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ABSTRACT

For spatially distributed targets encountered in radar and
sonar applications, direct application of subspace-based
methods usually do not lead to an accurate estimation of
the direction and angular extent of the signal arrivals. If the
spatial distribution of the targets can be parameterized with
a known model a priori, the direction-of-arrival (DOA) esti-
mation problems can be simplified as parameter estimation
problems. However, these methods do not apply when the
targets are not parameterizable. Motivated by this fact, we
propose an effective approach for the DOA estimation of
nonparametric spatially extended targets. In the proposed
approach, the spatially extended targets are modeled as a
continuous sparse structure, which are effectively estimated
using the Bayesian compressive sensing techniques based
on a paired spike-and-slab prior accounting for the angular
target spread. In particular, the problem is examined under
a collocated multiple-input multiple-output (MIMO) radar
platform. Signal transmission at multiple coprime transmit
frequencies are also considered to achieve increased degrees-
of-freedom. The group sparsity of the targets across different
frequencies is exploited to achieve improved DOA estimation
performance.

Index Terms— Multiple-input multiple-output (MIMO)
radar, Bayesian compressive sensing, direction-of-arrival
(DOA) estimation, coprime frequency, sum coarray

1. INTRODUCTION

Direction-of-arrival (DOA) estimation is an important tech-
nique in radar and sonar applications to determine the spatial
spectrum of impinging electromagnetic and acoustics waves.
Subspace-based approaches, such as MUSIC and ESPRIT [1,
2], are considered effective to achieve high-resolution DOA
estimations for uncorrelated point sources. When the signals
are coherent, the covariance matrix becomes rank-deficient
and, thereby, necessitates preprocessing using, e.g., spatial
smoothing [3], to restore the rank of the covariance matrix
before these subspace-based techniques are applied.

In this paper, we consider the problem of DOA estimation
of multiple spatially extended targets in a collocated multiple-
input multiple-output (MIMO) radar platform, which allows
effective construction of a sum coarray aperture from the
transmit and receive arrays [4]. The MIMO array structure
also permits exploiting multiple frequencies, thus achieving
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further enhanced degrees-of-freedom (DOFs). Spatially ex-
tended targets are commonly encountered in radar and sonar
applications depending on the target size, measurement range,
and propagation environments [5].

Several methods exist for DOA estimation of signals (tar-
gets) that exhibit angular spread. In [6], a MUSIC-type dis-
tributed signal parameter estimator (DSPE) is developed to
estimate spatially distributed sources with a parametric angu-
lar cross-correlation kernel. The maximum likelihood tech-
nique is used in [7] to estimate the parameters of the an-
gular distribution. Another algorithm, termed dispersed sig-
nal parametric estimation (DISPARE), is proposed in [8] un-
der different angular distributions. Recently, a MUSIC-based
method is introduced in [9] that uses coprime arrays to esti-
mate spatially distributed sources for certain parametric mod-
els introduced in [10]. All these approaches assume a priori
knowledge of the distribution of the angular spread so that the
DOA estimation problem can be cast as a simpler parameter
estimation problem. The assumptions of parametric distri-
bution and its a priori knowledge, however, are valid only
in some specific circumstance. There are several methods for
DOA estimation of nonparametric spreading sources [11, 12],
but they are only applicable when the distributed signal com-
ponents are incoherent.

In this paper, compressive sensing (CS) methods are used
for DOA estimation of angular spreading targets. The pro-
posed technique applies to signals with both coherent and
incoherent signal components. CS techniques [13] have the
capability of recovering signals from a small number of mea-
surement samples with a high probability, provided that the
signals can be sparsely represented in some known domain as
typical the case in DOA estimations. When multiple obser-
vations correspond to the same target locations but with dif-
ferent scattering coefficients, e.g., by using multiple sensing
frequencies [14, 15], different polarizations [16], multi-static
observations [17, 18], or multipath propagation [19, 20], such
problem can further be cast into a group sparse reconstruction
problem for improved performance.

Among the many CS algorithms that are capable to re-
cover sparse and group sparse signals, we use the recently
developed multi-task Bayesian compressive sensing tech-
niques that accounts for inter- and intra-task dependencies
[21]. This method falls into the general class of multi-task
Bayesian compressive sensing [22–24] which generally yield
enhanced capability and improved performance as compared
to the other group sparse reconstruction methods. In addition,
sparse Bayesian learning algorithms have the flexibility to
effectively account for different signal and observation struc-
tures through the exploitation of modified priors. As a result,
Bayesian learning based compressive sensing techniques



have been successfully applied with a desirable performance
in diverse areas of DOA estimation [25], synthetic aperture
radar (SAR) and inverse SAR (ISAR) imaging [17, 21], time-
frequency analysis [26, 27], and radar clutter suppression
[28, 29].

To consider the underlying DOA estimation through the
inter- and intra-task dependencies, scattering signals belong
to the same group of spread coefficients are considered as a
contiguous cluster with intra-task correlation in the spatial do-
main, whereas the fact that different sensing frequencies or
polarizations share to the same target spatial support is cast as
inter-task correlation between these observations. Note that
the angular spread does not have a known size and structure
in a priori and, therefore, cannot be treated in a typical group
sparse context.

The problem of DOA estimation is considered in this pa-
per in a collocated nested MIMO platform, which achieves a
large virtual aperture and high number of degrees-of-freedom
(DOF) under sum coarray equivalence [30–32]. It is shown in
[33, 34] that the nested coarray can be cast as a special case
of the generalized coprime array structure, and the result de-
rived in this paper can be applied to the generalized coprime
array as well. We further examine the case when narrowband
waveforms are emitted in multiple coprime frequencies, thus
achieving an increased number of DOFs, offering a greater
flexibility in system design and the capability of configura-
tion adaptivity to the application environment.

Notations: We use lower-case (upper-case) bold charac-
ters to denote vectors (matrices). p(·) denotes the probability
density function (pdf) and p(x|−) denotes the conditional pdf
of random variable x, given other parameters. CN (x|a, b)
denotes that random variable x follows a complex Gaussian
distribution with mean a and variance b. In addition, (·)T de-
notes transpose, and IN denotes the N × N identity matrix.
Furthermore, ◦ denotes element-wise (Hadamard) multiplica-
tion, ⊗ implies the Kronecker product, and δ(x) is the Dirac
delta function of x.

2. SIGNAL MODEL

2.1. Nonparametric spatially extended targets

Consider spatially extended targets as the collection of spa-
tially contiguous point ones. In particular, target q spans
an angular section θ ∈ θq = {θq1, . . . , θqPq}, where Pq
denotes the number of discretized grids that are contigu-
ous over the angular span θq . The corresponding scatter-
ing coefficients at time instant t are respectively denoted as
ρq1(t), . . . , ρqPq (t), t = 1, . . . , T , where T is the number
of temporal samples. The coefficients are assumed to take
arbitrary values and thus are not parameterizable.

2.2. MIMO system with single frequency band signals

We first consider the single frequency band case. Let a nested
MIMO system consist of an M -element transmit uniform
linear array (ULA) with an interelement spacing d and an
N -element receive ULA with interelement spacing Md, as
shown in Fig. 1. d is usually chosen to be λ/2, where λ is
the wavelength. The transmit and receive arrays are collo-
cated, i.e., targets are observed at the same direction by both
transmit and receive arrays.
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Fig. 2. The sum coarray of the MIMO system.

Assume that the M transmit antennas emit M temporally
orthogonal narrowband waveforms. For a scene with Q spa-
tially spreading targets, the matched filter at the output of the
nth receive antenna, corresponding to the mth transmit wave-
form, is expressed as

x̃m,n(t) =

Q∑
q=1

Pq∑
p=1

at(m)
(θqp)ar(n)

(θqp)ρqp(t) + nm,n(t),

(1)
where

at(m)
(θqp) = e

−j2πmd
λ sin(θqp),

ar(n)
(θqp) = e

−j2πnMd
λ sin(θqp),

and nm,n(t) is the additive noise which is assumed to be
independent and identically distributed (i.i.d.) random vari-
able following the complex Gaussian distributionNC(0, σ2

n).
Stacking them for all values of m and n into a vector yields

x̃(t) =[x̃1,1(t), x̃2,1(t), . . . , x̃M,1(t), x̃1,2(t), x̃2,2(t), . . . ,

x̃M,2(t), . . . , x̃1,N (t), x̃2,N (t), . . . , x̃M,N (t)]T

=

Q∑
q=1

Pq∑
p=1

ar(θqp)⊗ at(θqp)ρqp(t) + n(t),

=

Q∑
q=1

Pq∑
p=1

a(θqp)ρqp(t) + n(t), (2)

where

at(θqp) = [at(1)(θqp), at(2)(θqp), . . . , at(M)
(θqp)]

T ,

ar(θqp) = [ar(1)(θqp), ar(2)(θqp), . . . , ar(N)
(θqp)]

T

are the transmit and receive steering vectors correspond-
ing to θqp, respectively, a(θqp) = ar(θqp) ⊗ at(θqp) is the
equivalent steering vector of the sum coarray, and n(t) =
[n1,1(t), n2,1(t), ..., nM,N (t)]T is the noise vector. As a re-
sult of Eqn. (2), the output of the receiver matched filters, af-
ter combining redundant sensor lags, yields an MN -element
sum coarray which is uniform linear, as illustrated in Fig. 2.

2.3. MIMO system with multiple coprime frequencies

We further extend the single frequency band signals to a mul-
tiple frequency band case, where the frequencies are chosen to



be mutually coprime. ULAs with coprime frequencies have
been shown to provide significant increase of the available
DOFs for enhanced DOA estimation capability [14, 15].

For narrowband waveforms constructed with a center fre-
quency fl, where l = 1, ..., L, with L denoting the number of
frequency bands, the received signal of the sum coarray can
be similarly expressed as

x(l)(t) =

Q∑
q=1

Pq∑
p=1

a(l)(θqp)ρ
(l)
qp (t) + n(l)(t). (3)

Note that ρ(l)qp (t) does not vary with the receive antennas but
is generally frequency-dependent due to the different target
scattering characteristics and propagation phase delays [14].
In addition, a(l)(θqp) = a

(l)
r (θqp) ⊗ a

(l)
t (θqp) is the steering

vector of the sum coarray corresponding to spatial angle θqp
and frequency fl, expressed as

a(l)(θqp) =

[
1, e
−j 2πD

λl
sin(θqp), . . . , e

−j 2π(MN−1)D
λl

sin(θqp)

]T
,

(4)
where λl = c/fl denotes the wavelength corresponding to
fl, and c is the velocity of wave propagation. Note that the
interelement spacing of the sum coarray is denoted as D.
The additive noise vectors n(l)(t), l = 1, ..., L, are assumed
to be uncorrelated to each other with their respective vari-
ances [σ

(l)
n ]2. The use of coprime frequencies minimizes

the overlaps between the yielded virtual sensor positions in
a(1), . . . ,a(L). Let the interelement spacing D of the sum
coarray be an integer multiple of the half-wavelength at all
the coprime frequencies, i.e., Ll = 2D/λl, l = 1, ..., L, are
mutually coprime integers. As such, the ULA is spatially un-
dersampled at each frequency. In this case, we can rewrite the
steering vectors in a frequency-independent form for better
clarity,

a(l)(θqp) =
[
1, e−jLlπ sin(θqp), . . . , e−jLl(MN−1)π sin(θqp)

]T
.

(5)

3. BAYESIAN COMPRESSIVE SENSING WITH
INTER- AND INTRA-TASK DEPENDENCIES

Denote P = ΣQq=1Pq as the total number of nonzero en-
tries in the descritized spatial angles, the received signals can
be expressed as the following multiple measurement vector
(MMV) model,

x(l)(t) = A(l)s(l)(t) + n(l)(t), l ∈ [1, . . . , L], (6)

where A(l) = [a(l)(θ11), . . . ,a(l)(θQPQ)] is anMN×P ma-
trix and s(l)(t) = [ρ

(l)
11 (t), . . . , ρ

(l)
QPQ

(t)]T is a P×1 vector. In
addition, the DOAs of the signals can be sparsely represented
in the spatial domain over the entire angular grids as

x(l)(t) = B(l)r(l)(t) + n(l)(t), l ∈ [1, . . . , L], (7)

where B(l) is defined as the collection of steering vectors
over the entire possible girds θ1g, . . . , θ

G
g , for G � P . Then,

the angle positions of the signal arrivals are indicated by the
nonzeros entries in r(l), whose values describe the target scat-
tering coefficients. Note that, r(l) exhibits a group sparsity
across the L frequencies, because they share the same sparse
pattern or the nonzero entry positions, but the scattering coef-
ficients generally differ. Therefore, we can reconstruct the
signals using group CS techniques. As we discussed ear-
lier, in this paper, we use the MT-BCS algorithm exploiting
inter- and intra-task dependencies [21], in view of continuity
of spreading spatial spectrum, based on a paired spike-and-
slab prior [35].

Consider this problem as a clustered sparse reconstruction
problem with L tasks, each consisting of G grids. To encour-
age the group sparsity described in (7), we place a spike-and-
slab prior to r(l) [21, 35], i.e.,

p(r(l)|π,β) =

G∏
i=1

[
(1− πi)δ(ril) + πiCN (ril|0, β−1i )

]
,

(8)

where ril is the ith element of r(l) and πi determines the prior
probability of nonzero elements. That is, a large weight πi
corresponds to a high probability for the ril to take a nonzero
value, whereas a small πi tends to generate a zero entry. In
addition, βi is the precision (reciprocal of the variance) of the
Gaussian distribution.

To make the Bayesian inference analytical in (8), which
involves the delta function, we assume a Gaussian ran-
dom vector η(l) = [η1l, . . . , ηGl]

T with l = 1, . . . , L and
a Bernoulli random vector z = [z1, . . . , zG]T . Then, the r(l)

can be expressed as the element-wise product of the latent
vectors η(l) and z forms a new random vector that follows
the pdf in (8), i.e.,

r(l) = η(l) ◦ z, (9)

where the following paired spike-and-slab prior is introduced,

p(η(l), z) =

G∏
i=1

[
CN (ηil|0, β−1i )

]zi
πzii (1− πi)1−zi . (10)

It is noted that the group sparsity is characterized by the same
z across the L frequencies, i.e., signals at all frequencies cor-
respond to the same DOA positions. On the other hand, the
scattering coefficients, denoted as η(l), generally take differ-
ent values for each frequency.

Without loss of generality, a Gaussian prior is placed on
the additive noise in (7) as

n(l)(t) ∼ CN (n(l)(t)|0, α−1l IMN ). (11)

To acquire the trackable and analytical posterior distribution
of βi and αl, we place respective Gamma priors, which are
conjugate to the Gaussian distribution, on both of them.

Considering the continuity of spreading spatial spectrum,
we place a cluster prior based on the intra-task relationship to
improve the estimate performance. Similar to the approaches
described in [21, 35], as illustrated in Fig. 3, we categorize the
relationship into three different cluster patterns, and denote
κi as the number of nonzero neighboring blocks for the ith



Task 1

Task L

lTask 

Task 1

Task L

lTask 

Task 1

Task L

lTask 

Task 1

Task L

lTask 

Block 
i

Block 
i-1

Block
 i+1

Block 
i

Block 
i-1

Block
 i+1

Block 
i

Block 
i-1

Block
 i+1

Block 
i

Block 
i-1

Block
 i+1

 

(a) Pattern 0 (b) Pattern 1 (c) Pattern 2

Fig. 3. Three cluster patterns.

block. In Pattern 0 (“strong rejection”), both neighboring
blocks are zero valued, i.e., κi = 0, and the ith block would
take a zero value with a high probability, since the targets of
interest are assumed to be spatially spread. In this case, e0 <
g0 is assumed in the prior Beta(e0,g0) to encourage a small
value of π(0)

i so as to reject this block. In Pattern 1 (“weak
rejection”), one of the neighboring blocks is zero valued, i.e.,
κi = 1. In this case, the probability for the ith block to be
zero is fair, and e1 = g1 is used in Beta(e1,g1) to exert neutral
prior on π(1)

i . In Pattern 2 (“strong acceptance”), κi = 2, i.e.,
both neighboring blocks are nonzero, and the ith block would
take a nonzero value with a high probability. Therefore, we
use e2 > g2 in Beta(e2,g2) to encourage a high value of π(2)

i
to accept this block.

According to the above generative model, we acquire the
analytical posterior distributions of both z and η(l), due to
conjugate property. The marginal distribution of zi is ex-
pressed as,

p(zi = 1|−) = (1 + e−a0)−1, (12)

with

a0 =
1

2

L∑
l=1

(
log βi − log σil + σilα

2
l x

H
\ilbilb

H
il x\il

)
(13)

+ log πi − log(1− πi), (14)

where σil = (αlb
H
il bil + βi)

−1, x\il = xl −
∑
k 6=i bklzkηkl,

and bil is the ith column of the measurement matrix B(l).
For zi = 1, the posterior conditional distribution of

p(η
(l)
i |−) can be expressed as

p(ηil|−) = N (ηil|σilαlbHil x\il, σil). (15)

For zi = 0, because the value of ηil does not affect the result
of ril, we conveniently draw the value of variable ηil from its
prior. Once both η(l) and z are acquired, we can easily obtain
the scattering coefficients r(l) according to Eq. (9).

4. SIMULATION RESULTS

For illustrative purposes, two examples are considered in
this section. The hyper-parameters are chosen as (e0, g0) =
(1/(MN), 1 − 1/(MN)) for strong rejection, (e1, g1) =
(1/(MN), 1/(MN)) for weak rejection, and (e1, g1) =
(1 − 1/(MN), 1/(MN)) for strong acceptance. Q = 2
nonparametric coherent signals with respective angular spans
of [−32,−26] and [20, 25] degrees are considered. Only a
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Fig. 4. Estimated spatial spectra (MN=96, single frequency
band).
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Fig. 5. Estimated spatial spectra (MN=32).

single snapshot is used in the presence of noise with a 0 dB
signal-to-noise ratio (SNR) for each signal arrival.

In the first example, we compare the performance of the
proposed approach with spatial smoothing MUSIC. A MIMO
system with M = 8 transmit and N = 12 receive antennas
is considered for both cases and the results are depicted in
Fig. 4. The 20 physical antennas yield a sum coarray with
MN = 96 virtual sensors, and single frequency band wave-
forms are exploited. It is clear that the proposed approach
faithfully estimates the spatial extent and magnitude of both
targets, whereas the spatial smoothing MUSIC only identifies
disconnected peaks within each angular spreading region, and
false peaks are observed.

Next, the performance of proposed methods using single
and three mutually coprime frequencies is examined in Fig. 5
with a MIMO system of M = 4 and N = 8. Thus, 12 phys-
ical antennas yield a 32-element sum coarray. Note that the
interelement spacing is differently arranged to the previous
example. For illustrative purposes, we choose three mutually
coprime frequencies with L1 = 1, L2 = 3 and L3 = 5. For
comparison, the single frequency case only assumes L1 = 1.
The estimated spatial spectrum is depicted in Fig. 5(a) from
the single frequency case, while the multiple coprime case
is illustrated in Fig. 5(b). It is evident that the latter outper-
forms the former because of the multiple frequency measure-
ments. The multiple coprime frequencies achieve similar per-
formance to Fig. 4(b) with only half of the physical antennas.

5. CONCLUSIONS

We proposed an effective approach to estimate the DOA infor-
mation of multiple nonparametric spatially spreading targets.
In a Bayesian compressive sensing framework, the spatial ex-
tent of the targets and the multiple frequency band observa-
tions are respectively treated as intra- and inter-task depen-
dencies, and effective DOA estimation is achieved through
the exploitation of a paired spike-and-slab prior. The supe-
rior performance of the proposed algorithm was verified using
simulation results.
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