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ABSTRACT

Frequency-hopping (FH) is one of the commonly used spread spectrum techniques that finds wide applications in
communications and radar systems due to its capability of low probability of intercept, reduced interference, and
desirable ambiguity property. In this paper, we consider the blind estimation of the instantaneous FH spectrum
without the knowledge of hopping patterns. The FH signals are analyzed in the joint time-frequency domain,
where FH signals manifest themselves as sparse entries, thus inviting compressive sensing and sparse reconstruc-
tion techniques for FH spectrum estimation. In particular, the signals’ piecewise-constant frequency charac-
teristics are exploited in the reconstruction of sparse quadratic time-frequency representations. The Bayesian
compressive sensing methods are applied to provide high-resolution frequency estimation. The FH spectrum
characteristics are used in the design of signal-dependent kernel within the framework of structure-aware sparse
reconstruction.

Keywords: Frequency-hopping, spectrum estimation, Bayesian compressive sensing, quadratic time-frequency
representation, signal-dependent kernel design

1. INTRODUCTION

Frequency-hopping (FH) signals are generated by varying the carrier frequencies according to a certain hopping
pattern, which is typically pseudo-random. Due to their inherent capability of low probability of intercept,
reduced interference to and from other users, resistance to jamming and multipath fading, and desirable ambi-
guity function property, FH signals have become a favorite choice in a wide range of communication and radar
applications [1–9].

For a variety of tasks ranging from interception of non-cooperative emitters to exploitation of signals of op-
portunity for passive sensing, estimating and tracking the instantaneous spectrum of FH signals are an important
yet a challenging task, since the hopping patterns of the constituent signals are unknown [10]. The time-varying
spectrum signatures of non-stationary signals, such as FH signals, can be revealed in the joint time-frequency
(TF) representations. As FH signals generally exhibit sparsity in the joint TF domain, compressive sensing (CS)
and sparse reconstruction techniques [11,12] enable effective FH parameter estimation by formulating the prob-
lem as an underdetermined linear regression with a dual penalty [10, 13], i.e., a penalty that controls both the
intrinsic sparsity and smoothness of the estimation. To improve the performance, particularly in low signal-to-
noise ratio (SNR) conditions, a sparse Bayesian learning-based approach was proposed in [14]. These approaches
are based on linear time-frequency analysis, and do not consider the effect of missing samples.

In this paper, we develop FH spectrum estimation in the quadratic TF representation framework. It is known
that quadratic (bilinear) TF distributions, such as the Wigner-Ville distribution (WVD), provide high-resolution
time-varying spectrum representations. Because the bilinear nature causes cross-terms between different compo-
nents that constitute false energy distributions, various reduced-interference distributions have been developed
for cross-term reduction through the design of appropriate reduced interference distribution TF kernels [15,16].
TF kernels can be signal-independent or signal-dependent. The latter generally provides better performance in
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trading off the cross-term suppression and auto-term preservation. The adaptive optimal kernel (AOK), which
is based on radially Gaussian functions in the ambiguity domain [17, 18], is a commonly used signal-dependent
kernel.

In practice, data observations may experience missing samples due to channel distortion, line-of-sight ob-
struction, and removal of impulsive noise samples [19]. Missing data samples induce noise-like artifacts in the TF
distribution [20]. As described in [20–23], the effect of artifacts induced by missing samples can be substantially
reduced by using TF kernels. Sparse reconstruction of time-frequency representations (TFR) using different CS
methods was also presented therein. Recently, this approach has been adopted to estimate the FH spectrum from
data with missing samples using the orthogonal matching pursuit (OMP) algorithm. Both artifact mitigation
and high-resolution FH signal spectrum estimation are achieved [24]. Since the artifacts induced by missing
samples can be filtered with kernels in the ambiguity function (AF) domain, quadratic TFR based methods are
advantageous, as compared to linear approaches [10,13,14], particularly when missing samples are present.

Based on our previous work in [24], in this paper, we develop a new approach for FH spectrum estimation via
quadratic TFRs where a modified Bayesian CS (BCS) scheme that exploits the FH signal structure is applied. In
the proposed sparse reconstruction process, a structure prior is imposed to enforce the unique piece-wise constant
frequency signature of the FH signals. As such, the proposed approach provides additional robustness in the FH
spectrum estimation where the hopping patterns are unavailable and the observed data contain missing samples.
Compared with the FH spectrum estimation via OMP [24], the structure-aware BCS-based approach achieves
an improved sparsity and provides a better approximation to the `0-norm sparsity measure [25].

Notations: Lower-case (upper-case) bold characters are used to denote vectors (matrices). abs(·) returns the
magnitude of a given complex number, and ◦ denotes the Hadamard product. diag{·} represents a diagonal
matrix that uses the entries of a vector as its diagonal entries, and IN denotes an N ×N identity matrix. Fd and
F−1
d denote the one dimensional discrete Fourier transform (DFT) and inverse discrete Fourier transform (IDFT)

matrices with respect to the d dimension, respectively, and Fd1,d2 denotes a two dimensional discrete Fourier
transform with respect to the d1 and d2 dimensions. (·)∗, (·)T and (·)H respectively denote complex conjugate,
transpose and hermitian operations of a matrix. ‖·‖p represents the `p-norm of a vector, and |·| denotes the
cardinality of a set. p(·) denotes the probability density function (PDF). N (·), Beta(·), Gamma(·) and B(·),
denote Gaussian, Beta, Gamma and Bernoulli distributions, respectively.

2. SIGNAL MODEL

Let fs and ∆t = 1/fs respectively denote the sampling rate and sampling interval. Consider a discrete-time FH
signal, corrupted by additive complex white Gaussian noise v[n], expressed as [10,13,14]

s[n] =

Kh∑
k=1

Ah,ke2πfh,kn∆t + v[n], nh,k−1 ≤ n < nh,k, (1)

where  =
√
−1, nh,k denotes the discrete instant of the k-th tone in the h-th system-wise dwell for h = 1, 2, . . . ,H,

and Ah,k and fh,k, respectively, represent the complex amplitude and frequency corresponding to the time index
nh,k. The number of tones Kh can vary with h because of emitter (de)activation or bandwidth mismatch [10].

Consider a collection of N samples x[n] = [x[1], . . . , x[n]]T as the observation data with N − M missing
samples, whose positions are assumed to be uniformly distributed. As such, x[n] can be regraded as the Hadamard
product of original data vector s[n] = [s[1], . . . , s[n]]T and a binary mask vector b[n] = [b[n], . . . , b[n−N + 1]]T,
i.e.,

x[n] = s[n] ◦ b[n], (2)

where

b[n] :=

{
1, if n ∈ I,
0, otherwise.

(3)

I ⊂ {1, 2, . . . , N} is the set of observed time instants with cardinality |I| = M , and 1 −M/N represents the
missing-sample ratio.



3. KERNEL DESIGN BASED ON FH SIGNAL STRUCTURES

In this section, a detailed description of the signal-dependent kernel design method is presented.

3.1 Joint-variable representations of FH spectrum

The discrete-time instantaneous autocorrelation function (IAF) of a signal x[n] is defined as [16]

Cxx[τ, n] = x[n+ τ ]x∗[n− τ ], (4)

where τ denotes the time lag index. Stacking Cxx[τ, n] corresponding to all values of τ and n results in an IAF
matrix Cxx. Then, the AF matrix of signal vector x[n], expressed with respect to lag τ and Doppler frequency
κ, can be obtained by performing IDFT of the IAF with respect to the time index n, i.e.,

Axx{τ, κ} = F−1
n Cxx{τ, n} =

∑
n

Cxx{τ, n}e2πκn, (5)

where the notation {τ, κ} is used to emphasize that the matrix Axx is constructed with respect to variables τ
and κ. The WVD can be obtained by performing DFT to its IAF with respect to the lag index τ , i.e.,

Wxx{f, n} = FτCxx{τ, n} =
∑
τ

Cxx{τ, n}e−4πfτ . (6)

3.2 Data-dependent TF kernel

As described earlier, artifacts due to missing samples must be mitigated before reliable FH parameter estimations
can be performed. This can be achieved by applying proper TF kernels, which are commonly used in bilinear TF
analysis for cross-term reduction and signal auto-term enhancement [15]. These kernels can be classified as data-
dependent and data-independent, with the former generally outperforming the latter due to their optimization
with respect to the signal observed. The AOK is a well-known data-dependent kernel, which is designed by
solving the following optimization problem [18]:

Φopt(r, ψ) = arg max
Φ(r,ψ)

∫ 2π

0

∫ ∞
0

|A(r, ψ)Φ(r, ψ)|2rdrdψ,

s.t.


Φ(r, ψ) = exp

(
− r2

2σ2(ψ)

)
,

1

4π2

∫ 2π

0

σ2(ψ)dψ ≤ α,

(7)

where α denotes the kernel volume constraint, A(r, ψ) represents the AF of the signal in polar coordinates, and
r and ψ denote the radius and radial angle variables, respectively.

3.3 Post-kernel window

Despite its general filtering capability, conventional AOK fails to filter out the artifacts induced by missing
samples that are close to the origin of the AF domain. In particular, missing samples generate vertical strips
in the TF domain, which are concentrated in the Doppler axis of the AF domain. On the other hand, it is
known a priori that the auto-terms of the FH signal are concentrated in the lag axis, regardless of their hop
frequencies. For the multi-component situations, the auto-terms remain in the same position (while the exact
value is distorted due to the superposition of multiple component), whereas the cross-terms appear away from
the origin depending on the signal lags and the hop frequency difference. The length of the auto-term along the
lag axis depends on the maximum duration of the hops, and a larger maximum hopping duration results in a
larger lag-wise length. On the other hand, the width of the auto-term along the Doppler axis depends on the
observed data length, and a longer observed data length results in a narrower Doppler-wise width. Therefore,



we can design a post-AOK kernel by thresholding the a prior information based conjectural single-component
auto-term AF Âxx{τ, κ}, expressed as

w̃[τ, κ] =

{
|Âxx[τ, κ]|, if |Âxx{τ, κ}| > ξ,

0, otherwise,
(8)

where ξ is the threshold, which is chosen to only keep FH auto-terms with substantial signal concentration in
the AF domain. The designed window will keep the auto-term ambiguity region of the FH signals while filtering
out other ambiguity regions so as to reduce or eliminate cross-terms and artifacts due missing samples.

Note that brick-wall filters are often refrained in conventional TF analysis as they may cause ripples in the
TF domain. This is not a concern in the underlying application because signal auto-terms are negligible outside
the window. In addition, the effect of windows is further mitigated in the sparse reconstruction process.

After the AOK and the post-AOK window are applied, the AF becomes:

Ã = Axx{τ, κ} ◦Φ{τ, κ} ◦ w̃{τ, κ}. (9)

4. BCS-BASED FH SPECTRUM ESTIMATION

4.1 CS model for FH spectrum estimation

In this section, we consider a CS based approach which yields a high-resolution TFR. The IAF matrix corre-
sponding to the kernelled AF is obtained as the Fourier transform of Ãxx{τ, κ} with respect to κ, i.e.,

C̃xx{τ, n} = FκÃxx{τ, κ} = Fκ (Axx{τ, κ} ◦Φ{τ, κ} ◦ w̃{τ, κ}) . (10)

Then, the bilinear TFR matrix is associated with the IAF matrix by the following Fourier relationship:

C̃xx{τ, n} = F−1
f W̃xx{f, n}. (11)

The CS approach obtains W̃xx{f, n} by exploiting the above Fourier transform relationship but through a
sparse reconstruction operation. Denote the n-th column of the IAF matrix C̃xx{τ, n} as c̃xx[n], and the n-th
column of the bilinear TFR matrix W̃xx{f, n} as w̃xx[n]. Then, their relationship conforms to the following
standard linear model commonly used in CS and sparse reconstruction:

c̃xx[n] = F−1
f w̃xx[n]. (12)

Therefore, the TFR can be obtained from sparse reconstruction, in lieu of conventional Fourier transform, by
repeating the procedure for each time instant column. Various CS algorithms can be used for this purpose. In
the following, we consider this problem from a BCS perspective, and the structure of the FH spectrum is utilized
for improved spectrum estimation. For notational convenience, we simplify the notations c̃xx[n], F−1

f and w̃xx[n]
as c, F and w, respectively.

4.2 Sparsity prior

The BCS is a nonparametric sparse linear inverse solver imposing a conditional Gaussian prior with its precision
guided by a Gamma distributed hyperprior. The BCS assumes the likelihood model as [26]

p (c; w, γ0) = N (c; F−1
f w, γ0I), (13)

where γ0 = α−1
0 is the variance, and α0 follows the Gamma distribution, i.e., α0 ∼ Gamma(c, d). To encourage

sparsity of the FH signal TFR, a spike-and-slab prior model [27, 28] is employed to wi, i.e., the i-th entry of w,
as,

p(wi; γi, πi) = (1− πi)δ0 + πiN (wi; 0, γi), (14)

where πi is a mixing weight standing for the prior probability of a nonzero entry, δ0 represents the delta function
with a unit point measure concentrated at zero, and we also assign a Gamma prior to the inverse variance as
γ−1
i = αi ∼ Gamma(a, b).
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Figure 1. Example patterns of three different categories for TFR structure patterns for D = 2: (a) Category 1: acceptance.
(b) Category 2: neutral. (c) Category 3: rejection.

To make the inference analytical, a product of two latent variables z and θ, i.e., wi = zi · θi is introduced
to follow the PDF in Eq. (14), where θi ∼ N (θi; 0, γi). In addition, zi is a binary variable with a Bernoulli
distribution B(πi). zi = 1 implies that the i-th entry is nonzero, whereas zi = 0 implies a zero entry. The
overall prior on θ with respect to a and b can be evaluated analytically through the integration over α, and it
corresponds to the Student-t distribution [29]. With an appropriate choice of a and b, the Student-t distribution
is strongly peaked about θ = 0, and thus the overall prior on θ favors sparseness [27].

4.3 Structure prior

The FH spectrum shows a piecewise constant frequency spectrum. Fig. 1 shows several TFR structure patterns
for a neighborhood within an Euclidean distance of 2, where the horizonal direction shows the discretized time
entries, whereas the vertical direction represents the frequency entries. The possible TFR structure patterns are
divided into three categories, and priors can be designed to encourage the FH spectrum to have a horizontally
linear structure. On the other hand, entries that are on adjacent rows are discouraged because they tend to
broaden the signal bandwidth, thus is contradictory to the fact that the underlying FH signals are instantaneously
narrowband. Fig. 1(a) includes the cases where the entry under test is more likely to be nonzero since it has
a high number of horizontal neighboring nonzero pixels, i.e., it is likely to belong to the spectrum of an FH
component. While for Fig. 1(b), we take a neutral position because it cannot be determined whether the entry
under test tends to be nonzero or not. For the third case depicted in Fig. 1(c), we assert a rejection so as to
prevent the broadening of nonzero entries in the frequency domain.

Mathematically, we define the neighborhood of entry index i within the same row as

J�i = {j |d (i, j) ≤ D, j ∈ [1, N ]} , (15)

where d (i, j) is the Euclidean distance between i and j, and D is a natural number that represents the maximum
distance to be included in the evaluation. We then define the deleted neighborhood of index i as

J⊗i = {j |d (i, j) ≤ D, j ∈ [1, N ] , j 6= i} . (16)

Comparing Eqs. (15) and (16), we can see that the relationship between neighborhood and deleted neighborhood
is J�i = J⊗i ∪ {i}. The number of nonzero entries at a location i and its neighborhood is denoted as zJ�i

. In
this paper, we consider D = 2 case.

Note that during the pattern classification process, three rows of c̃xx are investigated. The i-th entry in the
[n+ 1] and [n− 1]-th row of c̃xx is denoted as i+ and i−, respectively.

Since the Beta distribution is conjugate to Bernoulli likelihood, πi is assumed to follow the Beta distribution.
For a certain structure pattern q, where q ∈ {1, 2, 3} is one of the three categories, the posterior distribution of
π<q>i is derived as

p(π<q>i ; e<q>, f<q>) = Beta
(
e<q> + zJ�i

, f<q> + |J�i| − zJ�i

)
. (17)



The Beta(e, f) distribution tends to draw a small sample when e < f and a big sample when e > f , while it has
no tendency when e = f . Therefore, by choosing proper values of e and f , we can encourage or discourage the
sparsity of the pixel under test, depending on the sparsity support in the neighboring pixels.

Category 1 (acceptance): When 3 or more nonzero pixels exist in the same row, i.e., zJ⊗i
≥ 3, and no nonzero

pixels exist in the neighboring rows, the pixel under test is encouraged to take a nonzero support by setting
e<1> > f<1>;

Category 2 (neutral): When 2 nonzero pixels exists in the same row, zJ⊗i
= 2, and no nonzero pixels in the

neighboring rows, we choose e<2> = f<2> to take a neutral position;

Category 3 (rejection): For other situations, we choose → e<3> < f<3> to discourage the pixel under test to
have a nonzero support.

4.4 Bayesian inference

The BCS algorithm assumes that each element of w depicted in Eq. (14) is independently distributed. The cor-
relation between neighboring pixels is treated through the proper design of priors as described above. Therefore,
the joint PDF of w becomes:

p (w;γ,π) =

N∏
i=1

[(1− πi)δ0 + πiN (wi; 0, γi)] , (18)

where γ = [γ1, . . . , γN ]
T

is a vector of N hyperparameters that controls the prior variance of each weight. We
can then acquire the posterior distribution of w by combing (18) with the observation likelihood p (c; w, γ0) in
(13), i.e.,

p (w |γ,π, c, α0 ) ∝ p (w;γ,π) p (c; w, α0) (19)

A Gibbs sampler is adopted to implement the Bayesian inference as following. Denote Λ as the measurement
matrix of the CS model described in Eq. (12), i.e., Λ = F−1

f , and let λi be the i-th column of Λ. Then, the
paired Gibbs sampler iteratively samples from the following conditional PDF [27,28]

p
(
wi
∣∣w\i, c) = p

(
θi, zi

∣∣θ\i, z\i, c) = p
(
θi
∣∣zi,θ\i, z\i, c) p (zi ∣∣θ\i, z\i, c) , (20)

where the notation (·)\i denotes the subvector excluding the i-th entry. The probability p
(
zi = 1

∣∣θ\i, z\i, c) is
acquired as

p
(
zi = 1

∣∣θ\i, z\i, c) =
αi

1− αi
N (0, γi)

N (µ̃i, γi)
, (21)

where µi and γi are updated as
µ̃i = α−1

i α0λ
H
i c\i, (22)

γ̃−1
i = α̃i =

(
α0λ

H
i λi + αi

)
. (23)

The conditional distribution of p
(
θi
∣∣zi = 1,θ\i, z\i, c

)
can be expressed as

p
(
θi
∣∣zi = 1,θ\i, z\i, c

)
= N (wi; µ̃i, γi) . (24)

For zi = 0 case, as the value of θi does not affect the result of wi, we directly draw the value of θi from its prior.
Subsequently, the Gibbs sampler updates the mixing weight πi according to (17).

Next, we update the precision variable αi. By utilizing the conjugate property of the Gaussian and Gamma
distributions, we analytically acquire the posterior distribution of αi as

p
(
αi; a, b, zJ�i

)
= Gamma

(
a+

zJ�i

2
,b+

∥∥zJ�i

∥∥2

2

2

)
. (25)



After all the i iteration loops are completed, the posterior distribution of noise precision α0 is updated as

p (α0; c, d, c,Λ, θ, z) = Gamma

(
c+

rank{Λ}
2

,d+
‖c−Λ (θ ◦ z)‖22

2

)
. (26)

The maximum a posteriori (MAP) estimator is adopted to infer the estimation for w as

ŵ = arg max
w

p (w |c ) , (27)

where marginal distribution p (w |c ) can be obtained by integrating out the hyperparameters γ, π, and α0 in
(19) as

p (w |c ) ∝
∫
p (w |γ,π, c, α0 ) dγdπdα0 (28)

Hereby we obtain the sparse reconstruction result of Eq. (12). The estimation of the entire FH spectrum is
rendered by repeating the BCS-based estimation for each columns of W̃xx{f, n}.

5. SIMULATION AND ANALYSIS

Simulation results are provided to demonstrate the effectiveness of the proposed approach. The parameter
settings are listed in Table 1. The model hyperparameters for the priors are set as follows: a = b = c =
d = 10−6,

(
e<0>, f<0>

)
= (1/N, 1 − 1/N) × |J�i| ,

(
e<1>, f<1>

)
= (1/N, 1/N) × |J�i| ,

(
e<2>, f<2>

)
= (1 −

1/N, 1/N)× |J�i|, the initial conditions are set to αi(0) = 1, πi(0) = 0, and α0(0) = 102/var(c).

Fig. 2 shows the simulation results. From Fig. 2(a) we can see two hopping components in the FH signal:
The first component is active within the range of [0 : 0.25] µs and the carrier frequency hops from 27.75 MHz
to 13.50 MHz within the range of [0.27 : 1.05] µs, whereas the second component hops from 2.25 MHz to 20.40
MHz at the 31-st sample point, i.e., at the time instant 0.52 µs. Cross-terms can be observed in the WVD and
AF planes depicted in Figs. 2(b) and 2(c), and the impact of missing samples are clearly exhibited in the IAF
plane depicted in Fig. 2(d).

Figs. 2(e) and 2(f) show the AF and TFR results using AOK, where artifacts induced by missing samples
are observed along the Doppler axis in the AF domain and as vertical strips in the TFR. A vertical post-AOK
window is then multiplied in the AF domain to filter out the artifacts, and the corresponding AF and TFR
results are depicted in Figs. 2(g) and 2(h). It is clear that the FH auto-terms are preserved whereas the vertical
strips are suppressed in the TFR. Fig. 2(i) shows the BCS estimation of the FH spectrum. This represents a
significant improvement as compared to the WVD depicted in Fig. 2(b).

Table 1. Simulation Parameters

fs (MHz) N M H SNR (dB)

60 64 32 2 10

6. CONCLUSION

In this paper, a novel structure-aware FH spectrum estimation approach with the consideration of missing samples
was proposed within a sparse reconstruction framework. The kerneled joint-variable representation over time
and lag was used to provide the TF signal representation through sparse reconstruction. In the sparsity-based
spectrum estimation process, the structure of the entry under test and its neighborhood is exploited to impose
a structure-aware prior on the Bayesian inference. Simulation results clearly show that the proposed approach
outperforms existing approaches devised for the same problem.
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Figure 2. Simulation results for the proposed structure-aware BCS based FH spectrum estimation algorithm: (a) Truth;
(b) WVD; (c) AF; (d) IAF; (e) Kernelled AF with AOK; (f) Kernelled TFR with AOK; (g) AF of filtered-AOK processed
signal; (h) TFR of filtered-AOK processed signal; (i) Structure-aware BCS result of filtered-AOK processed signal.
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