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Abstract—A conventional coprime array is a linear array,
which consists of two uniform linear subarrays to construct an
effective difference coarray with certain desirable characteristics.
In this paper, we propose a parallel coprime array structure and
a novel algorithm for two-dimensional (2-D) direction-of-arrival
(DOA) estimation. By vectorizing the cross-covariance matrix of
subarray data, the resulting virtual difference coarray enables re-
solving more signals than the number of antennas. The 2-D DOA
estimation problem is cast as two separate one-dimensional DOA
estimation problems, where the estimated azimuth and elevation
angles can be properly associated. Compared with other methods,
such as, the propagator method (PM) and the rank-reduction
(RARE) based algorithms, the proposed method resolves more
signals and achieves improved estimation performance.

Keywords—Two-dimensional (2-D) direction-of-arrival estima-
tion, coprime array, parallel subarrays.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation determines the spa-
tial spectrum of the impinging electromagnetic waves on the
antenna array. It finds variety of applications in radar, sonar,
radio astronomy, and mobile communication systems [1].
In recent years, two-dimensional (2-D) DOA estimation has
been rigorously investigated. Among existing techniques, the
subspace-based methods, such as multiple signal classification
(MUSIC) [2] and estimation of signal parameters via rotational
invariance techniques (ESPRIT) [3], are most popular due to
their high-resolution direction finding capabilities. However,
these approaches require 2-D search and use either eigen-
value decomposition (EVD) or singular value decomposition
(SVD) operation to obtain noise or signal subspaces, which is
computationally costly when the number sensors is large.

In [4], a well-known propagator method (PM) was pro-
posed to find one-dimensional (1-D) DOA with significantly
reduced computational complexity. The propagator can be
estimated from the covariance matrix of the received signals
with a least square process and without any EVD or SVD
operation. By utilizing the PM, [5]–[9] extended the 1-D DOA
estimation to 2-D cases. In [5], an algorithm was developed by
exploiting two separate rectangular planar subarrays. However,
it still requires an exhaustive 2-D peak search. In [6], a fast
algorithm was proposed based on two parallel uniform linear
arrays (ULAs), which requires an additional pair matching
between the 2-D azimuth and elevation angle estimation and
the antennas are only partially used. In [7], an approach was
proposed to achieve automatically paired 2-D DOA estimation
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using the same array configuration. In addition, it achieves
improved estimation performance because all elements of the
array were fully used. However, it has an estimation failure
problem when the elevation angle is high, which are typical in
mobile communication environments. To solve that problem,
other techniques were proposed to use three parallel ULAs,
but they do not effectively use the achievable array degree-of-
freedoms (DOFs).

Generally, all the PM-based methods do not take full
advantage of all sensors and the number of DOFs cannot
exceed Nt/2, where Nt is the number of array sensors. Thus,
the maximum number of estimated signals was very limited.
In [10], an approach based on rank-reduction (RARE) [11]
for a modified three parallel ULAs, which can be treated as
subarrays displaced from a long ULA. By constructing a long
virtual ULA, it makes use of more sensors and resolve up to
(Nt − 3) signals.

In this paper, we consider the problem of detecting
more signals than the number of array sensors, which is of
tremendous interest in various applications [12], [13]. Toward
this purpose, a higher number of DOFs is usually achieved
by exploiting a sparse array under the coarray equivalence.
Among a number of techniques that are available for sparse
array construction, the recent proposed coprime array is very
attractive due its systematical design capability and DOF
analysis [14]. The coprime array configuration, which consists
of two collocated uniform linear subarrays, enables estimation
of DOAs up to O(MN) signals when Nt is O(M +N) for a
coprime integers M and N . Several coprime configurations
were developed to achieve higher DOFs and more flexible
array design [15], [16]. However, these different coprime
configurations are mainly limited to the 1-D case.

In this paper, we propose a parallel coprime structure and
a novel algorithm for 2-D DOA estimation using the coprime
array configuration. By vectorizing the cross-covariance ma-
trix of subarray data, the resulting virtual difference coarray
enables to resolve more signals than the number of antennas.
The 2-D DOA estimation problem is cast as two separate
one-dimensional DOA estimation problems in the proposed
technique. It does not require the EVD operation and ex-
haustive 2-D peak search. In addition, the estimated azimuth
and elevation angles can be paired automatically. Compared
with other propagator method (PM) based and rank-reduction
(RARE) based algorithms, the proposed method can resolve
more signals.

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). In particular, IN denotes the



N × N identity matrix. (.)∗ implies complex conjugation,
whereas (.)T and (.)H respectively denote the transpose and
conjugate transpose of a matrix or vector. vec(·) denotes the
vectorization operator that turns a matrix into a vector by
stacking all columns on top of the another, and diag(x) denotes
a diagonal matrix that uses the elements of x as its diagonal
elements. E(·) is the statistical expectation operator and ⊗
denotes the Kronecker product. CN (x|a, b) denotes that ran-
dom variable x follows a complex Gaussian distribution with
mean a and variance b. arg(x) returns the phase of a complex
variable x. N+ denotes the set of positive integers. Krank(Φ)
denotes the Kruskal rank of Φ, returning the largest integer r
such that every r columns of Φ are linearly independent.

II. SIGNAL MODEL

As illustrated in Fig. 1, the array configuration consists
of a coprime pair of uniform linear subarrays, i.e., a 2M -
element subarray with an interelement spacing of Nd, and
an N -element subarray with an interelement spacing of Md,
where d = λ/2 is the unit interelement spacing, and λ is the
wavelength of the carrier frequency. The two integers M ∈
N+ and N ∈ N+, M < N are chosen to be coprime, i.e.,
their greatest common divisor is one. The difference to the
conventional coprime arrays for 1-D DOA estimation lies in
the fact that these two subarrays are placed parallel with a
distance d = λ/2.

Assume that Q far-field narrowband uncorrelated signals
sq(t), t = 1, . . . , T , for q = 1, . . . , Q, impinge on the array
from the angles (θq, φq), where θq and φq denote the elevation
angle and azimuth angle of the qth signal, respectively. Let
s(t) = [s1(t), ..., sQ(t)]

T . Then, the 2M × 1 and N × 1 data
vectors received at the subarrays are, respectively, expressed
as

x1(t) =

Q∑
q=1

a1(θq, φq)sq(t) + n1(t) = A1s(t) + n1(t), (1)

x2(t) =

Q∑
q=1

a2(θq, φq)sq(t) + n2(t) = A2s(t) + n2(t), (2)

where

a1(θq, φq) =
[
1, ejπN sin(θq) sin(φq), . . . , ejπ(2M−1)N sin(θq) sin(φq)

]T
,

(3)

a2(θq, φq) =

[
1, ejπM sin(θq) sin(φq)+jπ sin(θq) cos(φq), . . . ,

. . . , ejπ(N−1)M sin(θq) sin(φq)+jπ sin(θq) cos(φq)
]T

(4)

are the steering vectors of the subarrays corresponding to
angles (θq, φq) for q = 1, . . . , Q. The 2M × Q manifold of
subarray 1 is A1 = [a1(θ1, φ1), ...,a1(θQ, φQ)], and the N×Q
manifold of subarray 2 is A2 = [a2(θ1, φ1), ...,a2(θQ, φQ)]. In
addition, the elements of the noise vectors n1(t) and n2(t) are
assumed to be independent and identically distributed (i.i.d.)
random variables following the complex Gaussian distribution
CN (0, σ2

nI2M ) and CN (0, σ2
nIN ), respectively.
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Fig. 1. Geometry of the array configuration.

III. 2-D DOA ESTIMATION

A. The Proposed Approach
In Fig. 2, we define αq as the angle between the qth signal

and the y−axis, and βq is defined as the corresponding angle
between the signal and the x−axis, for all q = 1, . . . , Q. As
such, we can obtain the following relationships

cos(αq) = sin(θq) sin(φq), (5)
cos(βq) = sin(θq) cos(φq). (6)

In addition, the steering vectors of two subarrays can be
rewritten as

a1(θq, φq) = ã1(αq)

=
[
1, ejπN cos(αq), . . . , ejπ(2M−1)N cos(αq)

]T
, (7)

a2(θq, φq) = ã2(αq)e
jπ cos(βq)

=
[
1, ejπM cos(αq), . . . , ejπ(N−1)M cos(αq)

]T
ejπ cos(βq).

(8)

The corresponding received vectors can be expressed as

x1(t) = Ã1s(t) + n1(t), (9)

x2(t) = Ã2Bs(t) + n2(t), (10)

with the manifolds Ã1 = [ã1(α1), ..., ã1(αQ)] and Ã2 =
[ã2(α1), ..., ã2(αQ)]. In addition,

B = diag([ejπ cos(β1), . . . , ejπ cos(βQ)]). (11)

The cross-covariance matrix between the data vectors x1(t)
and x2(t) is obtained as

Rx12 = E[x1(t)x
H
2 (t)] = Ã1RssB

HÃH
2

=

Q∑
q=1

σ2
qe

−jπ cos(βq)ã1(αq)ã
H
2 (αq), (12)

where Rss = E[s(t)sH(t)] = diag([σ2
1 , . . . , σ

2
Q]) is the

covariance matrix of the signals where the diagonal entries
represent the signal scattering power. In practice, matrix Rx12

is estimated using the T available samples, i.e.,

R̂x12 =
1

T

T∑
t=1

x1(t)x
H
2 (t). (13)

By vectorizing the matrix R̂xkl
, we obtain the following

2MN × 1 measurement vector:

z = vec(R̂x12
) = Āb, (14)
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Fig. 2. Illustration on θq , φq , αq , and βq .

with

Ā = [ā(α1), . . . , ā(αQ)], (15)

b = [σ2
1e

−jπ cos(β1), . . . , σ2
Qe

−jπ cos(βQ)]T , (16)

where ā(αq) = a1(αq)
⊗

a∗
2(αq) for 1 ≤ q ≤ Q. Benefiting

from the Vandermonde structure of vectors a1(αq) and a2(αq),
the entries in ā(αq) keep the forms of ejπ(Nm−Mn) cos(αq) for
0 ≤ m ≤ 2M−1 and 0 ≤ n ≤ N−1. Thus, we can regard z as
a virtual received signal from a single snapshot signal vector b
and matrix Ā that corresponds to a larger virtual array whose
virtual sensors are located at the cross-lags between the two
subarrays. As such, the number of DOFs is increased, enabling
DOA estimation of more signals than the number of sensors.

The signal vector z in Eqn. (14) can be sparsely represented
over the entire discretized angular girds as

z = Φr, (17)

where Φ is defined as the collection of steering vectors ā(αg)
over all possible grids αg , g = 1, . . . , G, with G � Q. It
is important to note that αq, q = 1, . . . , Q, are indicated by
positions of the nonzero entries in r, whose values describe
the corresponding coefficients.

Compressive sensing (CS) [17] techniques can be used
for effective sparse reconstruction and a number of effective
algorithms are available [18]–[20]. It is known that CS-based
approaches offer a more effective use of the difference coarray
sensors obtained from a coprime array in performing DOA
estimation as compared to subspace-based methods [15], [21],
[22]. As the preferred approach, we use CS algorithms in the
Bayesian sparse learning context [23]–[25] as they achieve
superior performance and are insensitive to the coherence of
dictionary entries. To handle the complex-valued observations
and entries in the underlying problem, the complex multitask
Bayesian compressive sensing (CMT-BCS) [26] is used to
estimate α̂q, q = 1, . . . , Q, in this paper.

Once αq , q = 1, . . . , Q, are estimated, the Q× 1 vector b
can be estimated using least squares fitting based on the linear
model in Eqn. (14), expressed as

b̂ =

(
ˆ̄A
H ˆ̄A

)−1
ˆ̄A
H

z, (18)

with ˆ̄A = [ā(α̂1), . . . , ā(α̂Q)]. Then, βq can be obtained as

−jπ cos(β̂q) = arg(b̂q), (19)

where b̂q is the qth element of vector b̂. Note that the estimated
parameter β̂q is automatically paired with the corresponding
parameter α̂q .

Based on the relationship between (θq, φq) and (αq, βq) in
Eqns. (5) and (6), the elevation and azimuth angle estimation
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for each signal can be expressed as

θ̂q = sin−1

[√
cos2(α̂q) + cos2(β̂q)

]
, (20)

φ̂q = tan−1

[
cos(α̂q)

cos(β̂q)

]
. (21)

It is noted that 2-D angle parameters θq and φq are
also automatically paired. The proposed approach is simply
summarized as follows.

S1: Construct the covariance matrix R̂x12
with (13).

S2: Obtain the measurements of the virtual array by vec-
torizing R̂x12 .

S3: Perform CMT-BCS to obtain α̂q based on (17).
S4: Perform least squares fitting to obtain cos(β̂q) based

on (18) and (19).
S5: Attain the estimates of θ̂q and φ̂q from (20) and (21).

B. Identifiability
In sparse reconstruction, the Kruskal Rank [28] of Φ, i.e.,

Krank(Φ), decides when such recovery is possible. Due to the
coprimality between M and N , Krank(Φ)= 2MN . Therefore,
following the results in [29], the Q-sparse vector r can be
uniquely recovered if and only if

Q ≤ Krank(Φ)

2
=MN. (22)

Thus, the maximum number of estimated signals Qmax =
MN . For a given number of physical antennas 2M+N = Nt,
Qmax can be derived by solving the optimization problem:

Maximize Qmax =MN

subject to 2M +N = Nt, (23)
M < N, M,N ∈ N+.

It is demonstrated in [27] that the valid optimal coprime pair
is the one that has 2M and N as close as possible. This is
satisfied by choosing N = 2M−1. In this case, the maximum
number of estimated signals Qmax is

Qmax =
N2
t − 1

8
. (24)

As shown in Fig. 3, the proposed approach resolves more
signals than the number of array sensors when Nt ≥ 8,
whereas the signals to be resolved by the algorithms in [6]–
[10] is smaller than the number of antennas.
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Fig. 4. The resulting coarray (M = 3 and N = 5; •: virtual sensor positions; ×: holes).

IV. SIMULATION RESULTS

For illustrative purpose, we consider the 2-D DOA estima-
tion problem using the proposed array configuration consisting
of two parallel coprime subarrays, where M = 3 and N = 5
are assumed. As such, the array configuration consists of
Nt = 2M +N = 11 antennas. It yields 2MN = 30 elements
in the coarray, as shown in Fig. 4. The increased DOFs can
be used to identify up to (N2

t − 1)/8 = MN = 15 signals,
which offer the capability as the 1-D coprime array in [14].

We consider a scenario with Q = 12 signals impinging on
the array. This number is more than the number of antennas
and the available DOFs obtained from the algorithms proposed
in [6]–[10]. All signal powers are assumed to be identical and
the covariance matrix is obtained by using 2000 snapshots in
the presence of noise with a 0 dB input SNR. It is evident that
all 12 signals can be identified correctly.
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Fig. 5. 2-D DOA estimation results (Q = 12).

V. CONCLUSION

In this paper, a novel algorithm for 2-D DOA estimation
was proposed. By exploiting a coprime array configuration
with two parallel placed subarrays, the proposed method
achieved a larger number of DOFs under the difference coarray
equivalence. As such, the proposed technique can resolve
more signals than the number of sensors. In the proposed
approach, the 2-D DOA estimation was decomposed into two
1-D problems, and the elevation and azimuth angles were
paired automatically avoiding any problem with associations.
Simulation results showed the effectiveness and the advantages
of the proposed method.
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