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Abstract—In this paper, we examine the sparsity-based time-
frequency signal representation (TFSR) of randomly thinned
nonstationary signals in a multi-sensor platform to yield im-
proved performance with reduced number of samples in each
sensor. The property that different sensors share identical auto-
term time-frequency regions renders the TFSR a group sparse
reconstruction problem, which is effectively solved using the com-
pressive sensing techniques for high-fidelity TFSR reconstruction.
We exploit the adaptive optimal kernel (AOK) to effectively
preserve signal auto-terms and mitigate cross-terms. High level
of noise and artifacts due to missing samples, however, may
render AOK ineffective if designed for each sensor separately.
We develop a robust multi-sensor AOK design based on data
fusion across all sensors so as to enhance the signal auto-terms
while effectively mitigating artifacts, cross-terms, and noise. The
superior performance of the proposed multi-sensor AOK design
is demonstrated through the comparison with its single-antenna
counterpart and data-independent kernels.

Index Terms—Time-frequency analysis, array processing, com-
pressive sensing, missing data sample, sparse reconstruction

I. INTRODUCTION

A large class of nonstationary signals, particularly those
characterized by their instantaneous frequencies (IFs), are
often encountered in practice, including radar, sonar, commu-
nications and biomedical applications [1–6]. In particular, by
exploiting multiple sensors, array processing of nonstationary
signals finds broad applications, such as direction finding,
source separation, jammer suppression, and source localization
[7–14].

For such nonstationary signals, it is advantageous to repre-
sent them in the joint time-frequency (TF) domain to exploit
signal sparsity and reveal the local signal behaviors. Reduced
interference distributions (RIDs) are well-known bilinear time-
frequency signal representation (TFSR) methods for nonsta-
tionary signals to mitigate the effect of undesirable cross-
terms. These distributions can be conveniently defined through
the use of proper kernel in ambiguity functions (AFs) [15–
19]. Traditional TF analysis assumes that the analyzed signals
are uniformly sampled with the rate equal to or higher than
the Nyquist rate. In many real-world applications, however,
nonstationary signals are often observed with missing samples
due to fading, obstruction, and/or impulsive noise [20], thus
yielding artifacts that are spread in the entire TF domain.
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These artifacts can be mitigated by applying TF smoothing
kernels [21]. In multi-sensor systems, artifact mitigation can
also be accomplished by averaging AF with respect to the
sensors [10, 22].

In this paper, inspired by the sparse reconstruction of
TFSR based on the sparsity or group sparsity [22–24], we
examine the sparsity-based TFSR reconstruction of randomly
thinned nonstationary signals in a multi-sensor platform to
yield improved performance with reduced number of samples
in each sensor. In particular, we modify the well-known data-
dependent TF kernel, adaptive optimal kernel (AOK), to the
multi-sensor situation for robust TFSR reconstruction with
suppressed artifacts induced by the missing data. To achieve
this objective, the spatial averaging operation becomes an
integral part of the overall design paradigm. That is, the opti-
mization or kernel parameters is performed at the averaged AF
overall sensors, instead of the AF obtained in each individual
sensor. Once the kernel is designed, the corresponding TF sig-
nal representation can be obtained through the use of Cohen’s
class, i.e., using two-dimensional (2-D) Fourier transform
of the kernelled AF. Furthermore, by replacing the Fourier
transform with sparse parametric approach, the compressive
sensing (CS) technique achieves enhanced resolution in the TF
domain. In particular, by utilizing the one-dimensional (1-D)
Fourier transform relationship between the instantaneous auto-
correlation function (IAF) and the TF distribution, rather than
the 2-D Fourier transform relationship between the AF and TF
domains, CS reconstruction not only reduces the computation
complexity, but also improves the performance as a result of
enabling the consideration of local sparsity over each time
instant.

Notations. We use lower-case (upper-case) bold characters
to denote vectors (matrices). Fx and F−1

x respectively repre-
sent the discrete Fourier Transform (DFT) and inverse DFT
(IDFT) with respect to x. In particular, IN denotes the N×N
identity matrix. (·)T and (·)∗ respectively denote the transpose
and complex conjugates of a matrix or vector. In addition,
CN×K denotes the complete set of N ×K complex entries.

II. SIGNAL MODEL

Consider K narrowband nonstationary signals impinging on
an array consisting of N sensors, where K < N is assumed.
The N × 1 received data vector y(t) and the K × 1 source
signal vector d(t) are related by

y(t) = Hd(t) + n(t), (1)



where t ∈ [1, · · · , T ] is the time index, H =
[h1,h2, · · · ,hK ] ∈ CN×K is the mixing matrix with hq
denoting the spatial signature of the q-th source. n(t) ∈ CN×1

is an additive noise vector that consists of independent and
identically distributed (i.i.d.) zero-mean, white and complex
Gaussian distributed processes with variance σ2

nIN . The noise
elements are assumed to be independent of the signals,
which are assumed to be deterministic. Here, each element
of d(t) = [d1(t), d2(t), · · · , dK(t)]T is a single component
frequency modulated (FM) signal and arrives with or without
an angular bearing. Consider the thinned sampling of the
array observations with a random pattern applied to each array
sensor, where the number of missing samples is Mq satisfying
Mq < T for q = 1, · · · , N . As such, for the q-th array sensor,
the thinned observation, xq(t), can be expressed as the product
of yq(t), expressed in (1), and the following observation mask,

bq(t) =

{
1, if t ∈ Sq,
0, if t /∈ Sq,

(2)

where Sq ⊂ {1, · · · , T} is the set of observed time instants
and its cardinality is |Sq| = T−Mq . For simplicity but without
loss of generality, we assume that Mq to be the same for all
sensors, i.e., Mq =M , for q = 1, · · · , N , whereas bq(t) may
or may not be the same.

III. TIME-FREQUENCY DISTRIBUTION WITH MODIFIED
ADAPTIVE OPTIMAL-KERNEL

A. Adaptive Optimal Kernel

In the rectangular form, the AF for signal x(t) is defined
as:

A(θ, τ) =

∫ ∞
−∞

x(t+
τ

2
)x∗(t− τ

2
)e−j2πθtdt, (3)

where θ and τ , respectively, denote the frequency shift and the
time lag. To reduce the effect of cross-terms, which lie away
from the origin in the ambiguity domain, a TF kernel function
of low-pass filter characteristics is often applied to the AF.

Time-frequency kernels can be data-independent or data-
dependent. The latter often yields better performance due
to its adaptivity to the signal. A well-known data-dependent
kernel is the AOK, which is obtained by solving the following
optimization problem [17]:

max
Φ

∫ 2π

0

∫ ∞
0

|A(r, ψ)Φ(r, ψ)|2rdrdψ

subject to Φ(r, ψ) = exp

(
− r2

2σ(ψ)

)
1

4π2

∫ 2π

0

∫ ∞
0

|Φ(r, ψ)|2rdrdψ

=
1

4π2

∫ 2π

0

σ(ψ)dψ ≤ α,

(4)

where α ≥ 0. Note that in the above expression the AF and
the kernel function are defined in terms of the radius r and
the aspect angle ψ. The AF in the polar coordinates can be
obtained through direct calculation of polar samples or by
interpolation from its rectangular form.

B. Multi-sensor Adaptive Optimal Kernel

The auto-terms TFDs are real and also positive for mean-
ingful TF points where the signal energy is concentrated.
On the other hand, the values and signs of the cross-terms
between different signal components depend on the relative
phase between the contributing signals. This phase changes
across the antenna array due to respective propagation delays.
As such, the simple averaging of TFDs over different antennas
disfavors the cross-terms and enhances the auto-terms. The
same averaging operation reduces cross-terms if the spatial
correlation between the contributing signals is low [10]. Due
to the 2-D Fourier transform relationship between the AF
and TFD, antenna averaging also enhances auto-terms and
reduces cross-terms that viewed in the ambiguity domain.
Meanwhile, the missing data samples yield artifacts that
are randomly spread over the entire θ-τ domain, and the
overall variance increases as the number of missing data
samples increases. For (θ, τ) entries where A(θ, τ) is zero
or insignificant, the variance is uniformly distributed over θ
but varies with τ because of the zero-padding effect [21].
When different sampling patterns are adopted in each sensor,
therefore, averaging the AF over all sensors effectively reduces
the contributions of artifacts induced from missing samples.

In this paper, and stemming from the above discussions, we
modify the object function (4) to obtain an improved kernel
for the multi-sensor platform. Let Aq(r, ψ) denote the AF in
the qth sensor, q = 1, ..., N . The averaged AF over all sensors
is

AΣ(r, ψ) =
1

N

N∑
q=1

Aq(r, ψ). (5)

Then, the new kernel in the multi-sensor platform is obtained
by replacing A(r, ψ) in (4) by AΣ(r, ψ) in (5), yielding

max
Φ

∫ 2π

0

∫ ∞
0

|AΣ(r, ψ)Φ(r, ψ)|2rdrdψ

subject to Φ(r, ψ) = exp

(
− r2

2σ(ψ)

)
1

4π2

∫ 2π

0

∫ ∞
0

|Φ(r, ψ)|2rdrdψ

=
1

4π2

∫ 2π

0

σ(ψ)dψ ≤ α.

(6)

Since AΣ(r, ψ) is a better representation of the sum of the
ambiguity functions of the individual components compared
to Aq(r, ψ), the optimization (6) enables improved and more
robust TFSR.

IV. FOURIER AND CS-BASED TIME-FREQUENCY
REPRESENTATION

Upon designing, the kernel from (6) in a multi-sensor
platform, the TFD can be computed as the 2-D Fourier
transform of the kernelled and averaged AF, AΣ(r, ψ)Φ(r, ψ).
By converting the kernelled and averaged AF to the rectangular
coordinate system, and denote the result as ÃΣ(θ, τ), the
corresponding TFD is expressed as

D1(t, f) = F−1
θ {Fτ [ÃΣ(θ, τ)]}. (7)



Alternatively, we can also obtain the TFSR through a sparse
reconstruction from the same kernelled and averaged AF.
While earlier sparse TFSR reconstructions were based on the
2-D Fourier transform relationship between the AF and the
TFSR [22, 23], it is shown in [21, 24] that the 1-D Fourier
transform relationship between the IAF and the TFSR yields
simpler computations and enables the exploitation of local
sparsity in the TF domain.

The 1-D inverse Fourier transform of ÃΣ(θ, τ) with respect
to θ yielding the kernelled IAF,

C(t, τ) = F−1
θ [ÃΣ(θ, τ)]. (8)

Denote c[t] as a vector that consists of all IAF entries along
the τ dimension corresponding to time t, and w[t] as a vector
contains all the TFSR entries with respect to the frequency for
the same time t. According to the Fourier relationship between
the IAF and the TFSR, we obtain

c[t] = Φw[t] + ε[t], t ∈ [1, . . . , T ], (9)

where Φ is a matrix for the IDFT operation with respect
to f . In this paper, we use the the OMP algorithm [25] to
perform sparse reconstruction of the TFSR, which is repeated
in each time instant. Other compressive sensing methods, such
as Lasso and Bayesian compressive sensing [26–28], can also
be used for effective TFSR reconstructions.

V. SIMULATION RESULTS

Consider a 4-element uniform linear array (ULA) with
a half-wavelength interelement spacing. Two nonstationary
signals impinge on the array with their respective arbitrary
spatial signatures. The latter is also referred to as generalized
steering vectors and can be due to multipaths. The signatures
are randomly generated with independent complex Gaussian
distribution with zero mean and unit variance, expressed as

HT =[
−1.22 +0.24j 1.39 +0.66j 0.16−0.39j 0.28−0.39j
1.13 +0.95j −0.44−0.35j −0.50−0.26j 1.13−0.33j

]
(10)

The signals emitted from the two sources are polynomial
FM signals with closely separated signatures. Their IF laws
are expressed as [21]

f1(t) = 0.05 + 0.1t/T + 0.1t2/T 2,

f2(t) = 0.15 + 0.1t/T + 0.1t2/T 2,
(11)

where t = [1, · · · , T ] and T = 128.
First, we show the simulation in a single-sensor case, where

the input signal-to-noise ratio (SNR) is 10dB, and 60% of the
data samples are randomly missing. Fig. 1(a) shows the real-
part waveform with the missing samples marked in red, and
its corresponding Wigner-Ville distribution (WVD) is shown in
Fig. 1(b). The effect of spreading artifacts is clearly observed
in the WVD. To improve the TF domain representation, we
apply the AOK. The corresponding TFD, with enhanced signal
auto-terms and reduced artifacts, is shown in Fig. 1(c). We
have also included the TFSR reconstructed using OMP with
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(a) real-part waveform
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(b) WVD
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(c) TFD
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(d) TFSR from OMP

Fig. 1. Waveform and transformed domain representations of a two-
component FM signal with 60% of missing samples (single sensor,
SNR=10 dB).

Time

F
re

qu
en

cy

20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time

F
re

qu
en

cy

20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(a) TFD and TFSR from a single sensor
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(b) TFD and TFSR from four sensors in the same missing pattern
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(c) TFD from four sensors in the different missing pattern

Fig. 2. TFD and TFSR of a two-component FM signal with 60% of
missing samples (SNR=4 dB).

the true instantaneous sparsity in Fig. 1(d). The reconstructed
TFSR closely follow the auto-term signatures.
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(a) TFD and TFSR from a single sensor
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(b) TFD and TFSR from four sensors in the same missing pattern

Time

F
re

qu
en

cy

20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time

F
re

qu
en

cy

20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(c) TFD and TFSR from four sensors in different missing pattern

Fig. 3. TFD and TFSR of a two-component FM signal with 70% of
missing samples (SNR=10 dB).

In the next two examples, we respectively consider the effect
of reduced SNR and increased number of missing samples, and
examine the capability of multi-sensor platform. Two different
situations are considered for the multi-sensor case, i.e., when
the missing pattern is the same for all the sensors, and when
different missing patterns are used.

A. Effect of Reduced SNR
In this example, we consider the same scenario as in Fig.

1 but the SNR is reduced to 4 dB. The AOK-kernelled TFD
and the reconstructed TFSR from OMP, as depicted in Fig.
2(a), clearly show performance degradation as compared to
the high SNR case as in Fig. 1. When we use four sensors
with the proposed multi-sensor AOK, on the other hand, both
TFD and OMP-based TFSR are significantly improved. It is
evident from Fig. 2(b), for the case with identical missing
pattern, and from Fig. 2(c), for the case with different random
missing patterns over the different sensors, that both cases
achieve an array again from the four sensors, rendering the
TFD and TFSR performance comparable to Figs. 1(c) and
1(d) for the single-sensor measurement with a 10 dB input
SNR.

B. Effect of Higher Number of Missing Samples
In the next example, we keep the input SNR at 10 dB but

increase the number of missing samples to 70%. Fig. 3(a)

shows poor single-sensor TFD and the corresponding TFSR
obtained from OMP.

In Fig. 3(b), we show the TFD and the corresponding TFSR
reconstructed from the four sensors with an identical sampling
pattern used in all the sensors. The yielding TFD and TFSR
results are very similar to the single-sensor case because it
is a high SNR case, and the array observations with the same
missing pattern do not improve the effect due to a high number
of missing samples. On the other hand, as shown in Figs.
3(c), the TFSR is reliably constructed in the four-sensor case
when different sampling patterns are used in each sensor. This
example clearly demonstrates the importance of exploiting
different sampling patterns in each sensor when the number
of missing samples is high.

VI. CONCLUSION

Compressive sensing (CS) techniques enable effective
time-frequency (TF) signature reconstruction from randomly
thinned nonstationary signal samples by exploiting the sparsity
of such signals when viewed in the TF domain. While CS-
based TF approaches were considered for a single-sensor sce-
nario, we extend such treatment into a multi-sensor platform.
In particular, we considered in this paper the design of data-
dependent adaptive kernel, from the combined observation
at all sensors. This enables effective mitigation of undesired
components, including artifacts due to missing data, cross-
terms, and noise. We have presented a number of examples to
demonstrate the effectiveness of the multi-sensor TF signature
reconstruction with the proposed kernel design. It was em-
phasized that the sensors must use different sampling patterns
to combat the effect of missing samples in TF signature
representation.
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