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ABSTRACT

Two-dimensional (2D) transmit beamforming aims at focusing the transmitted energy within ceratin desired
sector while minimizing the amount of energy in the out-of-sector regions. In this paper, we propose parsimonious
formulations to the sidelobe control problem in 2D transmit beamforming with multidimensional arrays. The
out-of-sector region is partitioned into a small number of subsectors where the subspace spanned by the steering
vectors associated with the spatial directions within a certain subsecetor is approximated by the effective discrete-
prolate spheroidal sequences associated with that subsector. Then, the sidelobe control is achieved by imposing
constraints on the magnitude of the inner product between the 2D transmit beamforming weight vector and the
discrete-prolate spheroidal sequences. Simulations examples are presented which show the effectiveness of the
proposed formulations.
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1. INTRODUCTION

In the last decade, multiple-input multiple-output (MIMO) radar has been the focus of intensive research [1]–[8].
The advantages of MIMO radar with colocated antennas include improved angular resolution and parameter
identifiability, increased number of detectable targets, and extended array aperture by virtual sensors. However,
without employing proper transmit beamforming, MIMO radar suffers from the loss of transmit processing
gain. To address the latter problem, the concepts of phased-MIMO radar and transmit energy focussing have
been introduced [5], [7], [9]–[15]. However, the aforementioned methods are primarily developed for the case of
MIMO radar with one-dimensional transmit array. In practice, multidimensional arrays are often used to enable
parameter estimation and target localization in the two-dimensional (2D) azimuth-elevation domain. The number
of transmit elements used in a 2D array is typically large and can be in the range of several thousands. Motivated
by practical considerations, several methods for 2D transmit beamforming design using multidimensional arrays
have been reported in the literature [16]– [19] which adopt a convex optimization based approach. Sidelobe
control is achieved via enforcing sidelobe constraints at a 2D discrete grid. The use of a coarse grid results in
power radiation leakage towards directions located between the coarse grid points. On the other hand, the use
of a fine grid to approximate the sidelobe region results in a very high number of constraints which requires a
high computational cost.

In this paper, we propose parsimonious formulations to the problem of 2D transmit beamforming design and
sidelobe control using multidimensional arrays. We adopt the concept of focusing the transmit energy within the
desired sector while enforcing constraints on the amount of energy leakage in the out-of-sector area. To achieve
good sidelobe control without having to enforce sidelobe constraints over a fine grid, we divide the out-of-sector
regions into a small number of subsectors. The subspace spanned by the steering vectors associated with the
spatial directions within a certain subregion is approximated by a small number of discrete-prolate spheroidal
sequences (DPSS). Then, the sidelobe control is achieved by imposing constraints on the magnitude of the inner
product between the 2D transmit beamforming weight vector and the DPSSs. The resulting problem is formulated
as a convex optimization problem with a small number of sidelobe constraints enabling a computationally efficient
solution. We use simulation examples to validate the effectiveness of the proposed parsimonious 2D transmit
beamforming design method.

This paper is organized as follows. In Section 2, we present the signal model and formulate the 2D transmit
beamforming design problem. In Section 3, we present the proposed parsimonious 2D transmit beamforming
design method. Simulation results are provided in Section 4, while conclusions are drawn in Section 5.
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2. PROBLEM FORMULATION

We Consider a MIMO radar system equipped with MT transmit antennas arranged in an arbitrary shape in a
three-dimensional space. In a Cartesian coordinate system, the mth transmit antenna is assumed to be located
at the position dm = [xm, ym, zm]T , m = 1, . . . ,MT , where (·)T stands for the transpose. The MT × 1 steering
vector of the transmit array is defined as

a(θ, φ) = [e−j2πq
Hd1 , . . . , e−j2πq

HdMT ]T , (1)

where θ and φ denote the elevation and azimuth angles, respectively, q , [sin θ cosφ, sin θ sinφ, cos θ], and (·)H
stands for the Hermitian. Without loss of generality, we consider the case of a transmit array being an M ×N -
antenna uniform rectangular array (URA), where M is the number of antenna elements in a given row and N
is the number of antenna elements in a given column. The elements on any given column in the transmit array
are assumed to be equally spaced with interelement spacing dx while the interelement spacing between any two
adjacent elements on any row is given by dy. The MN × 1 steering vector of the transmit array is represented
as [17]

a(η, ζ) = vec
(
Z� [u(η)vT (ζ)]

)
(2)

where ζ , sin θ sinφ and η , sin θ cosφ, respectively, Z is an M ×N matrix of ones and zeros where the mn-th
entry equals zero if the mn-th element of the array is absent, vec(·) stands for the operator that stacks the
columns of a matrix in one column vector, � stands for the Hadamard product, and u and v are vectors of
dimension M × 1 and N × 1, respectively, which are defined as follows

u(η)=
[
1, e−j2πdxη, . . . , e−j2π(Mt−1)dxη

]T
, (3)

v(ζ)=
[
1, e−j2πdyζ , . . . , e−j2π(Nt−1)dyζ

]T
. (4)

Let w be the MN × 1 2D transmit beamforing weight vector. The 2D transmit power radiation pattern is
defined as

G(η, ζ) =
∣∣∣wHa(η, ζ)

∣∣∣2. (5)

The 2D transmit beamforming design problem can be stated as follows. Given the structure of the transmit
array, design the transmit beamforming weight vector w which fits a certain desired 2D transmit radiation
pattern Gd(η, ζ) at an affordable computational burden.

3. PARSIMONIOUS 2D TRANSMIT BEAMFORMING DESIGN

In this section, we present the 2D transmit beamforming design formulations and the associated parsimonious
implementation. One meaningful way to design the transmit beamforming weight vector w is to minimize
the difference between the actual 2D transmit power radiation pattern and the desired one while keeping the
highest sidelobe level below a certain predetermined level. This can be formulation as the following constrained
optimization problem

min
w

max
η,ζ

∣∣∣∣∣∣∣Gd(η, ζ)
∣∣∣−∣∣∣wHa(η, ζ)

∣∣∣2∣∣∣∣ , η ∈ Π, ζ ∈ Ω (6)

subject to
∣∣∣wHa(η, ζ)

∣∣∣2 ≤ ∆, η ∈ Πs, ζ ∈ Ωs, (7)

where Π = [ηmin, ηmax] and Ω = [ζmin, ζmax] define the desired sector, Πs and Ωs define the out-of-sector regions,
respectively, and ∆ is a positive number of user choice used to control the sidelobe level. The optimization prob-
lem (6)–(7) is non-convex and, therefore, cannot be solved in a computationally efficient manner. A semidefinite



relaxation technique [20], [21] can be used to recast it as a convex one. Introducing the new variable X = wwH ,
the optimization problem (6)–(7) can be reformulated as [17]

min
X

max
ηi,ζj

∣∣|Gd(ηi, ζj)|−trace{Xa(ηi, ζj)a
H(ηi, ζj)}

∣∣ , ηi ∈ Π, i = 1, . . . , I, ζj ∈ Ω, j = 1, . . . , J (8)

subject to
∣∣∣wHa(ηq, ζp)

∣∣∣2 ≤ ∆, ηq ∈ Πs, q = 1, . . . , Q, ζp ∈ Ωs, p = 1, . . . , P, (9)

X � 0, (10)

where ηi, i = 1, . . . , I, ζj , j = 1, . . . , J , ηq, q = 1, . . . , Q, and ζp, p = 1, . . . , P are continuum grids chosen
uniformly (or non-uniformly) to approximate the sectors Π, Ω, Πs, and Ωs, respectively. The optimization
problem (8)–(10) is convex and can be solved in a computationally efficient manner using the interior point
methods [22].

An alternative way to solve (6)–(7) in a computationally efficient manner is based on defining the desired
2D transmit radiation pattern within the sector-of-interest in terms of both magnitude and phase, that is,
Gd(η, ζ) = |Gd(η, ζ)|e−j2π(γ1η+γ2ζ), η ∈ Π, ζ ∈ Ω, where γ1 and γ2 are constants used to control the rate of
change of the desired phase profile of Gd(η, ζ). Therefore, the non-convex optimization problem (6)–(7) can be
reformulated in the following convex form

min
w

max
ηi,ζj

∣∣∣|Gd(ηi, ζj)|e−j2π(γ1ηi+γ2ζj)−wHa(ηi, ζj)
∣∣∣2 , ηi ∈ Π, i = 1, . . . , I, ζj ∈ Ω, j = 1, . . . , J (11)

subject to
∣∣∣wHa(ηq, ζp)

∣∣∣2 ≤ ∆, ηq ∈ Πs, q = 1, . . . , Q, ζp ∈ Ωs, p = 1, . . . , P. (12)

In is worth noting that the decision variable X in (8)–(10) is of dimension MN ×MN while the decision
variable w in (11)–(12) is of dimensionality MN × 1. Therefore, the computational burden associated with
solving the latter optimization problem is relatively cheaper than the computational burden associated with
solving the former optimization problem.

3.1 Parsimonious Sidelobe Control

The sidelobe regions, i.e., Πs and Ωs, usually occupy more space than the desired sector regions Π and Ω.
Therefore, enforcing sidelobe control over a fine grid, i.e., choosing Q and P to be large numbers of directions,
results in a large number of constraints which, in turn, increases the computational load associated with solving
the optimization problem. On the other hand, enforcing sidelobe control over a coarse grid, i.e., choosing Q
and P to be small numbers, does not enable sufficient sidelobe control in between the grid points. To solve this
problem, we propose the use of DPSS for sidelobe control.

Let us partition the out-of-sector regions Πs and Ωs into K (K � Q) and L (L� P ) subsectors, respectively.
For each subsector Πk and Ωl, the following non-negative matrices can be built

Ak,l =

∫
Πk

∫
Ωl

a(η, ζ)aH(η, ζ)dηdζ, k = 1, . . . ,K, l = 1, . . . , L. (13)

A good subspace representation for the (k, l)th subsector is given by the significant spheroidal sequences associ-
ated with that subsector. This subspace can be constructed as

Uk,l = [e1, . . . , eE ], (14)

where {ei}Ei=1 are E principal eigenvectors of Ak,l. Note that the number of effective eigenvectors can be taken
as the number of effective eigenvalues of the matrix Ak,l, i.e., the E largest eigenvalues whose sum exceeds a
certain percentage (e.g., 99%) of the total sum of all eigenvalues.

A parsimonious 2D transmit beamforming design can be achieved by reformulating (11)–(12) as the following
optimization problem

min
w

max
ηi,ζj

∣∣∣|Gd(ηi, ζj)|e−j2π(γ1ηi+γ2ζj)−wHa(ηi, ζj)
∣∣∣2 , ηi ∈ Π, i = 1, . . . , I, ζj ∈ Ω, j = 1, . . . , J (15)

subject to
∥∥∥wHUk,l

∥∥∥ ≤ ∆DPSS, k = 1, . . . ,K, l = 1, . . . , L, (16)



where ∆DPSS is a positive number used to control the sidelobe level. By choosing K � Q and L � P to be
small, the number of constraints involved in (15)–(16) is small and, therefore, the associated computational cost
is reduced as compared to that of solving (11)–(12).

4. SIMULATION RESULTS

In our simulations, we assume a uniform rectangular transmit array of size 7 × 7. The desired spatial sector is
defined as θ ∈ [0◦, 11.5◦] and φ ∈ [0◦, 360◦], i.e., the sector represents a cone of width 23◦ centered around the
z−axis. This sector corresponds to Π = [−0.2, 0.2] and Ω = [−0.2, 0.2]. The optimization problem (11)–(12)
is solved using a coarse grid of 3 × 3 for each subsector, i.e., the whole out-of-sector region is approximated by
8× 3× 3 = 72 grid points. The same problem is solved using a fine grid of 21× 21 for each subsector, i.e., the
whole out-of-sector region is approximated by a fine grid of 8 × 21 × 21 = 3528 points. For the parsimonious
formulations, the out-of-sector region is partitioned into 72 non-overlapping subsectors. Each subsector is chosen
to be centered around one of the 72 coarse grid points. Numerical integration is used to calculate 72 non-negative
matrices; one for each subsector. The parsimonious based solution is obtained by solving (15)–(16). E = 10
effective eigenvalues are assumed. ∆ = 0.1 is assumed throughout this paper. Figs. 1 and 2 show the transmit
radiation patterns obtained by solving (11)–(12) using the coarse and the fine grids, respectively. It is clear from
the figures that the use of a coarse grid does not enable controlling the sidelobe level between the grid points.
Fig. 3 shows the transmit radiation pattern obtained using the parsimonious formulations (15)–(16). The figure
shows that the parsimonious based solution achieves a transmit radiation pattern that is as good as that obtained
using the case of fine gird but with complexity comparable to that required for the case of a coarse grid.

The same simulation example is repeated using an array of size 15 × 15 transmit elements. Note that, in
this case, the transmit weight vector w will be of dimensionality 225× 1 which means the degrees of freedom is
increased as compared to the previous example. Figs. 4 and 5 show the transmit radiations patterns obtained
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Figure 1. 2D transmit power radiation pattern in dB, 7 × 7 URA, coarse grid.
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Figure 2. 2D transmit power radiation pattern in dB, 7 × 7 URA, fine grid.
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Figure 3. 2D transmit power radiation pattern in dB, 7 × 7 URA, parsimonious based design.
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Figure 4. 2D transmit power radiation pattern in dB, 15 × 15 URA, coarse grid.

using the same coarse and fine grids used in the previous example. The increased number of degrees of freedom
enables the optimization solver to better enforce the constraints while solving (11)–(12) at the price of having
higher sidelobes between the grid points. This explains why the solution obtained using a coarse grid yields
sidelobe levels between the grid points that are higher than the main lobe of the patten as shown in Fig. 4.
On the other hand, Fig. 5 shows that the use of a fine grid enables achieving good sidelobe control at the price
of higher computational cost. Finally, Fig. 6 shows the transmit radiation pattern for the parsimonious based
design obtained by solving (15)–(16). The figure illustrates that the parsimonious based solution is as good as the
solution obtained using a fine grid. In is worth noting that in practice very large arrays are used and, therefore,
the computational cost associated with the use of fine grid is prohibitive. Therefore, for very large arrays, the
proposed parsimonious based 2D transmit beamforming design represents a computationally attractive choice.

5. CONCLUSIONS

The problem of two-dimensional (2D) transmit beamforming using multidimensional arrays was considered. The
concept of focusing the transmitted energy within ceratin desired sector while minimizing the amount of energy
wasted in the out-of-sector regions was adopted. Parsimonious formulations to the sidelobe control problem in 2D
transmit beamforming were proposed. The out-of-sector region is partitioned into a small number of subsectors
where the subspace spanned by the steering vectors associated with the spatial directions within a certain
subsecetor is approximated by the effective discrete-prolate spheroidal sequences associated with that subsector.
Sidelobe control was achieved by imposing constraints on the magnitude of the inner product between the 2D
transmit beamforming weight vector and the discrete-prolate spheroidal sequences. The proposed parsimonious
formulations as shown to achieve a transmit radiation pattern that is as good as the on obtained using a fine
grid. The effectiveness of the proposed formulations was shown using simulations examples.
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Figure 5. 2D transmit power radiation pattern in dB, 15 × 15 URA, fine grid.
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Figure 6. 2D transmit power radiation pattern in dB, 15 × 15 URA, parsimonious based design.
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