [4].

For example, in direction-of-arrival (DOA) estimation using differ-
ent polarizations, L represents the number of available polarizations,
and the weight vector w; represents the source spatial entries which
have group sparsity for these polarizations [4], [5]. On the other
hand, in multi-static synthetic aperture radar (SAR) and inverse SAR
(ISAR) imaging, L denotes the number of available illuminators, and
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w represents the sparse scene that demonstrates group sparsity across
all bistatic pairs corresponding to the illuminators. In this case, the
dictionary matrices differ for each bistatic pair [6], [7].

A number of algorithms have been proposed to recover group
sparse signals. These algorithms include greedy-based algorithms,
such as Block-OMP (BOMP) [8], and basis pursuit-based ones, such
as Group Basis Pursuit (GBP) [9] and Group Lasso [10]. All these
algorithms require information about block partition either explicitly
or through setting regularization parameters.

Group sparse Bayesian learning algorithms form a different class
of sparse signal reconstruction algorithms, which generally yield
improved performance in such situations [11]-[14]. The multi-task
compressive sensing (mt-CS) algorithm [12] provides solutions to a
large class of group sparse problems. This approach is extended to
effectively process complex-valued problems [15].

There is a different class of group sparsity in which non-zero
entries are grouped and the number of groups is difficult to specify. A
representative example is the case where sparse targets, e.g., vehicles
or aircrafts, have an extended spatial occupancy, forming a cluster.
In this case, its non-zero entries are clustered in a spatial region, but
the exact size and shape are difficult to specify in advance [16], [17].

Sparse Bayesian learning algorithms are suited to handle this type
of clustering problems because they have the flexibility of exploiting
the underlying signal structures. For example, the block sparse
Bayesian learning algorithm (BSBL) uses the intra-block correlation
to improve the signal reconstruction performance [18], and the spatio-
temporal sparse Bayesian learning algorithm recovers multichannel
signal by extending and exploiting inter-channel correlation [19].
In addition, Bayesian group-sparse modeling based on variational
inference (GS-VB) [14] was developed based on the Laplace prior to
recover group sparse signals, whereas the work in [20] uses the spike-
and-slab prior to recover sparse signal with the group structure. Also,
an overlapping group sparse algorithm is developed to reconstruct
sparse signals with the cluster structure [21], and a Bayesian variant
was considered in [14].

In this letter, we consider problems where the above two types of
group sparsity coexist. Such problems characterize, for example, the
abovementioned multi-static SAR/ISAR imaging where the targets
have spatial extent. Similar issues arise in multipath through-the-wall
radar imaging (TWRI) of spatially extended targets. To solve such
problems, we propose a novel algorithm, termed clustered multi-task
Bayesian compressive sensing (clustered MT-BCS). This algorithm
exploits a multi-task model, where (a) all tasks share the same
or similar sparse support, i.e., they assume inter-task dependency,
and (b) the non-zero entries in each task are clustered, i.e., they
exhibit intra-task dependency. In the proposed approach, we first
extend a paired spike-and-slab priors to form a generalized multi-
task model and induce the relationship between tasks based on a
hierarchical model. Inspired by the cluster and graphical model in
the Clustered Sparse Solver via Markov Chain Monte Carlo (CluSS-
MCMC) algorithm [22], we place a cluster prior to capture the intra-
task dependencies. A Gibbs sampler scheme is proposed to implement
the posterior inference. Since the hierarchical Bayesian model allows
the estimation of prior parameters in an unsupervised manner, the
proposed algorithm does not require any information regarding either



sparse prior or cluster prior.

Notations: We use lower-case (upper-case) bold characters to de-
note vectors (matrices). p(-) denotes the probability density function
(pdf), and N (z|a,b) denotes that random variable z follows a
Gaussian distribution with mean a and variance b. In addition, (-)”
denotes transpose, In denotes the N x N identity matrix, and o
denotes element-wise (Hadamard) multiplication.

II. CLUSTER MULTI-TASK BAYESIAN COMPRESSIVE SENSING
A. Paired Spike-and-Slab Prior

Consider a clustered sparse reconstruction problem with L tasks,
each consisting of M entries. To encourage the group sparsity
described in (2), we place a spike-and-slab prior to wy, i.e., [23]-[26]

M
p(wilm, B) = [T [(1 = m)d(wa) + miN (wal0, 871, 3
i=1
where ; is the prior probability of a non-zero element, i.e., a large
weight 7; corresponds to a high probability that the entry takes a
non-zero value, whereas a small 7r; tends to generate a zero entry. In
addition, f3; is the precision (reciprocal of the variance) of Gaussian
distribution and §(x) is the Dirac delta function of x.

The presence of the delta function in (3) makes the inference
troublesome. However, there exists a simple reparameterization of the
spike-and-slab prior [23]-[26]. Specially, assume a Gaussian random
vector 8; = [0, ...,0m)7 with p(6;) = TIM, N(6a]0,58; %),
I =1,..,L, and a Bernoulli random vector z = [z1, ..., zar]” with
p(z) = Hfil Bern(z;|m;), where z; = 1 corresponds to a non-zero
entry in the ith position. The product of these latent vectors 6; o z
forms a new random vector that follows the pdf in (3), i.e.,

w; =60;,0z. 4)

The group sparsity is characterized by the same z; for the ith position
across the L tasks. On the other hand, scattering coefficients in the
ith block 0;. = [0;1,---,0;1] have different values in general. In
SAR/ISAR and TWRI applications, these values differ due to angle-
dependent scattering coefficients and multipath returns [?], [6], [16].
Standard spike-and-slab prior independently places Gaussian distri-
bution p(0;) and Bernoulli distribution p(z) on 0; and z, respectively.
However, 0; and z are strongly correlated since their product interacts
with the data and a paired spike-and-slab prior was proposed to
enhance the performance of sparse reconstruction [20]. The following
paired spike-and-slab prior p(0;,z) is introduced,
M
p(O1,2) = [T N (0al0, 57 )] w1 —m)' 5 (9)
i=1
To acquire the trackable posterior of [;, we place a Gamma
prior, which is the conjugate to the Gaussian distribution, on f3;,
ie., i ~ Gamma(a,b),i € [1,---, M], where a and b are hyper-
parameters. A Gaussian prior is placed on the additive noise as
€ ~ N(&]0,a; 'Iy). In a similar way, we place a Gamma prior
on « to acquire an analytical posterior distribution, i.e., a; ~
Gamma(c,d),l € [1,---, L], where ¢ and d are hyper-parameters.

B. Cluster Prior on Intra-Task

Similar to [22], we define the neighborhood blocks of the ith
block as 7; = {j|D(i,5) = Dmax,J # ¢} with D(i,7) denoting
the distance between the ith and the jth pixel positions, and Dax
denotes the maximum neighboring distance to be considered. Let
0,,, and z,, respectively denote collections of @ and z located in the
neighborhood of the ith block, and k; = ) z,, be the number of
non-zero neighboring blocks for the ith block. Consider the simple
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Fig. 1. Three cluster pattern for 1-D signal. (a) Pattern O: strong rejection;
(b) Pattern 1: weak rejection; (c) Pattern 2: strong acceptance.

example, depicted in Fig. 1, where the cluster is one-dimensional (1-
D) with Dimax = 1. We categorize the relationship into three different
cluster patterns. In Pattern O (“strong rejection”), all the neighboring
blocks are zero valued, i.e., k; = 0, and the ith block would be
zero valued with a high probability, since the targets of interest are
unlikely to be isolated. In this case, e < fo is assumed in the
prior Beta(eo, fo) to encourage a small value of 70 so as to reject
this block. In Pattern 1 (“weak rejection”), one of the neighboring
blocks is zero valued, i.e., k; = 1. In this case, the probability that
the ith block takes zero values is fair, and e; = f; is used in the
prior Beta(ey,f1) to exert non-informative prior on ;. In Pattern 2
(“strong acceptance”), k; = 2, i.e., all the neighboring blocks have
non-zero values. In this case, the ith block would take non-zero values
with a high probability, and we use e2 > f5 in the prior Beta(ez, f2)
to encourage a large value of 72 to accept this block.

III. BAYESIAN INFERENCE

We adopt a Gibbs sampler to carry out the Bayesian inference of
the proposed algorithm. For convenience, we define the collection
of hyper-parameters as = L {a,b,c,d,e,f} with e = {eo,e1,€2}
and f = {fo, f1, fo}, and define the collection of random variables
as © = {0,z,7,a,3}. We also denote Y = {y1,---,yr} and
P = {®,,---, P} The explicit form of the joint pdf is

L
p(Y,®,0[8) = [ [N(y:[®1(0: 0 2), o; 'T)Gamma(cu|c, d)

=1

L M
< [TTTV @alo, 87 )% asi (1 — mp)t >
1=1i=1
M
X H Beta(m;|e, f, z,,)Gamma(f;|a, b). (6)
i=1
The posterior distributions of each random variable will be analyti-
cally obtained based on the conjugate property.

A. Updating paired variables {0, z}

Unlike the inference of standard spike-and-slab prior in [26],
the paired Gibbs sampler iteratively samples from the following
conditional pdf,

P(2i, 01|60\, 2vi, Y1) =p(0it|zi, Ovirs 2vi, Y1) P(23 |0\ ir, 203, V1)
@)

where 0\ ;; and z; respectively denote 8; except the variable 0;; and
z except the variable z;. Its marginal distribution is expressed as

L
P(2ilO\its 20is Y1) = H/p(Ziﬁiz\@\mZ\qu)dl%h 3
=1



where

L
p(zi,gil‘e\ilvz\ivyl) X HN(Y\il|¢’izzi9il:al_11)

=1
X [N(0:]0, B, D (1 —mi) ™%, (9)

Vit = Y1 = Dz Pri#i0ki, and @, is the ith column of the
measurement matrix ®;. The probability p(z; = 1|60\, 2z\;, y1) is
acquired analytically by utilizing the logistic function [26] as,

p(zi = 110\, 205, y1) = (1 +eiu)71, (10)
where u is derived as
w=1 i (10gﬂz‘ —logou + Uila%ygz¢-z¢¥Y\'l)
2 & R
+ logm; — log(1 — ), (11)
oit = (i iy + 51) - (12)

The conditional distribution of p(0ilz: = 1,60\y,2\;,y1) can be
expressed as,

p(0alzi = 1,0\, 2\i, 1) = N (Oaloucul y\a,ou).  (13)

For z; = 0, because the value of 6;; does not affect the result of w;;,
we conveniently draw the value of variable 6;; from its prior.

B. Updating mixing weight m

As depicted in Section II-B, each element 7; is chosen according
to its corresponding sparsity pattern, i.e., 7; is assigned as qu) for
sparsity pattern ¢ € {0,1,2}. The Beta distribution on ; leads to
an analytical posterior distribution for a certain sparsity pattern q as
[22],

p(7r£q>|e7 f,z) = Beta(eq + ki + 24, fg +vi + 1 — ki — 2i), (14)

where ¢ € {1,---, M}, and v; is the length of z,,. In the 1-D signal
example depicted in Fig. 1, v; = 2, i.e., 2 neighboring blocks are
considered for each block.

C. Updating signal precision (;
By utilizing the conjugate property of the Gaussian and Gamma

distributions, we analytically acquire the posterior distribution of the
precision variable [3; as

p(Bila, b, 0) = Gamma(a, b), (15)

where @ = a + (L/2), b=b+3,(0%/2),and i € [1,--- , M].

D. Updating noise precision o

In a similar manner as [3;, we also obtain the posterior distribution
of noise precision «;

p(aile, d, yi, @1, 0;,2) = Gamma(é, d), (16)

where ¢ = ¢+ (K/2), d = d + (|ly; — ®1(6; 0 2)||*/2), and [ €
{1,---,L}.

The proposed algorithms is summarized in Table I. Since the
inference of model parameters is implemented by the Gibbs sampler
which inherently requires sequential sampling, it is straightforward
to show from the procedure of the proposed algorithm, depicted in
Table I, that its computational complexity is O (K X L x M X Nmaxiter )
where Nmaxiter 1S the maximum number of iterations. It is higher than
that of the other Bayesian based algorithms like mt-CS based on fast
greedy algorithm, and the GS-VS and BSBL algorithms based on
the dimension reduction operation, because it needs to go through all
L x M elements in each MCMC iteration.

Table I. Clustered MT-BCS algorithm

Initialize the hyper-parameters = and random variables @;
Assign Naxiter;
for n =1, -, Nnaxiter» d0
a.fori=1,--- , M, do
update z; ~ p(2;|0\i1,2\i,y1) [Eq. (D]
fori=1,---,L, do
update 0;; ~ p(6ilzi, O\irs Z\4, y1) [Eq. (1]
end for
update ; ~ pEW§Q)\e, f,z) [Eq. (15)];
update 3; ~ p(Bila, b, @) (Eq. (16)];
end for
b.fori=1,---,L, do
update oy ~ p(oq|c, d,yi,®1,01, Z) [Eq. (17D)];
end for
end for

IV. SIMULATION AND EXPERIMENT RESULTS

Two examples are considered in this section, one dealing with a
1-D simulated data set, and the other processing multi-static ISAR
imaging. The following hyper-parameters are used: a =b=c=d =
1075, (eo, fo) = (1/K,1 — 1/K) for strong rejection, (e1, fi) =
(1/K,1/K) for weak rejection, and (e1, f1) = (1 — 1/K,1/K)
for strong acceptance. The maximum number of iterations in the
Gibbs sampling is 200, and the sample with the maximum marginal
likelihood in the last 20 samples is chosen as the estimate of w [22].
The normalized mean-square error (NMSE) [0 — Ogen|3/]|0gen|3 is
used as the performance index, where 0 is the estimate of the true
signal Oge,. For comparison, we also provide the performances of
other state-of-the-art algorithms, including overlapping group sparse
(GS) reconstruction [21], BOMP [8], mt-CS [12], BSBL [13], GS-VB
[14], and CluSS-MCMC [22].

A. Simulated 1-D example

In the first example, we consider L = 2 signals, and the length of
each 1-D task is M = 256. Each task contains a sparsity of 7' = 40
non-zero entries grouped into B = 2 clusters. The cardinality of
non-zero entries in each cluster is randomly selected, as shown in
Fig. 2(a). These two signals share the identical spike positions, but
take random +1 values. Each measurement matrix ®; € RE*M,
l =1,...,L, is generated as a zero mean random Gaussian matrix
whose columns are normalized to have a unit l2 norm. Zero-mean
Gaussian noise with standard deviation o = 0.005 is added to each
of K measurements that define the data {yl}f:l, and the length of
the measurements is K = 70.

The reconstructed result of signal 1 based on the proposed algo-
rithm is shown in Fig. 2(b). It is evident that it successfully recovers
the entire signal waveform by utilizing the cluster structure of neigh-
borhood blocks. For comparison, the results obtained from several
state-of-the-art algorithms are respectively shown in Figs. 2(c)-(h). In
the first four algorithms, the entire tasks are partitioned into M blocks
due to sharing the same non-zero support between those two tasks,
i.e., {wm1, wma} in the mth block, m = 1, ..., M. Because of insuf-
ficient number of measurements K (/K is smaller than the minimum
quantity required for faithful reconstruction [2]), the reconstructed
signals are highly noisy. For the overlapping GS algorithm, the
block partitions are predefined such that g1 = {w11, w12, wa1, w2z},
g2 = {wa1, a2, w31, w32}, ..., with each block overlapping half of
the previous block, to encourage the continuity with nearby points.
Two continuous clusters are reconstructed well with some distortion
in the magnitudes, and a few noisy spikes appear due to overlapping
partition, as shown in Fig. 2(g). For the CluSS-MCMC algorithm,
the sparse signals are separately recovered with 200 Gibbs sampling
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Fig. 2. Reconstructed results of the signal 1. (a) Original signal. (b) Result
of the proposed algorithm. (c) Result of the BOMP algorithm using the true
sparsity number. (d) Result of the BSBL algorithm. (e) Result of the GS-VB
algorithm. (f) Result of the mt-CS algorithm. (g) Result of overlapping group
sparse reconstruction. (h) Result of the CluSS-MCMC algorithm.
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Fig. 3. (a) Performance comparison versus the number of measurements. (b)
Performance comparison versus the noise power.

iterations. The signal in Fig. 2(h) is very noisy. As such, it is verified
that the proposed algorithm enhances the reconstruction performance
of sparse signals by transferring information between tasks based on a
hierarchical Bayesian model when compared with the CluSS-MCMC
algorithm.

1) Performance versus number of measurements: We take into
account the oversampling rate K /7', which determines the number
of measurements needed to achieve successful signal reconstructions.
The number of measurements is varied from 42 to 140 with a step size
of 2, resulting in an oversampling rate between 1.05 and 3.5. In each
step, the measurement matrices {®; }12:1 are drawn from the Gaussian
distribution A(0,1), and 100 independent trials are repeated for
each number of measurements. Fig. 3(a) shows the errorbar plot
which includes both average mean and standard deviation obtained
from the 100 trials for each oversampling rate. It is evident that the
proposed algorithm requires a much lower number of measurements
for successful reconstruction. The sparse signals, which have 40
non-zero entries, can be reconstructed with NMSE<0.01 using only
K = 70 measurements by the proposed algorithm, whereas the
required number is K = 92 for BSBL, K = 100 for overlapping
GS, and is much higher for the GS-VB, mt-CS, BOMP, and CluSS-
MCMC algorithms.

2) Robustness in different noise level: To examine the effect of
additive noise, we vary the noise power. To enable fair comparisons,
we use K = 128 measurements to ensure that all the algorithms
used can reconstruct the sparse signals according to Fig. 3(a). It is
demonstrated in Fig. 3(b) that, as the noise power increases, the re-
construction error generally increases for all algorithms. Nevertheless,
the proposed algorithm is more robust to noise than other algorithms
and has the lowest reconstruction error. Regarding the performance
comparison between BOMP and the Bayesian learning based algo-
rithms, the superiority of the latter is evidently demonstrated by their
lower reconstruction errors across the entire range of noise power
being evaluated.

B. Application on multi-static ISAR imaging

In the second example, we perform ISAR imaging based on
experimental data with a Yak-42 airplane recorded by a C-band (5.52
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Fig. 4. ISAR imaging results obtained from the CS algorithms with half
measurements. (a) Image obtained from the RDA algorithm with full mea-
surements. (b) Result of the proposed algorithm. (c) Result of overlapping
group sparse reconstruction. (d) Result of the mt-CS algorithm. (e) Result of
the GS-VB algorithm. (f) Result of the BSBL algorithm.

GHz) ISAR system. The system transmits 400 MHz linear frequency
modulated signals, and the pulse repetition frequency is 400 Hz. The
number of points in the range domain is 64, and 64 pulses are used.
The ISAR image with full measurements is shown in Fig. 4(a) based
on the Range Doppler algorithm (RDA) [27]. It is observed that the
target demonstrates strong clustered structure. To perform multi-task
reconstruction, we generate another synthetic ISAR observation by
randomly altering the phase and adding random perturbations on
the measured radar scatterer coefficients. Similar to [17], additive
complex white Gaussian noises are added to generate the experiment
data with the equivalent signal-to-noise ratio (SNR) to be 10 dB.

To demonstrate CS technique applied to the ISAR imaging, we
randomly select 50% measurements (32 pluses) for experiments.
Among the aforementioned CS algorithms with group sparsity, the
BOMP is excluded from comparison due to the unknown sparsity
number in this data set. As seen in Fig. 4, all methods can properly
recover most of the strong scatterers. However, comparing to those
obtained by the BCS, GS-VB and BSBL algorithms, as respectively
shown in Figs. 4(d)—4(f), the reconstructed results obtained by the
proposed algorithm, shown in Fig. 4(b), are much more concentrated
with relatively clear background. The overlapping GS algorithm
yields similar but slightly inferior performance, as shown in Fig. 4(c).
In these two approaches, a 2-D neighborhood clustered pattern is used
in the proposed algorithm, whereas each pixel with all adjacent pixels
is considered in the same group in the overlapping GS algorithm.

Due to the additional constraints representing the intra-task depen-
dency, the proposed technique has a higher complexity. The CPU
time of the proposed algorithm with a non-optimal Matlab code is
about 2.85 times of that of the GB-VB algorithm and 3.71 times of
that of the BSBL algorithm. The overlapping GS based on alternating
direction optimization has the least CPU time, which is about 19%
of that of the proposed method.

V. CONCLUSION

In this letter, we proposed a clustered multi-task compressive
sensing algorithm for the recovery of group sparse signals whose
non-zero entries are respectively clustered. The proposed technique
is based on a hierarchical Bayesian framework, and takes both sparse
prior and cluster prior into account. As such, it significantly improves
the reconstruction performance of sparse signals by transferring
information between tasks and exploiting the cluster structures of
underlying targets. Simulation and experiment results demonstrated
the superiority of the proposed algorithm over the state-of-the-art
group sparse reconstruction algorithms.
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