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Abstract—In this paper, we consider a problem of near-field
source localization using the sensor-angle distribution (SAD)
that views the source range and direction-of-arrival (DOA)
information as sensor-dependent phase progression. The SAD
draws parallel to quadratic time-frequency distributions and,
as such, is able to reveal the changes in the spatial frequency
over sensor positions. In particular, for a moderate source range,
the SAD signature is of polynomial shape, thus simplifying the
parameter estimation. We consider sparse arrays where the array
sensors are located on a grid but with missing positions. Sparse
reconstruction techniques are used to estimate the SAD in the
joint space and spatial frequency domain, and the results are
then mapped back to source range and DOA estimation for
source localization. The effectiveness of the proposed technique
is verified using simulation results.

I. INTRODUCTION

Localization of near-field emitting sources is an important
application in many radar applications. Such problems are
much more challenging than the far-field counterparts as the
received signals are a coupled function of both the range and
the direction-of-arrival (DOA) of each source. A number of
methods have been developed to decouple these two variables
for simplified computations, but they usually entail some
constraints and compromised performance. For example, the
fourth-order statistics based approaches require a uniform
linear array (ULA) with an inter-element spacing of quarter
wavelength [1], [2].

In this paper, we consider the sensor-angle distribution
(SAD) that maps the source range and DOA information as
sensor-dependent phase progression, and the yielding distribu-
tion presented in the joint space and spatial frequency domain
resembles to the time-frequency signature for instantaneous
narrowband nonstationary signals [3]. As such, the signal pro-
cessing techniques established in the time-frequency domain
can be readily applied for the processing of the SAD for
near-field source localization. In particular, for a moderate
source range, the SAD signature is of polynomial shape, thus
simplifying the parameter estimation. Note that the SAD was
originally developed in the form of spatial Wigner distribution,
but we consider it in the more general Cohen’s class with a
proper time-frequency kernel to better process the sensor-angle
relationship modeled by polynomial phase signals (PPS’s) [4].

The uniformly spaced linear arrays with an inter-element
spacing of half-wavelength or less achieve high resolution
while avoiding spatial ambiguity. In practical applications,
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however, they might be very costly due to receiver hardware
and computational complexity. Sparse arrays [5]–[12] have
fewer elements to achieve the same array aperture as com-
pared to fully populated arrays. They have similar mainbeam
properties and therefore provide similar performance in terms
of angular accuracy, resolution, and detection of targets close
to interference directions with reduced size, weight, power
consumption and cost. In this paper, we also consider the
effect of using sparse arrays where the array sensors are
located on a grid but with missing positions. As such, the
conventional time-frequency analysis tools become infeasible
due to the undesirable artifacts caused from missing sensor
entries [13]. Instead, we use sparse reconstruction techniques
to estimate the SAD in the joint space and spatial frequency
domain [13]–[15], and the obtained results are then mapped
back to the estimation of source range and DOA estimation for
effective source localization. The effectiveness of the proposed
technique is verified using simulation results.

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). In particular, IN denotes the N×
N identity matrix. (.)∗ denotes complex conjugate, whereas
(.)T and (.)H , respectively, denote the transpose and conjugate
transpose of a matrix or vector. diag(x) represents a diagonal
matrix that uses the elements of x as its diagonal elements.
‖·‖22 implies the Euclidean (l2) norm of a vector. Tr(.) denotes
the trace of a matrix. Pr(·) expresses the probability density
function (pdf), and N (x|a, b) denotes the random variable x
follows a Gaussian distribution with mean a and variance b.
In addition, Re(x) and Im(x) are the real and imaginary parts
of complex element x, respectively. b·c denotes the largest
integer not exceeding the argument.

II. SYSTEM AND SIGNAL MODEL

Consider a K-element linear array where the sensors are
located at pkd, with d denoting the unit inter-element spacing.
Let the index of the central elements to be 0, and pk ∈ Z for
k = b−K−12 c, . . . , b

K−1
2 c. We consider a narrow-band array,

i.e., the reciprocal of the bandwidth of any signals received is
large compared with the propagation delay across the array.
To avoid spatial ambiguity, the unit spacing d is usually taken
as half-wavelength, denoted as d = λ/2.

Consider a near-field target located with a range r and
azimuth angle θ with respect to a reference sensor, as depicted
in Fig. 1. We use the central sensor position with p0 = 0 as
the reference sensor. Note that a physical sensor array may or
may not be present at this position. For the simplicity of the



presentation, we only consider the single-source model in this
paper, but the extension of the proposed technique to multiple
target scenarios is straightforward.

In near-field environment, the range between the source
and the sensors varies for each of the K sensors. It is
straightforward to show that the range between the source
signal and sensor k is given by

rk =
√
r2 + p2kd

2 − 2rpkd cos(θ). (1)

As such, the near-field steering vector is given by

a = [1, exp(jαr1), ..., exp(jαrK−1)]T , (2)

where α = 2π/λ, and rk is given in (1) for k =
b−K−12 c, . . . , b

K−1
2 c.

As such, for source signal s(t), the data received at the
sensor array is expressed as

x(t) = as(t) + n(t), t = 1, ..., T, (3)

where n(t) is the additive Gaussian noise vector, and T is the
number of observed time samples.

To understand the significance of the steering vector, con-
sider the special case of fully populated array that is uniformly
spaced with interelemet spacing d, i.e., pk = k. In this case,
the variation over the sensors resembles a uniformly sampled
frequency-modulated (FM) signal. For a moderate number of
sensors, the FM signal can be considered as a PPS with a
limited order. Specifically, when the range is substantially
larger than the array aperture, i.e., r � pK−1d, (1) can be
approximated as a third-order PPS, given by

rk ≈ r−kd cos(θ)+
k2d2

2r
sin2(θ)+

k3d3

2r2
cos(θ) sin2(θ). (4)

In this case, the corresponding near-field steering vector a,
given in (2), is a uniformly sampled linear FM signal with
respect to k. The corresponding spatial frequency is obtained
from the derivative of phase term with respect to k, given as

f(k) = − 1

2λ
(rk+1 − rk−1) = b0 + b1k + b2k

2, (5)

where

b0 =
d

λ
cos(θ)− d3

2r2λ
cos(θ) sin2(θ),

b1 =− d2

rλ
sin2(θ),

b2 =− 3d3

2r2λ
cos(θ) sin2(θ). (6)

It is clear that the coefficients b0, b1 and b2 are related to
the range and the DOA. As such, these two parameters can
then be estimated once the sensor-dependent spatial frequency
is obtained. Note that, for a large range (r � 1) such that
the second-order term is negligible, f(k) behaves as a chirp.
Furthermore, when the source is located in a far field, as r
approaches infinity, f(k) trends to be a constant, implying a
single spatial frequency associated with a sensor-independent
DOA. According to (6), the unknown range and DOA can
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Fig. 1. The geometry for near-field source localization.

be estimated using the following expression based on the
polynomial coefficients,

θ̂ = arccos

[
λ

d

(
b0 −

b2
3

)]
,

r̂ =− d2

b1λ
sin2(θ̂). (7)

Specifically, when d = λ/2, the above expression becomes

θ̂ = arccos

[
2

(
b0 −

b2
3

)]
,

r̂ =− d

2b1
sin2(θ̂). (8)

III. SENSOR-ANGLE DISTRIBUTION

The SAD draws parallel to the time-frequency distribution.
In essence, in SAD, we use sensor positions in lieu of
time samples and the spatial frequency replaces the temporal
frequency. From this analogy, SAD would help to reveal the
local behavior of the spatial frequency along the array axis.
The SAD corresponding to the ith sensor position and spatial
frequency ξ at time instant t is expressed as [16]

D̃(i, ξ; t)=

∞∑
l=−∞

∞∑
v=−∞

φ(v, l)x(i+v+l; t)x∗(i+v−l; t)e−j4πξl,

(9)
where x(i; t) denotes the ith element of vector x(t), and
φ(v, l) is a kernel function that characterizes the distribution
and is a function of sensor position and sensor lag. The above
equation defines Cohen’s class of power distribution over the
joint-variable i and ξ. In this respect, all the standard kernel
designs applied in the time-frequency literature can be used
with the SAD. The distribution in (9) can be averaged over the
T samples to reduce the effect of observation noise, yielding

D(i, ξ) =
1

T

T∑
t=1

D̃(i, ξ; t). (10)

Stacking D(i, ξ) with respect to i and ξ form a sensor-angle
matrix D.

Several methods are available for the parameter estimation
of linear FM and PPS (see, e.g., [17]–[19]). Such methods,
however, are effective only when the samples are uniformly
applied (i.e., the array is uniform linear in the underlying
sensor phase progression).



IV. SPARSE RECONSTRUCTION OF SAD FROM SPARSE
ARRAY

In this paper, we use a systematic structure consisting of
uniform linear subarrays with coprime inter-element spac-
ing. The coprime array structure was proposed in [8] for
systematical sparse array configuration, and has found broad
applications for DOA estimation and interference suppression
[20], [21]. Benefiting from the analogy with time-frequency
distributions, the random placement of array sensors is deemed
to produce artifacts that clutter the SAD. Analysis of the
effects of missing samples on TFD is given in [13], [14].
To avoid the induced artifacts and improve time-frequency
signature estimation, sparse signal reconstruction techniques
have been used and shown effective [13]–[15]. In extending
these techniques to the underlying SAD problem, we first
define the following sensor autocorrelation function (SAF) for
time instant t [16],

Ã(i, l; t)=

∞∑
v=−∞

φ(v, l)x(i+ v + l; t)x∗(i+ v − l; t). (11)

The averaged SAF

A(i, l) =
1

T

T∑
t=1

Ã(i, l; t) (12)

can be similarly defined using all the T time samples, along
with the SAF matrix Ã that contains all the entries for i and
l. As such, the averaged SAD matrix D and the averaged
SAF matrix A are related by a one-dimensional (1-D) Fourier
transform along the lag dimension. We use the data-dependent
adaptive kernel, which is based on the adaptive optimal kernel
(AOK) [22] and is modified to suppress the impulsive effect
due to missing samples [23]. Denote ai as a column vector
that contains all the elements in the ith column of A, and di
as a vector corresponding to the ith column of D. Then these
two vectors are related by

ai = Fdi, i = 1, ..., pk, (13)

where F is the discrete inverse Fourier transform matrix.
Equation (13) describes a linear model relating the sparse
vector di with compressed observation vector ai using a
Fourier dictionary. As such, di can be obtained by solving
a sparse optimization problem, where commonly used com-
pressive sensing techniques, like orthogonal matching pursuit
(OMP) [24], can be applied. The structure-aware Bayesian
compressive sensing technique can further exploit the continu-
ity of the spatial frequency signatures for improved estimation
performance [15].

As demonstrated for time-frequency analysis, the 1-D re-
lationship between the the instantaneous autocorrelation func-
tion (IAF, the dual of SAF) and the time-frequency distribution
(the dual of SAD) is much more effective than the conventional
two-dimensional (2-D) approach between the ambiguity func-
tion and the time-frequency distribution [25], [26].

Once the sparse spatial frequency is estimated, the polyno-
mial phase coefficients, i.e., b0, b1 and b2, can be obtained
using, e.g., least squares fitting. Then, the range and DOA can
be estimated based on (7) or (8).
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Fig. 2. Near-field source localization using the ULA for Example 1.

V. SIMULATION RESULTS

Simulation examples are presented to demonstrate the ef-
fectiveness of the proposed technique. Two examples are
considered using a ULA as well as a sparse linear array. The
first example considers the localization of a single near-field
source, where the spatial frequency is approximately linear
to the sensor position. The second example, we consider the
situation where the source is closer to the array so that the
spatial frequency is approximated as a third-order PPS with
respect to the sensor positions.

Example 1. We first consider a ULA with 32 elements.
The carrier frequency is considered to be 15 MHz, yielding a
wavelength of λ = 20 m. The interelement spacing is set to
d = λ/2 = 10 m. A source is located with a range of 1000
m and DOA of 30o with respect to the reference sensor. The
corresponding source coordinate is [866.03, 500] m. We use
quadrature phase-shift keying (QPSK) modulated signals as an
example, and 100 time samples are observed. The input signal-
to-noise ratio (SNR) is 0 dB. In order to obtain a more smooth
figure, we oversample the spatial frequency on a multiple of
32.

Fig. 2(a) shows the Wigner-Ville distribution (WVD) of the
SAD, which is well approximated as a chirp. Because there
is no missing data, the signature can be estimated using many
conventional methods as well as the proposed sparse recon-
struction technique, with respect to the IAF. The corresponding
sparse reconstruction results, which are depicted in Fig. 2(b),
yield a high-accuracy estimation. The estimated range and
DOA are 1029 m and 30.26◦, and the yielding source position
is [888.8, 518.5] m.

Next, we consider a sparse array configuration consisting of
three uniform subarrays with coprime inter-element spacings
of M1 = 3, M2 = 4 and M3 = 5, as shown in Fig. 3. Com-
pared to the 32-sensor ULA considered previously, the sparse
array has 20 sensors, resulting in 37.5% of missing sensors,
indicated by × in Fig. 3. As a result, the conventional PPS
parameter estimation methods are not effective. In addition,
the SAD is contaminated with artifacts that may obscure the
real feature of the signal due to missing sensors, as illustrated
in Fig. 4(a). Fig. 4(b) shows the corresponding result from
sparse reconstruction, indicating a high number of erroneous
spatial frequency estimations. To improve the performance, we
use the AOK to suppress the effect of missing sensors, and the
results are shown in Figs. 4(c) and (d). It is evident that the
deteriorated effect is substantially mitigated.

We use the estimated spatial frequency signature of SAD
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(d) Array configuration

Fig. 3. The sparse array configuration.
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Fig. 4. Near-field source localization using the sparse array for Example 1.

to obtain the coefficients b0, b1 and b2, using least squares
fitting. The range and the DOA can be estimated from Eqn.
(8). We evaluate the source localization performance through
Monte Carlo simulations. The average root mean square error
(RMSE) of the estimated localization is used as the perfor-
mance metrics, expressed as

RMSE =

√√√√ 1

M

M∑
m=1

[(
∆

(m)
x

)2
+
(

∆
(m)
y

)2]
, (14)

where
∆(m)
x = r̂(m) cos(θ̂(m))− r cos(θ),

∆(m)
y = r̂(m) sin(θ̂(m))− r sin(θ), (15)

and θ̂(m) and r̂(m) are the estimate of θ and r, respectively,
for the mth Monte Carlo trial, m = 1, . . . ,M . We use M =
500 independent trials in all simulations. Fig. 5 compares the
RMSE performance of previous example as a function of the
input SNR, where 100 snapshots are used. It is evident that
the source localization performance is improved as the input
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Fig. 5. RMSE versus SNR for Example 1 (r = 1000 m and θ = 30◦).
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Fig. 6. Near-field source localization using the ULA for Example 2.

increases. The WVD presents the best performance since it
has been shown to be optimal in the analysis of linear FM
signals [27], [28]. It is noted that, in the low SNR region,
the performance of the sparse array is worse than that of the
ULA with AOK processing. However, the difference becomes
smaller as the SNR increases.

Example 2. In this example, the parameters are assumed
to be the same as those in Example 1, but the source range
is reduced to 350 m. The WVD and the estimated spatial fre-
quency signature using the ULA based on sparse reconstruc-
tion technique are depicted in Fig. 6, and the corresponding
results using the sparse array are presented in Fig. 7. In Fig.
6, the results show that the spatial frequency is approximated
as a third-order PPS with respect to the sensor positions. Note
that, for a nonlinear FM signal in the time-frequency domain,
in addition to a bias of the IAF, the WVD exhibits some
cross-terms. It is also noted that the model error caused by
the approximation in (4) is slightly higher as the source is
closer to the array, as compared to the previous example. For
the sparse array, the effect of artifacts is again confirmed in
7(a) and 7(b). This effect is significantly suppressed after the
AOK is applied, as shown in Figs. 7(c) and (d).

In Fig. 8, we compare the RMSE performance of Example
2. It is shown that the distribution with AOK achieves better
performance because of the effective cross-term and artifact
suppression. In addition, there appears a floor on the RMSE
result due to its bias of IAF. For the sparse array, a similar
performance is attained to that of the ULA when the input
SNR is higher than 10 dB.

VI. CONCLUSION

In this paper, we proposed a simple near-field source
localization technique using sparse arrays. We used the sensor-
angle distribution to characterize the sensor-dependent phase
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Fig. 7. Near-field source localization using the sparse array for Example 2.
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Fig. 8. RMSE versus SNR for Example 2 (r = 350 m and θ = 30◦).

progression as a function of the source range and its direc-
tion. Sparse reconstruction techniques were used to estimate
the sensor-dependent spatial frequency signature for source
localization. The effectiveness of the proposed technique was
verified using simulation results.
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