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ABSTRACT

We consider the problem of single snapshot direction-of-arrival (DOA) estimation of multiple targets in monos-
tatic multiple-input multiple-output (MIMO) radar. When only a single snapshot is used, the sample covariance
matrix of the data becomes non-invertible and, therefore, does not permit application of Capon-based DOA es-
timation techniques. On the other hand, low-resolution techniques, such as the conventional beamformer, suffer
from biased estimation and fail to resolve closely spaced sources. In this paper, we propose a new Capon-based
method for DOA estimation in MIMO radar using a single radar pulse. Assuming that the angular locations of
the sources are known a priori to be located within a certain spatial sector, we employ multiple transmit beams
to focus the transmit energy of multiple orthogonal waveforms within the desired sector. The transmit weight
vectors are carefully designed such that they have the same transmit power distribution pattern. As compared
to the standard MIMO radar, the proposed approach enables transmitting an arbitrary number of orthogonal
waveforms. By using matched-filtering at the receiver, the data associated with each beam is extracted yielding
a virtual data snapshot. The total number of virtual snapshots is equal to the number of transmit beams. By
choosing the number of transmit beams to be larger than the number of receive elements, it becomes possible to
form a full-rank sample covariance matrix. The Capon beamformer is then applied to estimate the DOAs of the
targets of interest. The proposed method is shown to have improved DOA estimation performance as compared
to conventional single-snapshot DOA estimation methods.

Keywords: Direction-of-arrival estimation, single snapshot, Capon estimator, MIMO radar

1. INTRODUCTION

Direction-of-arrival (DOA) estimation finds applications in many diverse areas, such as radar, sonar, wireless
communications, seismology, radio astronomy, and medical diagnostics [1]. The problem of estimating the DOAs
of signals impinging on an array of sensors has been thoroughly investigated for several decades [1], [2]. Recently,
the problem of DOA estimation using a single snapshot has attracted considerable attention [3], [4]. Situations
where there are only a few data snapshots or even a single snapshot available for DOA estimation are not
uncommon in practice [3]–[6]. For example, in smart automotive systems, adaptive cruise control and emergency
brake initiation require performing online estimation of the relative distances and speeds with respect to other
targets as well as the targets’ DOAs [3]. Due to the rapid change of the relative ranges, velocities, and DOAs, a
single snapshot could be the only available data for DOA estimation. In the presence of a single data snapshot,
the sample covariance matrix becomes rank-deficient and non-invertible. As a result, DOA estimation techniques,
such as the Capon method, are rendered inapplicable. Recently, multiple-input multiple-output (MIMO) radar
has been the focus of intensive research [7]–[12]. The advantages of MIMO radar with colocated antennas include
improved angular resolution and parameter identifiability, increased number of detectable targets, and extended
array aperture by virtual sensors. Many algorithms have been developed for DOA estimation in MIMO radar
based on a large available number of data snapshots [13]–[18] as well as using a single pulse [18], [19].

In this paper, we introduce a Capon-based method for DOA estimation of multiple targets in MIMO radar
using data collected from a single radar pulse. Transmit beamforming is employed to achieve transmit processing
gain. A principal transmit weight vector is properly designed to focus the transmit power within a certain desired
spatial sector while minimizing the power radiated in the out-of-sector area. Then, a population of weight vectors
of same dimensionality and of same transmit power distribution as that of the principal weight vector is generated
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using the transmit radiation pattern invariance method [20], [21]. A subset of the aforementioned weight vectors
is selected and used to simultaneously transmit a set of orthogonal waveforms. Matched-filtering the data
collected from one radar pulse to the orthogonal transmit waveforms yields a number of virtual data snapshots
that equals to the number of orthogonal waveforms. By properly choosing the number of orthogonal waveforms, a
full-rank sample covariance matrix can be constructed using the virtual snapshots. This enables the application
of Capon-based DOA estimation techniques. We use simulation examples to validate the effectiveness of the
proposed Capon-based single-snapshot DOA estimation method.

This paper is organized as follows. In Section 2, we present the signal model and formulate the DOA estimation
problem. In Section 3, we present the proposed Capon-based single-snapshot DOA estimation method and briefly
review several existing single snapshot DOA estimation methods. Simulation results are provided in Section 4,
while conclusions are drawn in Section 5.

2. PROBLEM FORMULATION

We assume a MIMO radar system equipped with M transmit colocated antennas arranged in a uniform linear
array (ULA) and N receive antennas arranged in an arbitrary linear array. Let w be the M×1 principal transmit
beamforming weight vector. The main function of w is to concentrate the transmit power within a certain desired
spatial sector Θ = [θmin, θmax] while minimizing the power radiated in the out-of-sector region Θ̄. There are
several methods in the literature which can be used for transmit beamforming design (see for example [22], [23]
and references therein). Once the principal transmit beamforming weight vector is designed, it can be used to
generate a population of weight vectors of same dimensionality and of same transmit power radiation pattern
as that of w. Two weight vectors w and wq of same dimensionality are said to have the same transmit power
radiation pattern if the following radiation pattern invariance property is satisfied∣∣wHa(θ)

∣∣2= ∣∣wH
q a(θ)

∣∣2 , θ ∈
[
−π

2
,
π

2

]
, (1)

where a(θ) is the M × 1 transmit array steering vector associated with the spatial direction θ and (·)H stands
for the Hermitian. Following the steps given in [20] and [21], a population of 2M−1 − 1 weight vectors which
satisfy the radiation pattern invariance property (1) can be generated from the principal weight vector w. Let
ri, i = 1, . . . ,M −1 be the roots of the polynomial f(x) = w1 +w2x+ . . .+wMx

M−1 where wm is the mth entry
of the principal weight vector w. The transmit radiation pattern can be expressed in terms of f(x) as follows∣∣wHa(θ)

∣∣2 = |f(x)|2x=e−j2πd sin θ . (2)

Note that reflecting each root against the unit circle does not change (2), i.e., the magnitude of the beampattern
remains unchanged. Therefore, in addition to f(x), at most 2M−1 − 1 different polynomials of the same order
can be constructed, depending on the choice of the M −1 combination of the roots ri (or 1/r∗i ), i = 1, · · · ,M −1
employed for polynomial construction. The coefficients associated with each of the 2M−1 polynomials represent
a transmit weight vector that has the same transmit radiation pattern as that of the principal weight vector.
Therefore, the transmit weight vector population denoted as Wpop = {w1, . . . ,w2M−1} with the same radiation
can be constructed.

Let Ψ(t) = [ψ1(t), . . . , ψQ(t)]T be theQ×1 (Q ≤ 2M ) vector of transmit waveforms, where {ψq(t)}, q = 1, . . . , Q,
is a predesigned set of orthonormal waveforms, t is the fast time, i.e., time index within the radar pulse, and
(·)T denotes matrix transpose. Let wq, q = 1, . . . , Q, be a set of weight vectors randomly selected from the
population Wpop. Each weight vector is used to form a transmit beam for radiating one of the orthogonal
waveforms. Therefore, the baseband representation of the M × 1 transmit signal vector s(t) can be expressed as
a linear combination of the individual orthogonal waveforms, i.e.,

s(t) =

√
M

Q
WΨ(t), (3)

where W = [w∗1, . . . ,w
∗
Q] is the M×Q transmit beamforming weight matrix and (·)∗ denotes complex conjugate.

We assume that each column of the transmit weight matrix W is normalized to have a unit norm, i.e., the total



transmit power is fixed to Pt = M . Note that s(t) is the vector of the baseband signals used on the transmit side
of the MIMO radar system. From a practical viewpoint, the baseband signals s(t) should be constant modulus
in order to achieve transmit power efficiency. It is noted, however, that from a receiver perspective, the signal
model (3) enables pulse compression using the signal vector Ψ(t) which need not be constant modulus. This
permits additional degrees of freedom in designing the individual orthogonal waveforms.

Assuming that L targets are present in a certain range bin, the baseband representation of the N×1 received
signal vector at the output of the receive array is modeled as

x(t) =

L∑
l=1

αlb(θl)a
T (θl)s(t− τ) + xi(t) + n(t)

=

√
M

Q

L∑
l=1

αlb(θl)a
T (θl)WΨ(t− τ) + xi(t) + n(t), 0 ≤ t ≤ Tp, (4)

where αl is the reflection coefficient associated with the lth target, b(θ) is the N × 1 receive steering vector, τ
is the time delay associated with the range bin of interest, xi(t) is the interference term which summarizes all
signal components due to echoes from targets located outside the range bin of interest, n(t) is the N × 1 vector
of additive white Gaussian noise with zero mean and covariance σ2

zIN , IN denotes the N ×N identity matrix,
and Tp is the radar pulse duration. In (4), the reflection coefficient αl, l = 1, . . . , L are assumed to obey the
Swerling II target model, i.e., they remain constant during the entire width of the radar pulse.

The problem can be formulated as follows. Given the data collected at the output of the receive array due
to one radar pulse, estimate the target DOAs θl, l = 1, . . . , L.

3. SINGLE-SNAPSHOT DOA ESTIMATION

In this section, we introduce the proposed Capon-based single-snapshot DOA estimation method. We also briefly
review three existing methods, namely, the traditional MIMO radar based Capon, the conventional (Bartlett)
beamformer, and the spheroidal sequences based DOA estimation, which can be applied to the single-snapshot
case. Each of the three existing methods can be viewed as a special case of our proposed formulations.

3.1 Proposed Capon-based DOA Estimation

Matched-filtering the received data (4) to a delayed version of each of the orthogonal waveforms yields the virtual
data snapshots

xq =

∫
Tp

x(t)ψ∗q (t− τ)dt

=

√
M

Q

L∑
l=1

αl

(
wH
q a(θl)

)
b(θl) + nq, q = 1, . . . , Q, (5)

where nq =
∫
Tp

n(t)ψ∗q (t)dt is the N × 1 noise vector at the output of the matched filter which has the same

statistics as that of n(t). It is worth noting that the term xi(t) is filtered out during the matched-filtering step
as a result of the orthogonality condition∫

Tp

ψq(t− τ)ψ∗p(t− τ ′)dt =

{
1, q = p, τ = τ ′;
0, otherwise.

(6)

Utilizing the virtual data snapshots (5), the N ×N sample covariance matrix can be computed as

R̂ =
1

Q

Q∑
q=1

xqx
H
q . (7)



Assume that the number of transmit antennas is larger than or equal to the number of receive antennas, i.e.,
M ≥ N . Then, by choosing Q ≥ N , the sample covariance matrix (7) is guaranteed to be full-rank. This means
that the sample covariance matrix is invertible and the Capon principle can be applied for DOA estimation.
It is worth noting that, for the case of N > M , the virtual data at the output of the matched filters can be
re-arranged such that a full-rank sample covariance matrix of size M ×M can be constructed.

The Capon spectrum can then be computed as [1]

PCapon(θ) =
bH(θ)b(θ)

bH(θ)R̂−1b(θ)
. (8)

The DOAs are obtained by searching for the L largest peaks in the Capon spectrum (8).

3.2 Traditional MIMO Radar Based DOA Estimation

The essence of the traditional MIMO radar is to radiate omnidirectionally Q = M orthogonal waveforms, one
from each transmit antenna. This corresponds to choosing the transmit beamforming weight matrix to be the
M ×M identity matrix, i.e., W = IM . In this case, the virtual snapshots in (5) reduce to

xm =

L∑
l=1

αla[m](θl)b(θl) + nm, m = 1, . . . ,M, (9)

where (·)[m] is the mth entry of a vector. A full-rank covariance matrix can be constructed using the virtual
snapshots (9), that is,

R̂ =
1

M

M∑
m=1

xmxHm. (10)

The sample convariance matrix (10) enables application of Capon-based for DOA estimation. However, compar-

ing (5) and (9), it can be observed that the proposed method enjoys transmit processing gain
(
wH
q a(θl)

)
while

the traditional MIMO radar suffers from decreased signal strength due to the fact that no coherent processing
gain is employed. As a result, the latter is expected to have poor DOA estimation performance.

3.3 Classical SIMO Radar Based DOA Estimation

In the classical single-input multiple-output (SIMO) radar configuration, a single transmit waveform is employed.
Transmit coherent processing gain is achieved using a single transmit beamforming weight vector, i.e., Q = 1
is used. This case corresponds to choosing the transmit weight matrix W in the proposed formulation to be a
single vector, e.g., the principal weight vector. In such a case, the virtual snapshots (5) reduce to a single data
snapshot

xSIMO =
√
M

L∑
l=1

αl

(
wHa(θl)

)
b(θl) + n. (11)

By comparing (5) and (11), it is observed that both formulations have the same power distribution pattern.
However, the SIMO configuration has a higher signal strength at the receiver as a result of assigning the total
transmit power to a single waveform. Despite the high signal strength, the single-snapshot data does not enable
high-resolution DOA estimation. Therefore, the conventional (Bartlett) beamformer has to be used for DOA
estimation. The DOAs can be obtained by searching for the L highest peaks in the conventional beamformer
spectrum, i.e.,

PCB(θ) =

∣∣bH(θ)xSIMO

∣∣2
bH(θ)b(θ)

. (12)
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Figure 1. Transmit power distribution versus spatial angle.

3.4 Spheroidal Sequences Based DOA Estimation

The discrete prolate spheroidal sequences can be used to incorporate the transmit processing gain at the transmit
side of the MIMO radar system. This corresponds to choosing the transmit beamforming weight matrix as
W = [u1, . . . ,uK ], where uk, k = 1, . . . ,K, are the K (K < M) principal eigenvectors of the positive semi-
definite matrix A =

∫
Θ

a(θ)aH(θ)dθ. In this case, the virtual snapshots given in (5) reduce to

yk =

√
M

K

L∑
l=1

αl

(
uHk a(θl)

)
b(θl)+nk, k = 1, . . . ,K. (13)

Since K is small, the K virtual snapshots (13), in general, do not yield a full-rank sample covariance matrix.
Similar to the SIMO case, a low-resolution DOA estimation can be performed by searching for the L highest
peaks of the spectrum

PSPH(θ) =
bH(θ)R̂SPHb

H(θ)

bH(θ)b(θ)
, (14)

where R̂SPH = 1/K
∑K
k=1 yky

H
k .

4. SIMULATION RESULTS

The MIMO radar is assumed to have a transmit ULA with M = 12 antennas spaced half-wavelength apart,
and a non-uniform linear receive array of N = 10 elements. The interelement spacing of the receive antennas
are randomly drawn from the range [0 9] measured in units of half-wavelengths. The additive noise signals are
modeled as complex Gaussian, zero-mean, and both temporally and spatially white. The targets are assumed
to be located within the spatial sector Θ = [−10◦, 10◦]. The principal weight vector is designed by solving the
following optimization problem

min
w

max
i

∣∣∣wHa(θi)− ejφ(θi)
∣∣∣ , θi ∈ Θ, i = 1, . . . , I

subject to
∣∣wHa(θk)

∣∣ ≤ δ, θk ∈ Θ̄, k = 1, . . . ,K, (15)
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Figure 2. RMSE versus SNR.

where θi and θk are continuums of angles chosen uniformly or non-uniformly to approximate Θ and Θ̄, respec-
tively, φ(θ) is an arbitrary phase profile which is assumed to be continuous within the desired sector Θ, and
δ is a user-specified positive number to control sidelobe levels. The optimization problem (15) is convex and
can be efficiently solved using the interior point methods [24]. The phase profile φ(θ) = 2π sin θ is chosen. The
sidelobe levels are controlled by choosing δ =

√
0.01, i.e., the sidelobe attenuation is at least 20 dB. Following

the guidelines of [21], the principal weight vector obtained by solving (15) is used to generate a population of
4095 companion weight vectors. The principal weight vector in addition to the 4095 companion weight vectors
form together an overall population of 4096 weight vectors. Q = 12 weight vectors are drawn randomly from the
overall population and used for the proposed single-snapshot DOA estimation. For the conventional beamformer,
only the principal weight vector is used at the transmit side. For the spheroidal sequences based method, K = 3
principal eigenvectors are used. For all methods tested, the total transmit power is fixed to Pt = M .

Fig. 1 shows the normalized transmit power distribution for the proposed method and the spheroidal sequences
based method. For the traditional MIMO configuration, the transmit power distribution is flat due to the
onmidirectional transmission of the waveforms and, therefore, is not shown in the figure. For the classical SIMO
configuration, the transmit power distribution is the same as that of the proposed method because the employed
transmit weight vector is the principal weight vector designed for the proposed scheme.

To test the high resolution capability of the proposed method, two targets are assumed to be located at
−3◦ and 3◦. Fig. 2 depicts the root-mean square error (RMSE) versus the signal-to-noise ratio (SNR) for all
considered methods. The results are averaged over 300 independent runs in each case. We observe that both
conventional and spheroidal sequences beamformers have poor performance at moderate and high SNR values,
which can be attributed to the low-resolution and biased features of the estimators. The figure also shows that
the traditional MIMO based Capon has good RMSE performance especially at high SNR values. Finally, it can
be seen from the figure that the proposed Capon-based single-snapshot DOA estimation method has the best
RMSE performance as compared to all other methods.

Fig. 3 plots the probability of target resolution versus the SNR for all considered methods. The targets
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Figure 3. Probability of target resolution versus SNR.

are assumed to be resolved if at least two peaks in the spectrum are observed and the following condition is
satisfied [1] ∣∣∣θ̂l − θl∣∣∣ ≤ |θ2 − θ1|

2
l = 1, 2.

It can be observed from Fig. 3 that the conventional beamformer and the spheroidal sequence based method
cannot achieve a good probability of target resolution performance even at very high SNR values mainly due
to the low-resolution capability of the two estimators. The proposed Capon-based method and the traditional
MIMO based Capon method achieve a 100% resolution for SNR values higher than 0 dB. For smaller SNR values,
the proposed method provides better resolution capabilities as compared to the traditional MIMO based Capon
method.

5. CONCLUSIONS

The problem of DOA estimation of multiple targets in MIMO radar using a single snapshot has been addressed.
A Capon-based single-snapshot DOA estimation method was proposed. Transmit coherent processing gain was
achieved by properly designing a principal transmit weight vector to focus the transmit power within the desired
spatial sector while minimizing the power radiated in the out-of-sector directions. The designed weight vector
was used to generate a population of weight vectors with the same dimensionality and same transmit power
distribution as that of the principal vector. The generated population of weight vectors enables transmitting
multiple orthogonal waveforms over a single illumination. All waveforms are radiated with the same transmit
radiation pattern as that of the principal transmit beamforming weight vectors, i.e., same transmit processing
gain is achieved for each waveform. At the radar receiver, the orthogonal waveforms lend themselves to providing
a number of virtual data snapshots equal to the number of orthogonal waveforms, thereby permitting the ap-
plication of Capon-based DOA estimation. The proposed method was shown to outperform the classical MIMO
radar based Capon, the conventional (Bartlett) beamformer, and the spheroidal sequences based beamformer.
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