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ABSTRACT  
 

Nonstationary jammer excision has been the subject of 

interest for anti-jam GPS receivers for many years. A 

large class of “smart” jammers assumes frequency 

modulated (FM) waveforms that are characterized by 

their instantaneous frequencies (IFs). Several anti-jam 

techniques rely on the instantaneously narrowband signal 

characteristic and use joint-variable signal representations 

to reveal the jammer signature in the time-frequency (TF) 

domain. In this case, jammer excision becomes a two-step 

process, i.e., estimation of the TF signature or the IF of 

the jammer, and then removal of the jammer signal based 

on such estimate and with minimum distortion of the 

desired signal. 

 Jammer excision approaches commonly assume that 

the data is sampled uniformly at the Nyquist or higher 

sampling rate with all data samples available. There are 

situations, however, where the availability of the jammer 

signal sampled at the Nyquist rate is either unnecessary or 

impossible. For example, mitigating impulsive noise 

through discarding the high amplitude data samples 

renders the data to be “incomplete” or randomly sampled.  

In this case, FM jammer signals with missing data 

samples exhibit a high level of noise-like artifacts which  

clutter the entire TF domain, rendering TF signature and 

IF estimations difficult.  

 This paper provides a novel sparse reconstruction-

based approach for effective jammer excision from 

incomplete signal observations. Jammer TF signature 

estimation is achieved by exploiting the fact that the FM 

jammers are locally sparse in the TF domain. 

Reconstruction of such signals from few random obser-

vations falls under the emerging area of compressive 

sensing (CS) and sparse reconstruction. Within the CS 

framework, jammer TF signature estimation is built upon 

the linear Fourier relationship between the TF domain and 

other joint-variable domains. In particular, the instan-

taneous auto-correlation function and the TF represen-

tations are associated by a one-dimensional Fourier 

relationship. This paper also describes TF kernels and its 

effect in the sparse reconstruction and mitigation of 

jammers.  

  

INTRODUCTION  
 

Nonstationary jammer excision has been the subject of 

interest for anti-jam GPS receivers for many years [1, 2]. 

A large class of nonstationary jammers assumes 

frequency modulated (FM) or polynomial phase signal 

(PPS) waveforms. These wideband “smart” jammers are 

characterized by their instantaneous frequencies (IFs). 

Several anti-jam techniques have been proposed which 

rely on the above instantaneously narrowband signal 

characteristic [1–3]. They use joint-variable signal 

representations to reveal the jammer signature in the time-

frequency (TF) domain. In this case, jammer excision 

becomes a two-step process: the first step is to estimate 

the TF signature or the IF of the jammer, whereas the 

second step is to perform excision based on the estimate 

of the jammer signal. Both steps can be performed as a 

pre-processing prior to the correlation and dispreading 

loops of the GPS receivers.  For the second step, some of 

the single-antenna temporal anti-jam techniques proceed 

to subtract the jammer from the data, whereas others 



prefer to perform data projection on the null space of the 

jammer to avoid performance degradation with signal 

subtraction when there are considerable phase estimation 

errors [3–6]. Towards the same goal of providing excision 

robust to jammer amplitude and phase, techniques have 

been devised which implement notch filters to remove the 

local jammer as its frequency changes over time or is 

translated to the origin through a startionarization process. 

Two important observations can be made regarding the 

above techniques: 1) The property that the jammer 

occupies very few TF points in the TF domain, i.e., 

sparse, is not fully exploited; 2) The data is assumed 

sampled uniformly at Nyquist or higher sampling rate 

with all data samples available. Whereas the first 

observation suggests the use of sparse signal recon-

struction techniques, the second one calls for the 

application of compressive sensing when uniform Nyquist 

sampling is not attainable. When multiple sensors are 

available, the spatial degree of freedom serves to further 

separate the jammer from the GPS signal above and 

beyond what offered by the distinction in the respective 

TF signature characteristics [3, 7, 8].    

 There are situation, however, where the availability 

of the jammer signal sampled at the Nyquist rate is either 

unnecessary or impossible. Consider an impulsive noise 

present in the data in conjunction with a narrowband or a 

wideband jammer [9]. In this case, it becomes difficult to 

provide an accurate estimate of the jammer with the 

highly contaminating impulsive noise.  Discarding the 

high amplitude data samples can remove most of the 

impulsive noise, rendering the data “incomplete” or 

randomly sampled [8, 10]. The GPS receivers are required 

to operate in a close proximity to various noise sources 

which, when acting alone, may impede signal acquisition 

and increase jitter errors and the bit error rates. Sources of 

non-Gaussian noise may, for example, include motor 

ignition noise, which is generated by spark plugs used in 

internal combustion engines, impulsive and noise-like 

waveforms generated by radar systems, and ultra-

wideband emitters.  

 In addition to demonstrating the offering of sparse 

reconstruction in the area of FM jammer excision, the 

problem of non-uniform sampling or missing samples and 

their effects on jammer excision and correlation loops is 

considered and is an important part of this paper.  FM 

jammer signals with missing data samples exhibit a high 

level of noise-like artifacts that clutter the entire TF 

domain, making the direct estimation of jammer TF 

signature and their IFs from their joint-variable 

representations difficult [10, 11].  

 This paper provides a novel compressive sensing-

based approach for accurate jammer IF estimation and 

excision from incomplete signal observations at a single-

antenna receiver. Jammer TF signature estimation is 

achieved by exploiting the fact that the FM jammers are 

locally sparse in the TF domain due to their power 

localizations at and around their IFs. Reconstruction of 

such jammer signals from few random observations falls 

under the emerging area of compressive sensing where 

the compressed observations can be in time, time-lag, or 

ambiguity domains [10–14].  

 Jammer TF sparse signature reconstruction builds 

upon the linear Fourier relationship between the TF 

domain and compressed observation domain. Depending 

on the specific domain representing the observation, the 

linear Fourier relationship may be one-dimensional or 

two-dimensional [12, 15]. In particular, the instantaneous 

auto-correlation function (IAF) and the TF representations 

are related by a one-dimensional Fourier transform 

relationship. With this underlying linear model, a number 

of methods become available for the reconstruction of 

sparse FM jammer signals after proper TF kernels are 

applied. Orthogonal matching pursuit (OMP) is one 

method that allows specification of the number of jammer 

components in each time instant [16]. In a different 

approach reminiscent of multiple window spectrograms, a 

reduced interference TF kernel is approximated by a small 

number of dominant eigen-components, each weighs, as a 

window, the compressed data prior to sparse recons-

truction [13, 17]. This fits multiple measurement vector 

signal model, in which the signature support of the time-

frequency is common among all windows. The problem 

can be effectively solved using group sparsity-based 

techniques, such as block OMP and multi-task Bayesian 

compressive sensing [18–22]. Recently, enhanced 

reconstruction of the FM signals with missing data is 

achieved by exploiting the structure of the FM signatures 

[22]. The proposed technique for jammer suppression 

under incomplete data builds on recent advances in TF 

analyses within the compressive sensing paradigm.  

Note that compressive sensing and sparse reconstruc-

tion have been used for GPS receivers in the presence of 

missing data (e.g., [23]). The problem described in our 

paper, however, differs from that work as the underlying 

objective is to use compressive sensing techniques for 

effective jammer suppression.  

 

NOTATIONS 
 

A lower (upper) case bold letter denotes a vector (matrix). 

(·)∗ denotes complex conjugation. ( )x F  and 1( )x

 F  

respectively represent the discrete Fourier transform 

(DFT) and inverse DFT (IDFT) with respect to x.  || · ||1 

and || · ||2 respectively denote the l1 and l2 norm operations. 

In addition, δ(t) denotes the Kronecker delta function, and 

var(·) denotes the variance. 

 

SIGNAL MODEL 
 

Without loss of generality and for the convenience of 

description, we consider the reception of one GPS 

satellite signal. The GPS signal, along with jammers and 

noise, is received at the receiver antenna, down-converted 

using a phase-synchronized down-converter and digitized 



using an analog-to-digital converter. The signals received 

by the receive antenna can be expressed, using complex 

baseband representations, as  

x(t) = s(t) + j(t) + n(t),                       (1) 

where s(t) is the GPS waveform, j(t) is the jamming signal, 

and n(t) is the additive noise which is assumed to be 

circular symmetric complex Gaussian with zero mean and 

variance 2

n .  In practice, the GPS signals have a very 

low power before despreading, whereas a strong jammer 

is assumed, as the use of spreading spectrum signal equips 

standard GPS receiver with certain protection against 

weak jammers. The jammer signal is assumed to 

comprises a single or multiple components of FM signals. 

Consider that the signal x(t) is discretized with T 

samples for t = 1, ..., T. Denote r(t) as its observation data 

with N missing samples, where 1 N T  . The missing 

sample positions are assumed to be randomly and 

uniformly distributed over time. As such, r(t) is the 

product of x(t) and an “observation mask”, R(t), i.e., 

( ) ( ) ( )r t x t R t  ,   (2) 

where  

1, if  ,
( )

0, if  .

t
R t

t


 



S

S
                            (3) 

{1,  ...,  }TS  is the set of observed time instants and its 

cardinality is |S| = T − N. The observed waveform with 

missing samples can be expressed as the difference 

between the original waveform and the “missing samples”, 

i.e., 

( ) ( ) ( )r t x t m t  ,                            (4) 

where the missing data is expressed as 

( ) ( ) ( )m t x t M t  ,                            (5) 

with M(t) denoting the missing mask. To facilitate the 

analysis, we express the missing data mask as 

1

( ) ( ), .
N

i i

i

M t t t t


   S                   (6) 

Accordingly, the missing signal is expressed as 

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ), ,
N N

i i i i

i i

m t x t M t x t t t x t t t t 
 

        S

(7) 

and the observed data with the missing samples is 

expressed as 

1

( ) ( ) ( ) ( ) ( ) ( ),
N

i i i

i

r t x t m t x t x t t t t


      S.       (8) 

 

TIME-FREQUENCY REPRESENTATIONS 
 

In this section, we consider the quadratic TF represen-

tation of the signals in the presence of entire data 

observations. The effect of missing samples is considered 

in the next section.  

A signal can be quadratically represented as joint-

variable in the TF domain, IAF domain, and the 

ambiguity function (AF) domain [24, 25]. The IAF of 

signal x(t) is defined for time lag  as 

*( , ) ( ) ( ).xxC t x t x t                      (9) 

The Wigner-Ville distribution (WVD) is known as the 

simplest form of TF distribution (TFD). The WVD is the 

Fourier transform of the IAF with respect to , defined as  

4( , ) [ ( , )] ( , ) i f

xx xx xxW t f C t C t e  




   F ,       (10) 

where f represents the frequency. Note that 4π is used in 

the DFT instead of 2π because the time-lag τ takes integer 

values in (9). On the other hand, the IDFT of the IAF with 

respect to t yields the AF, expressed as 

1 2( , ) [ ( , )] ( , ) i ft

xx t xx xx

t

A C t C t e     F ,    (11) 

where  is the frequency shift or Doppler.  

It is clear that WVD maps 1-D signal x(t) in the time 

domain into 2-D signal representations in the TF domain. 

The fundamental TFD property of concentrating the FM 

jammer energy at and around its IF, while spreading the 

GPS signal and noise energy over the entire TF domain, 

enables effective jammer and signal separations when 

considering the time and frequency variables jointly.    

WVD is often regarded as the basic or prototype 

quadratic TFDs, since the other quadratic TFDs can be 

described as filtered versions of the WVD. WVD is 

known to provide the best TF resolution for single-

component linear FM signals, but it yields high cross-

terms when the frequency law is nonlinear or when a 

multi-component signal is considered. Various reduced 

interference kernels have been developed to reduce the 

cross-term interference [24, 25]. As such, the properties 

of a TFD can be characterized by the constraints on the 

kernel. Different kernels have been designed and used to 

generate TFDs with prescribed, desirable properties.  

While some kernels, e.g., the pseudo WVD and the Choi-

Williams [26], assume fixed (signal-independent) para-

meters, other kernels, such as the adaptive optimal kernel 

(AOK), provide signal-adaptive filtering capability [27]. 

A TF kernel can be generally represented as a 2-D 

window function applied to the AF. As the AF and the 

IAF are associated with a 1-D Fourier relationship, the 

kernel operation can be treated as a mixed multiplication/ 

convolution in the IAF domain as 

 
4

( , ) [ ( , ) ( , )]

( , ) ( , ) .

xx xx
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i f
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u

D t f t u C t
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   

 

 





F
 (12) 

 



EFFECT OF MISSING DATA SAMPLES 
 

It is demonstrated in [2] that, when full samples are 

present, the jammer auto-term will dominant and, thereby, 

a simple masking of strong TFD will lead to effective 

jammer suppression. When there are missing samples, as 

described in [10, 11], however, such missing samples 

generate a substantial presence of noise-like artifacts, 

cluttering the yielding TFDs. As such, the identification 

and masking of jammer components in the TFD domain 

become infeasible.  

The received signal with missing samples can be 

decomposed into GPS signal, jammer, and noise as 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ),s j n

r t x t m t

s t j t n t m t m t m t

 

     
   (13) 

where ms(t), mj(t), and mn(t), respectively, represent the 

GPS signal, jammer, and noise components in the missing 

signal m(t).  

As the jammer signal is much stronger than the GPS 

signal and the noise, we focus on the study of the jammer 

component of (13) for TFD estimation and suppression. 

In this regards, the GPS signal and noise are considered 

weak interfering components.  As a result, we rewrite (13) 

as 

( ) ( ) ( ) ( )jr t j t m t t   ,                    (14) 

with ( ) ( ) ( ) ( ) ( )s nt s t n t m t m t      denoting the contri-

bution of all other components.  

The strong jammer-to-signal-plus-noise ratio makes 

the missing samples analysis of FM signal TF 

representation readily applicable to the underlying 

problem [10]. That is, the WVD of r(t), Wrr(t,), 

represents an unbiased estimate of Wxx(t,) with scaling 

(corresponding to signal power reduction due to missing 

samples) and noise-like artifacts whose strength are 

determined by Wxx(t,) and the number of missing 

samples. More specifically, the missing data samples 

yield spreading artifacts that are randomly distributed 

over the entire TF domain, and the overall variance 

increases as the number of missing data samples increases. 

For TF points that are away from the IFs, the variance of 

the artifacts is uniformly distributed over f, whereas the 

variance depends on t due to the zero-padding effect. 

 

ARTIFACTS MITIGATION USING TF KERNELS 
 

The effect of the artifacts due to missing jammer data 

samples resembles that due to noise in the WVD domain 

in the sense that they respectively spread over the entire 

TF region, but with much stronger magnitudes. Therefore, 

such effects can be mitigated through a proper mask, or 

TF kernel. The application of TF kernels also mitigates 

undesired TF cross-terms. The best kernel in this case is 

one that only keeps the jammer signature while filtering 

out the other regions.  One of the best choices for this 

purpose is the AOK [27], which is known to provide 

signal-adaptive filtering capability. The jammer TFD 

reconstruction performance using AOK will be compared 

to that using the Choi-William kernel as an example of 

signal-independent kernels. 

 

JAMMER RECONSTRUCTION AND 

SUPPRESSION 
 

As the jammer is sparsely presented in the TF domain, its 

TFD can be reconstructed based on their sparsity. For 

notation convenience, we denote ( )x t c 1[ ( , ),...,xxC t   

( , )]T

xx TC t   as a vector that contains all IAF entries along 

the τ dimension corresponding to time t, and ( )x t d

1[ ( , ),..., ( , )]T

xx xx TD t f D t f  as a vector collecting all the 

TFD entries for the same time t. Note that ( )x tc  may 

denote the original IAF, which corresponds to the WVD, 

or its smoothed version as a result of applying a kernel. 

Then, the two vectors ( )x tc  and ( )x td  are related by the 

IDFT with respect to f, expressed as 

( ) ( )x f xt tc G d , ∀t,                         (15) 

where Gf is a matrix performing the IDFT with respect to 

f. Because the signals are sparsely represented in the TF 

domain, the non-zero entries of ( )x td  can be 

reconstructed through sparse signal recovery techniques. 

The problem is formulated as 

1min || ( ) || s.t.  ( ) ( ) 0x x f xt t t d c G d , ∀t.       (16) 

In this paper, we use the OMP [16] for each time instant 

and, as such, we can specify the number of non-zero 

entries (i.e., iterations) in each time instant. 

Once the IF of the jammer signals is estimated, the 

jammer signal can be reconstructed except the initial 

phase. While the subspace projection can be used for 

jammer suppression, the performance is sensitive to the 

errors in the IF estimation error as well as that due to the 

frequency quantization accuracy.  Instead, we perform the 

signal stationarization, DC component removal, and re-

modulating the signal back. This is equivalent to 

performing time-varying filtering, which is difficult to 

directly perform in the underlying problem due to missing 

data.  The required phase accuracy can be relaxed by 

dividing the entire data into multiple segments for 

separated processing [28]. After jammer removal, the 

GPS signal can be processed with matched filtering or 

sparse reconstruction.  
 

SIMULATION RESULTS 

For illustration purposes, we consider an FM jammer 

impinging on the receiver along with a GPS signal. The 

instantaneous phase law of the FM jammer is expressed 

as, 

φ(t) = 0.05t + 0.05t2/T + 0.1t 
3/T 

2,            (17) 



for t = 1, ..., T, where the block size of the signal is chosen 

to be T = 256. The input signal-to-noise ratio (SNR) of the 

GPS signal is –16 dB, and the input jammer-to-noise ratio 

(JNR) is 25 dB.  

One realization of the real-part waveform of the 

jammed GPS signal is shown in Fig. 1, where 50% of 

missing data samples is assumed. The red dots depict the 

positions of the missing data samples. The waveform is 

dominated by the jammer. The corresponding WVD is 

depicted in Fig. 2. Due to the presence of the strong 

jammer, the output signal-to-jammer-plus-noise ratio 

(SJNR) averaged over 10 independent trails, evaluated in 

each GPS symbol, is 1.08 dB.  

Fig. 3 shows the estimated IF signature of the jammer 

from AOK processing and OMP-based sparse 

reconstruction, and Fig. 4 depicts the waveform after the 

jammer is suppressed through demodulation, notch, and 

re-modulation.  The 128-sample data was divided into 4 

segments in performing the jammer suppression. It is 

evident that the jammer signal is substantially mitigated. 

The yielding output SJNR averaged over the same 10 

independent trails is 19.81 dB. 

 

CONCLUSIONS 
 

In this paper, we proposed a novel FM jammer 

suppression technique when the observed data include 

missing samples. The conventional time-frequency 

analysis techniques fail to effectively suppress jammer 

signals because of the high level of artifacts due to the 

missing data samples. The proposed technique, which is 

based on recent advances in time-frequency analyses and 

compressive sensing techniques, recovers the time-

frequency distribution of the jammer signal and estimates 

the instantaneous frequency. This information was used 

for the demodulation of the jammer signal, enabling its 

mitigation through simple DC component removal.  
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