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ABSTRACT
The problem of estimating motion parameters of multiple
closely located ground moving targets in a multistatic passive
radar system is considered, with a focus on weak signal
conditions. The proposed method provides a means of com-
bining signal energy from all available, spatially separated,
illuminators of opportunity to achieve multistatic diversity
and overall signal enhancement. The proposed technique is
based on sparse signal recovery and exploits a two-step pro-
cess that sequentially estimates the acceleration and velocity
vectors in order to reduce the dimensionality of parameter
search space.

I. INTRODUCTION

Motion parameter estimation of ground moving targets has
been an area of interest in radar signal processing. While
extensive literature is available for motion parameter estima-
tion in conventional radar systems, limited work has been
done in multistatic passive radar (MPR) systems (e.g., [1],
[2]). Motion parameter estimation in MPR systems differs
from conventional radar systems because they operate at
low signal-to-noise ratio (SNR) and narrowband conditions.
These create additional challenges for target detection, local-
ization, and tracking in MPR systems [3].

Existing motion parameter estimation techniques (e.g.,
[3], [4], [5]) are based on the time-frequency analysis of
the Doppler signatures of the received signals, which are
commonly modeled as second-order polynomials for a mod-
erately long coherent processing interval (CPI). In low SNR
situations as encountered in typical MPR systems, it is de-
sirable to combine the data from all available illuminators of
opportunity and, thereby, yielding overall signal enhancement
and multistatic diversity. When multiple moving targets fall
in the same range cells, time-frequency based techniques
may become inconvenient as they require association of
the target Doppler signatures. Application of sparse signal
reconstruction based methods has been explored in some
recent works (e.g., [6], [7]) for effectively combining radar
data from multiple bistatic links.
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Techniques used for estimating motion parameters of
closely spaced multiple ground moving targets in a typical
MPR systems suffer from the following:

1) Despite the availability of multiple transmitters in an
MPR system, it is rather difficult to combine the
Doppler signatures corresponding to different bistatic
links directly in the time-frequency domain.

2) Although a longer CPI can be used to enhance the
SNR corresponding to each bistatic link, target range
migration due to higher-order motion parameters (e.g.,
acceleration and jerk) emerges as a critical issue, and
is difficult to compensate for.

3) Any method based on an exhaustive search becomes
computationally inefficient for multiple target scenar-
ios as they require a multi-dimensional search, thus
exponentially increasing the computational complex-
ity.

In this paper, we develop a new motion parameter es-
timation technique based on sparse signal reconstruction
which enables us to effectively fuse the data corresponding
to all available illuminators. This enables the accumulation
of sufficient signal energy without further extending the
CPI. In order to reduce the computational load associated
with motion parameter estimation of multiple closely located
targets, we propose a sequential process which estimates the
acceleration and velocity in tandem. Simulation results are
provided to demonstrate the applicability of the proposed
method in estimating motion parameters of multiple closely-
located ground moving targets in low SNR conditions.

The following notations are used in this paper. A lower
(upper) case bold letter denotes a vector (matrix). (.)∗ and
(.)T respectively denote complex conjugation and transpose
operations. ‖ · ‖1 and ‖ · ‖2 respectively denote the l1 and l2
norm of a vector.

II. SIGNAL MODEL

A. Geographical relationship
We consider the problem of estimating motion parame-

ters of multiple closely located ground moving targets in
a standard MPR system. We assume that the MPR sys-
tem operates in a multiple-frequency network, such that
N broadcast stations located at known stationary positions
b(i), i = 1, ..., N , transmit waveforms in non-overlapping
frequency bands which are respectively centered at f (i),
i = 1, ..., N .



An airborne receiver, initially located at r0, is assumed to
be moving along its track direction with a uniform velocity
vr, whereas there are K closely located ground moving tar-

gets. The kth target is assumed to be initially located at p
(k)
0 ,

moving with an initial velocity of v(k) and an acceleration of
a(k). Because only ground targets are considered, the z-axis

components of p
(k)
0 , v

(k)
0 , and a(k) are assumed to be 0.

The direct range between the ith illuminator and the
receiver is expressed as

r(i)(t) = ‖r(t)− b(i)‖2, (1)

where r(t) represents the trajectory of the receiver at time t.
Likewise, the bistatic range between the ith transmitter, the
kth target, and the receiver is expressed as

ρ(i,k)(t) = ‖p(k)(t)− b(i)‖2 + ‖p(k)(t)− r(t)‖2, (2)

where p(k)(t) = p
(k)
0 + v

(k)
0 t + 1

2a
(k)t2 represents the

trajectory of the kth target at time t.
The direct path signal received from the ith transmitter can

be expressed as

s(i)r (t) = u(i)(t− r(i)(t)/c) exp (−j2πf (i)r(i)(t)/c), (3)

where u(i)(t) is the baseband representation of the signal
transmitted from the ith illuminator and c is the velocity of
wave propagation. We assume that the transmitted signal is
perfectly reconstructed at the receiver after demodulation and
forward error correction.

The surveillance signal reflected from the kth target, on
the other hand, is given for the ith illuminator by,

s
(i,k)
s (t) = σ(i,k)u(i)(t− ρ(i,k)(t)/c) exp (−j2πf (i)ρ(i,k)(t)/c)

+n
(i)
s (t),

(4)
where σ(i,k) is the target reflection coefficient corresponding

to the kth target, and n
(i)
s (t) is the additive noise.

Since the motion parameters of the receiver platform are
precisely known, we can compensate for the range migration
due to its movement about a ground reference position in
close vicinity of the actual position of the targets, referred
to as the scene origin [3]. For the kth target, considering a
scene origin at q(k), the range difference at the mth azimuthal
sampling instant can be expressed as

R̃(i,k)(tm) ≈ ρ(i,k)(tm)− ζ(i)(tm)
= ‖q(k) + v(k)tm + a(k)t2m/2− b(i)‖2
+‖q(k) + v(k)tm + a(k)t2m/2− r0 − vrtm‖2
−‖q(k) − b(i)‖2 − ‖q(k) − r0 − vrtm‖2,

(5)
where tm are the azimuthal sampling instants, m = 1, ...,M
and ζ(i)(tm) = ‖q(k)−b(i)‖2+‖q(k)−r(tm)‖2 is the bistatic
range between the ith transmitter, the scene origin and the
receiver at tm.

B. Observed Doppler signature
The output of the receiver matched filter at azimuthal

time tm corresponding to the ith illuminator, after range
compensation due to the motion of the receiver platform at

the scene origin, can be expressed as a linear sum of K
different Doppler signatures, as

s(i)(tm) =
K∑

k=1

ξ(i,k) exp (−j2πf (i)R̃(i,k)(tm)/c)+n(i)(tm),

(6)
where ξ(i,k) is the magnitude of the matched filter output
corresponding to the return from the kth target, and n(i)(tm)
is the additive Gaussian white noise. The phase term of the
matched filter output, as discussed in the preceding section,
is determined by the range difference, depicted in (5).

For a moderately long CPI, the phase term of s(i,k)(m),
for the kth target, denoted as φ(i,k)(m), follows the following
quadratic relationship,

φ(i,k)(m) = φ
(i,k)
0 + 2πf

(i,k)
0 m+ πβ(i,k)m2, (7)

where φ
(i,k)
0 is the initial phase, f

(i,k)
0 is the initial Doppler

frequency, and β(i,k) is the chirp rate.

III. MOTION PARAMETER ESTIMATION
THROUGH SPARSE SIGNAL RECOVERY

From (5), the target motion is determined by four unknown
motion parameters, i.e., x- and y- axis components of target’s
acceleration and velocity. The Doppler signatures correspond-
ing to different bistatic links share the same set of unknown
motion parameters. As such, the problem can be modeled as
a standard sparse signal reconstruction problem. The problem
of sparse signal representation requires finding the sparsest
signal x that satisfies y = Ax, where y represents an
P × 1 observation vector and A ∈ CP×Q represents an
overcomplete basis, i.e., P < Q.

In the underlying problem, the dictionary matrix represents
a discretized four-dimensional (4-D) space of the unknown
motion parameters, such that each point in the discretized
space represents a hypothetical combination of target motion
parameters (vx, vy, ax, ay). From a practical standpoint, such
a 4-D search, for all possible values of target velocity and
acceleration, is computationally infeasible. Therefore, we
propose a two-step sequential estimation process. First, we
obtain estimates of target acceleration by applying sparsity
based signal recovery in the ambiguity domain. Then, the
estimated values of target acceleration are used for estimating
the velocities of the respective targets.

A. Estimation of acceleration of multiple targets
It is established in [6] that, for a radar return whose

Doppler signature is characterized by a linear FM signal,
the chirp rate depends largely on the target acceleration,
whereas the initial velocity of the target has an insignificant
effect on the chirp rate, especially when the target-receiver
distance is large. The slope of a chirp signal signature
viewed in the ambiguity domain is not affected by its initial
frequency. In essence, the ambiguity function of a target’s
Doppler signature is a straight line passing through the origin,
irrespective of the initial Doppler frequency, where the slope
of the straight line is determined by the chirp rate. With
multiple targets, the ambiguity function of the radar return,
defined in (6), constitutes multiple lines. These lines all pass



through the origin but with different slopes, depending on
the respective target accelerations. The slope, however, can
only be estimated when the SNR is sufficiently high. By ap-
plying sparse signal reconstruction methods in the ambiguity
domain, nevertheless, it is possible to simultaneously utilize
the signal energy in all available links for estimating the
acceleration of the multiple targets, using the process detailed
as follows.

The ambiguity function of the signal s(i)(m) is defined in
the discrete-time representation as

χ(i)(θ, τ) =
M∑

m=1

s(i)(m+ τ)[s(i)(m− τ)]∗exp(−j2πθm),

(8)
where θ represents the Doppler frequency and τ represents
the delay. The discretized two-dimensional (2-D) ambiguity
function corresponding to the ith broadcast station is, thus,
a matrix χ(i) ∈ CNθ×Nτ , where Nθ and Nτ , respectively,
represent the number of Doppler bins and the number of
delay bins considered in the analysis.

For the estimation of target acceleration, we are concerned
only about the chirp rate. Therefore, in order to estimate the
target acceleration by applying sparsity based signal recon-
struction in the ambiguity domain, we define a NθNτ × 1
column vector x̃(i) = vec[|χ(i)|] by vectorizing the magni-
tude of the discretized 2-D ambiguity function. To combine
information from all bistatic links, a long observation vector
x̃ ∈ CNθNτN×1 is defined for the N illuminators as

x̃ =
[
(x̃(1))T , · · · , (x̃(N))T

]T
. (9)

The entire acceleration space is represented by a 2-D
discrete space comprising Nax and Nay points along the x-
axis and y-axis, respectively. Let an NaxNay×1 vector u be
the unknown sparse vector which vectorizes the discretized 2-
D acceleration space. Following (5), for the pth hypothetical
target acceleration vector a[p] = [a[p]x, a[p]y]

T , the bistatic
range at the mth azimuthal sampling instant, after performing
range compensation, can be expressed as,

R̃
(i,k)
[p] (tm) = ‖q(k) + a

(k)
[p] t

2
m/2− b(i)‖2

+‖q(k) + a
(k)
[p] t

2
m/2− r0 − vrtm‖2

−‖q(k) − b(i)‖2 − ‖q(k) − r0 − vrtm‖2.
(10)

Since the target velocity does not have a significant impact
on the ambiguity function magnitude of the chirp Doppler
signature, the velocity vector for all the targets is ignored in
(10). As such, the output of the receiver matched filter at the
mth azimuthal sample can be expressed as,

s
(i)
[p](m) =

K∑
k=1

ξ(i,k) exp (−j2πf (i)R̃
(i,k)
[p] (m)/c). (11)

The corresponding ambiguity function in the discrete-time
representation is defined as

χ
(i)
[p](θ, τ) =

M∑
m=1

s
(i)
[p](m+ τ)

[
s
(i)
[p](m− τ)

]∗
exp(−j2πθm).

(12)

Vectorizing |χ(i)
[p] |, we obtain a NθNτ × 1 column vector

defined as x̃
(i)
[p] = vec[|χ(i)

[p] |]. Combining the vectorized am-

biguity functions corresponding to the N available broadcast
stations, a long vector is defined such that

x̃[p] =
[
(x̃

(1)
[p] )

T , · · · , (x̃(N)
[p] )T

]T
. (13)

An NθNτN × NaxNay dictionary matrix Ψ is defined
such that its pth column represents the vectorized ambiguity
function corresponding to the pth hypothetical target acceler-
ation vector a[p], as defined in (13). Therefore, the problem
of acceleration estimation can be formulated as the following
l1-norm minimization problem [8],

min ||u||1 subject to x̃ = Ψu, (14)

which can be readily solved using a number of methods
available for sparse signal reconstruction. As such, we obtain
estimates of acceleration of the K ground moving targets,

â(k) = [â
(k)
x , â

(k)
y , 0]T , where k = 1, · · · ,K. The estimated

acceleration is used in the following to estimate the respective
target velocities.

B. Estimation of velocity of multiple targets
For estimating the velocity vectors of K targets, we again

exploit the sparsity based signal recovery method. Define
an NM -element complex vector y as an observation vector
which stacks the matched filter output vectors corresponding
to the N broadcast stations. The output corresponding to each
station contains M azimuthal samples as defined in (6). The
2-D space of the unknown velocity can be modeled as an
Nvx×Nvy search space such that each point in the discretized
space represents a hypothetical target velocity vector, where
Nvx and Nvy denote the number of discrete points used to
represent the entire target velocity space along the x-axis
and y-axis respectively. As such, for a given estimate of
target acceleration and the p′th hypothetical velocity vector
v[p′] = [v[p′]x, v[p′]y, 0]

T , the bistatic range at the mth
azimuthal sampling instant, after range compensation, can be
expressed as,

R̃
(i,k)
[p′] (m) = ‖q(k) + v

(k)
[p′]m+ â(k)m2/2− b(i)‖2

+‖q(k) + v
(k)
[p′]m+ â(k)m2/2− r0 − vrm‖2

−‖q(k) − b(i)‖2 − ‖q(k) − r0 − vrm‖2.
(15)

Therefore, the output of the receiver matched filter, for the
p′th hypothetical target velocity, can be expressed as

s
(i)
[p′](m) =

K∑
k=1

ξ(i,k) exp (−j2πf (i)R̃
(i,k)
[p′] (m)/c). (16)

An unknown and sparse vector u′, which vectorizes the
discretized 2-D search space, is to be estimated. We define
an NM × NvxNvy dictionary matrix Ψ′ such that its p′th
column represents the receiver matched filter output, as
defined in (16), corresponding to the p′th hypothetical target
velocity vector v[p′]. As discussed in the previous section,



such problem can be casted as an l1-norm minimization
problem, as follows

min ||u′||1 subject to y = Ψ′u′, (17)

The solutions to the l1-norm minimization problems in (14)
and (17) can be obtained using convex optimization algo-
rithms. In this paper, the Compressive Sampling Matching
Pursuit (CoSaMP) [9] is used.

IV. SIMULATION RESULTS
In the simulations, we consider a geolocation scenario

as illustrated in Fig. 1, where 7 digital audio broadcast
(DAB) stations [10] are respectively located at [10, 10, 0.1]T

km, [−10, 12, 0.1]T km, [10,−18, 0.1]T km, [0, 20, 0.1]T km,
[−10,−10, 0.1]T km, [−5, 15, 0.1]T km, and [5, 5, 0.1]T km.
The respective carrier frequencies of these seven illuminators
are 225, 227, 229, 231, 233, 235, and 237 MHz. The initial
position of the air-borne receiver is [0, 0, 5]T km, and it moves
with a constant velocity of [150, 0, 0]T m/s.
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Fig. 1. Relative positions of transmitters, receiver and two
closely spaced ground moving targets.

We consider two ground moving targets which are closely
located, respectively, at [0, 14, 0]T km and [0.05, 14, 0]T km.
The first target is assumed to be moving with an initial speed
of [−10,−10, 0]T m/s and an acceleration of [−4,−4, 0]T

m/s2, whereas the second target is assumed to be moving
with an initial speed of [10, 10, 0]T m/s and an acceleration
of [4, 4, 0]T m/s2. We use a search grid resolution of 0.01
m/s and 0.03 m/s2, respectively, for target velocity and
acceleration.

The receiver data is sampled at 2.048 MHz, and the
matched filter output yields a 200 Hz azimuthal sampling
frequency. The overall CPI is assumed to be 2 second, which
generates 400 azimuthal samples per illuminator. For the
given simulation scenario, through 100 independent trials, we
obtain the root-mean-square error (RMSE) for the estimation
of acceleration and velocity of the two targets presented in
Fig. 2. Results show that the proposed method can achieve
robust estimation even at low SNR conditions. It is also im-
portant to note that the performance can be further improved,
when more illuminators are available.

V. CONCLUSIONS
In this paper, we have developed a method for the es-

timation of motion parameters of multiple, closely located
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Fig. 2. RMSE of motion parameter estimates versus SNR.

ground moving target in a multistatic passive radar platform.
We focus on weak signal conditions where the signal-to-
noise ratio (SNR) of individual bistatic link is poor and,
therefore, it is desirable to exploit the availability of multiple
transmitters. In the proposed method, we exploit the sparsity
of motion parameters and obtain a robust motion parameter
estimates for multiple targets through the fusion of data
from all bistatic links. Also, the proposed method obtains
a sequential estimation of motion parameters of multiple
targets to avoid the need for computationally demanding
multidimensional exhaustive search. Simulation results were
presented to demonstrate that the proposed method achieves
robust estimations, even in low SNR conditions.
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