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Abstract—In this paper, we develop a new space-time adaptive
processing (STAP) technique for bistatic passive radar by exploit-
ing clutter sparsity so as to enable effective clutter suppression
with a small set of data samples. The Bayesian compressive sens-
ing (BCS) technique is utilized for sparse clutter reconstruction,
and the persymmetry property of the STAP processor is used
to cast the complex sparse signal recovery problem into a group
sparsity formulation. This approach provides improved recovery
of the clutter and, thereby, yields better STAP performance.

I. INTRODUCTION

Passive radar is an attractive sensing platform in many

surveillance applications because of its low-cost and covert

operation capability [1]. One of the major objectives in such

sensing operations is to perform moving target indication

(MTI). To identify moving targets, particularly those with slow

velocities, from strong ground clutter, space-time adaptive pro-

cessing (STAP) is considered an effective means to suppress

clutter in the joint space-time domain [2].

A fundamental requirement of performing STAP is an

estimated clutter covariance matrix (CCM). Conventionally,

the CCM is obtained from neighboring range gates which

are assumed to provide independent and identically distributed

(i.i.d.) secondary, or training, samples [3], [4].

The requirement of the large number of i.i.d. secondary

samples, however, may be highly impractical. Many clutter

environments are only locally stationary and it is difficult to

expect stationarity over a large number of range bins. This

problem is particularly significant in passive radars which

usually use narrowband signals and, therefore, have a poor

range resolution [5]–[7]. It is thus important to improve the

convergence rate by using a smaller number of secondary

samples. The commonly used approaches to improve the

robustness of the STAP with fewer secondary samples are to

apply diagonal loading (DL) to the sample covariance matrix

(SMI), or to reduce the rank of the CCM by performing prin-

cipal component analysis [8], [9]. However, the convergence

rate can hardly be improved beyond the clutter rank.

A more recent approach is to exploit the latest advances of

sparsity recovery and compressive sensing (CS) techniques by

taking advantages of the sparsity of the clutter in the angle-

Doppler domain [10]–[12]. It is well known that the clutter is
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localized in this joint domain with a certain clutter ridge that is

determined by the radar operation mode and antenna geometry

[2], [13]. As such, sparsity-based STAP may achieve effective

clutter suppression with very few secondary samples. Indeed,

under certain mild assumptions, STAP can be performed with

only a single sample, i.e., no secondary samples are required.
In this paper, we consider STAP in a bistatic passive radar

by exploiting the sparse recovery techniques. A major issue

encountered in the application of sparse recovery is that reli-

able recovery is guaranteed only when the so-called restricted

isometry property (RIP) is satisfied [14]. Unfortunately, such

a condition cannot be easily verified. Because any discrepancy

between the actual and estimated clutter profile degrades the

STAP performance, a more reliable CS solution is needed in

the underlying problem. Toward this objective, we use the

Bayesian compressive sensing (BCS) [15], [16] which refor-

mulates the original deterministic problem as a probabilistic

one to be efficiently solved with the relevance vector machine

(RVM) concept [17]. Further, to effectively deal with complex

scattering coefficients, the problem is formulated to exploit the

group sparsity of the real and imaginary components of the

same range-Doppler grid. This yields a significant performance

improvement as compared to the results when the real and

imaginary components are dealt separately.
Notations: We use lower-case (upper-case) bold characters

to represent vectors (matrices). In particular, IN and JN

are the N × N identity matrix and anti-diagonal matrix,

respectively. (.)∗, (.)T and (.)H denote complex conjugate,

transpose, and conjugate transpose, respectively. vec(·) is the

vectorization operator, and diag(x) denotes a diagonal matrix

with the elements of x constituting the diagonal entries. ‖ · ‖
denotes the Euclidean norm of a vector, and ⊗ denotes the

Kronecker product. E(·) is the statistical expectation operator,

and N (a, b) implies a Gaussian probability density function

of mean a and variance b.

II. SYSTEM MODEL

A. Radar Geometry and Signal Model
Consider a bistatic radar scene as depicted in Fig. 1. The

transmitter is assumed to be stationary and is located at a

known position pT = [pT,x, pT,y, pT,z]
T . The radar receiver,

which utilizes an N -element uniform linear array (ULA)

with inter-element spacing d, moves in a straight line with

a constant velocity.
For the convenience of notation and without loss of gen-

erality, we assume that the receiver moves in the x-direction



at speed vR. The initial position of the reference sensor is

assumed to be pR(0) = [pR,x(0), 0, HR]
T .

The signal vector received at the array consists of the

following terms:

x(t) = xd(t) + xs(t) + xc(t) + n(t), (1)

where xd(t) is the direct-path signal from the illuminator,

xs(t) is the desired signal, xc(t) is the clutter, and n(t) is

the additive noise, which is characterized as i.i.d. complex

Gaussian.
Based on the known positions of the transmitter and re-

ceiver, we can perform beamforming to perfectly recover the

transmitted signal waveform s(t) from x(t) after channel

decoding [7]. We assume that the direct-path component xd(t)
is subsequently removed from x(t).

B. Desired Signal
The desired signal is denoted as

xs(t) =

√
PTGσP

rTPrPR
s(t− τTP(t)− τPR(t))

·e−j2πfc(τTP(t)+τPR(t))a(φP),
(2)

where PT is the transmit power, G represents a constant term,

and σP is the complex target reflection coefficient associated

with the radar cross section (RCS). In addition, fc is the carrier

frequency, τTP(t) = rTP(t)/c and τPR(t) = rPR(t)/c are the

delays respectively corresponding to the range between the

transmitter and the target, rTP(t) = ‖PT − P(t)‖, and the

range between the target and the receiver, rPR(t) = ‖PR(t)−
P(t)‖, where c is the velocity of light. Furthermore,1

a(φP) = [ejκ(N−1)d/2 sin(φP), ..., e−jκ(N−1)d/2 sin(φP)]T (3)

is the steering vector of the receive array toward the direction

of the target with a cone direction-of-arrival (DOA) angle of

φP, and κ = 2π/λ is the wavenumber with λ = c/fc denoting

the wavelength. The DOA variation during the coherent pro-

cessing interval (CPI) is negligible and is thus not considered.
By performing matched filtering using the reference signal

at the nth range bin, we obtain the matched filter output at

azimuth time tl = lT , l = 0, ..., L− 1, as

y(n)
s (tl) =

√
PTGσP

rTPrPR
ρsa(φP)e

j2πνs(tl−(L−1)T/2), (4)

where ρs is the matched filter output of s(t), and νs = − 1
λ ·

d
dt [rTP(t) + rPR(t)] is the bistatic Doppler frequency. Note

that we align the phase reference center at the center of the

CPI to obtain the persymmetry property.

Stack y
(n)
s (tl) over the L collected azimuthal samples as

ỹ(n)
s =

[
[y(n)

s (t0)]
T, ..., [y(n)

s (tL−1)]
T
]T
=

√
PTGσP

rTPrPR
ρsh(νs, φP),

(5)

where

h(νs, φP) = b(νs)⊗ a(φP) (6)

is the spatio-temporal signature of the target, and b(νs) =
[e−j2πνs(L−1)T/2, e−j2πνs(L−3)T/2, ..., ej2πνs(L−1)T/2]T is

the temporal signature vector of the target.

1We define the steering vector and the temporal signature vector in a
symmetric form for convenience of the persymmetry formulation.

Fig. 1. Bistatic radar geometry.

C. Clutter
The clutter is modeled as a sum of Nc statistically indepen-

dent scatterers in range, expressed as

xc(t) =

Nc∑
i=1

√
PTGσc,i

rTC,irCR,i(t)
s[t− τTC,i − τCR,i(t)]

·e−j2πfc[τTC,i+τCR,i(t)]a(φi),

(7)

where, similarly, rTC,i is the range between the transmitter

and the ith scatterer, rCR,i(t) is the range between the same

scatterer to the receiver, τTC,i and τCR,i(t) are respectively

the delays corresponding to rTC,i and rCR,i(t). In addition,

σc,i is the reflection coefficient of the ith scatterer, and a(φi)
is its steering vector observed at the receive array.

Performing matched filtering and stacking the output over

the L collected azimuthal samples in the nth range bin yields

ỹ
(n)
c =

Nc∑
i=1

√
PTGσc,i

rTC,irCR,i
ρs(τ

(n)
i )h(νi, φi), (8)

where ρs(τ
(n)
i ) is the waveform correlation coefficient asso-

ciated with delay τ
(n)
i , νi = − 1

λ · d
dt [rCR,i(t)− rTR(t)] is the

Doppler frequency of the ith scatterer and is determined by the

scatter-receiver path and the direct-path ranges. In addition,

h(νi, φi) = b(νi)⊗ a(φi) (9)

is the spatio-temporal signature of the ith scatterer,

and b(νi) = [e−j2πνi(L−1)T/2, e−j2πνi(L−3)T/2, ...,
ej2πνi(L−1)T/2]T is the corresponding temporal signature vec-

tor.

III. SPARSE ESTIMATION OF SPACE-TIME CLUTTER

SPECTRUM

After the direct-path component is removed, the overall

output of the matched filter is the summation of three terms

described in the previous section, and is expressed as

z̃(n) = z̃(n)s + z̃(n)c + z̃(n)n . (10)

Rewrite it as the product of a dense dictionary matrix Φ̃ and

sparse vector ũ(n), corrupted by additive noise vector z̃
(n)
n , as

z̃(n) = Φ̃ũ(n) + z̃(n)n = Φ̃
(
ũ(n)
s + ũ(n)

c

)
+ z̃(n)n , (11)

Our objective is to estimate the Doppler-angle characteristics

of the clutter components ũ
(n)
c from the measurement vector

z̃(n). Note that the dimension of ũ(n) is K = NdNs, where Nd

and Ns are, respectively, the number of Doppler and azimuth

grids defined in the Doppler-angle domain.



A. Complex Formulation Exploiting Persymmetry Property

An existing approach to handle the underlying complex

problem using the real-valued BCS is to cast it into a real-

valued problem by separately considering the real and imagi-

nary components [18]. In this case, (11) becomes

z(n) = Φu(n) + z(n)n , (12)

where z(n) = [Re(z̃(n))T , Im(z̃(n))T ]T , z
(n)
n = [Re(z̃

(n)
n )T ,

Im(z̃
(n)
n )T ]T , u(n) = [Re(ũ(n))T , Im(ũ(n))T ]T , and Φ =[

Re(Φ̃) − Im(Φ̃)

Im(Φ̃) Re(Φ̃)

]
. As such, the K × 1 unknown complex

vector ũ(n) is converted to a 2K × 1 real vector u(n). Such

a simple extension does not utilize the fact that the real and

imaginary components of ũ(n) are merely the projection of

complex coefficients into two orthogonal axes. A modified

general approach is developed in [19], [20] to enforce the

group sparsity of the real and imaginary components of

the complex unknowns. Alternatively, for radar systems that

exploit ULA and uniform azimuth sampling, we can also

utilize the persymmetry [21] to convert the problem into a

simple format of real-valued problem that maintains the group

sparsity.

For persymmetric Φ̃, i.e., Φ̃ = JNLΦ̃
∗, ΦT = TΦ̃ is real,

where

T =
1√
2

[
INL/2 JNL/2

jINL/2 −jJNL/2

]
(13)

when NL is even (the expression for odd NL can be found

in [21]). As such, we can reformulate (11) as

Z(n) = ΦTU
(n) + Z(n)

n (14)

where Z(n) = [Re(Tz̃(n)), Im(Tz̃(n))], Z
(n)
n = [Re(Tz̃

(n)
n ),

Im(Tz̃
(n)
n )], and U(n) = [Re(Tũ(n)), Im(Tũ(n))]. Note that

the unknown variables are arranged as a K × 2 matrix

where the two columns respectively represent the real and

imaginary parts of the clutter entries. This problem can be

solved using group-sparsity based techniques. In this paper,

we use the multi-task BCS [16] for enhanced reliability. The

group sparsity formulation (14) halves the number of sparse

entries and thus makes the problem more feasible.

When multiple secondary samples are available, e.g., n =
1, ..., D, we can stack these observations as the following K×
2D real-valued group sparsity problem

Z = [Z(1), ..., Z(D)] = ΦTU+ Zn, (15)

where Zn = [Re(Tz̃n), Im(Tz̃n)] and U = [Re(Tũ),
Im(Tũ)]. Note that the columns of U are still likely to share

the group sparsity. This assumption is particularly valid when

only a small number of secondary samples are used.

B. Clutter Estimation Using Multi-Task BCS

Equation (15) implies 2D parallel equations

zi = ΦTui + zn,i, i = 1, ..., 2D, (16)

where zi, ui, and zn,i are the respective ith columns of Z, Ui,

and Zn. For the noise components that are i.i.d. zero-mean

Gaussian variables with unknown precision α0 (precision is

the reciprocal of the variance), the likelihood function for

parameters ui and α0, based on the observed data vector zi,
may be expressed as

p(zi|ui, α0) = N (ΦTui, α
−1
0 INL). (17)

On the other hand, ui is characterized by the Gaussian

distribution p(ui|α) =
∏K

k=1 N (ui,k|0, α−1
k ), where α =

[α1, · · · , αK ]T , and ui,k is the kth element of vector ui. In the

multi-task BCS, the group sparsity of the scatterer coefficients

is represented by the common hyperparameters α which are

shared by all the 2D tasks. The mean and variance of the

estimated ui are respectively given by [16]

μi = α0ΣiΦTzi, Σi =
(
α0Φ

T
TΦT +A

)−1
, (18)

where A = diag(α1, ..., αK).
We refer to the multi-task BCS that does not utilize the

persymmetry as complex-BCS (C-BCS), whereas when the

persymmetry is used, we refer to it as persymmetry-BCS (P-

BCS).

IV. SPACE-TIME ADAPTIVE PROCESSING

Once the clutter angle-Doppler profile is estimated at range

bin n as a sparse collection of K0 nonzero complex entries,

η(n)(νk, φk), k = 1, ...,K0, the received clutter component is

expressed as

ẑ(n) =

K0∑
k=1

η(n)(νk, φk)h(νk, φk). (19)

Considering the independence between the clutter components

and noise, the covariance matrix, therefore, is estimated as

R̂z =

K0∑
k=1

|η(n)(νk, φk)|2h(νk, φk)h
H(νk, φk) + α̂−2

0 INL,

(20)

where α̂0 is estimated from the multi-task BCS as described

above. Thus, the weight vector is given as

wCS =
(R̂z)

−1h0

hH
0 (R̂z)−1h0

, (21)

where h0 is the spatio-temporal signature of the hypothetic

target.

V. SIMULATION RESULTS

Consider a bistatic passive radar where the illuminator,

located at pT = [10, 20, 0.2]T km, emits DVB-T signals with

a carrier frequency of 850 MHz and a bandwidth of 7.6 MHz.

The receiver is equipped with an 10-element ULA with an

inter-element spacing of half-wavelength. The initial position

of the receiver is pR(0) = [0, 0, 6]T km, and its velocity is

vR = [100, 0, 0] m/s. The matched filtering output yields 600

Hz of azimuthal sampling rate, and 32 azimuthal samples are

used for processing. To study the performance of the proposed

approach versus target velocity, we let the initial target position

to be pP = [−5, 10, 0]T km.

In Fig. 3, we show the clutter profile in the angle-Doppler

domain for the range gate under test. The angle-Doppler



−10 −5 0 5 10 15 20 25
0

5

10

15

20

25

Target

Tx

Rx

km

km

Fig. 2. Illustration of the scene.
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Fig. 3. Angle-Doppler domain clutter profile. (a) Estimated clutter profile; (b)
Clutter profile obtained from Fourier-based method with a Hanning window.
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Fig. 4. Output SINR loss. (a) Comparison between Clairvoyant, P-BCS, and
the SMI methods; (b) Comparison between P-BCS, C-BCS, and Lasso.

profile of the clutter is discretized into a grid of Nd = 60
Doppler bins and Ks = 30 angle bins. Fig. 3(a) depicts the

estimated method, where the persymmetry-BCS is used. The

input signal-to-noise ratio (SNR) is −10 dB, and the input

clutter-to-noise ratio (CNR) is 40 dB. For comparison, the

Fourier-based estimation of the clutter profile is shown in Fig.

3(b) with a poor resolution.

Figure 4(a) shows the output SINR loss compared to the

optimal results computed in the no clutter case. The results are

shown for the Clairvoyant, Persymmetry-BCS, and the SMI

method with 500 and 40 secondary samples, respectively. With

500 secondary data samples, the SMI technique experiences a

loss of approximately 3 dB, which coincides with the RMB’s

rule. On the other hand, when the number of data samples

is reduced to 40, the performance loss becomes significant.

The Persymmetry-BCS is obtained based on a single range

bin data, and the performance is close to the Clairvoyant and

better than the SMI with 500 secondary samples. In Fig. 4(b),

we compare the performance of the persymmetry-BCS with

complex-BCS and Lasso. It is evident that the latter two do not

perform well because of inaccurate clutter profile estimations.

VI. CONCLUSION

We have examined the application of compressive sensing

techniques for the implementation of space-time adaptive

processing (STAP) in a bistatic passive radar. Our primary

motivation is to enable effective clutter suppression in passive

radar systems where a sufficient number of secondary data

samples may not be available. Toward this end, we have

chosen the Bayesian learning algorithm for effective clutter

profile reconstruction and utilized the persymmetry property

to align the real and imaginary components of non-zero clutter

coefficients as group sparse entries.
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