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ABSTRACT
In this paper, we propose effective coprime array configura-
tions in which the minimum interelement spacing is much
larger than the typical half-wavelength requirement. Such
configurations are important in many applications where the
half-wavelength requirement cannot be met due to the phys-
ical sensors size or to avoid spatial oversampling in wide-
band operations. The application of such coprime arrays in
direction-of-arrival estimations is examined using different
algorithms.

Index Terms— Coprime array, sparse array, difference
co-array, direction-of-arrival estimation, compressive sensing

1. INTRODUCTION

Among a number of techniques that are available for sparse
array construction, coprime array is very attractive due to its
simplicity and effectiveness [1]. A prototype coprime array
utilizes a coprime pair of uniform linear subarrays, where

one is of M̃ sensors with an interelement spacing of Ñ units,

whereas the other is of Ñ elements with an interelement spac-

ing of M̃ units. The numbers M̃ and Ñ are chosen to be co-
prime. The unit interelement spacing, d, is typically set as
half wavelength, or λ/2. Because the two subarrays share the
first sensor at the zeroth position, the corresponding coprime

array has a total number of M̃ + Ñ − 1 sensors and achieves

O(M̃Ñ) degrees-of-freedom (DOFs), which is much larger
than the number of physical array elements. The increased
DOFs enable direction-of-arrival (DOA) estimation of more
sources than sensors [2]–[6].

While coprime array provides a sparse configuration for
array placement, the minimum spacing between the sensors is
the unit spacing, which is typically half wavelength to avoid
the grating problem. Many other sparse array structures, such
as the minimum redundancy array [7], generally share the
same property. There are situations, however, that such half-
wavelength minimum spacing is not applicable. One of the
examples is when the physical size of the antenna sensors is
larger than half-wavelength (e.g., [8]). Indeed, many parabola
antennas are designed to have a large size for enhanced di-
rectivity [9]. Another example is an array that operates
over a wide spectrum. For example, over-the-horizon radar
(OTHR) is a unique radar system that performs wide-area
surveillance by exploiting the reflective and refractive nature
of high-frequency (HF) radiowave propagation through the
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ionosphere [10]. While OTHR systems employ narrowband
signals, typically with a signal bandwidth of tens of kilohertz,
the carrier frequency may be chosen to be any value in the
HF band (e.g., the U.S. Navy Relocatable Over-the-Horizon
Radar (ROTHR) operates between 5 MHz and 30 MHz).
This choice is governed by the ionospheric conditions and the
target ranges of interest. As such, the electrical length of a
physical array varies significantly with the frequency. Thus,
sparse array designs are desirable to avoid undersampling at
the high end of the HF band and oversampling at its low end
and achieve effective signal radiation and clutter suppression.

In this paper, we build on the coprime concept to design
unique array structures that maintain a minimum interelement
spacing far above the half-wavelength unit spacing, yet al-
low adaptive beamforming and direction finding without the
grating/aliasing problem. In particular, the two subarrays in
the proposed coprime array structure are allocated with a dis-
placement rather than collocated. Such coarray structure is re-
ferred to as coprime array with displaced subarrays (CADiS).

The application of such coprime array structure in DOA
estimations is examined using MUSIC and compressive sens-
ing (CS) techniques. Compared to the conventional coprime
array structures, the CADiS configuration achieves higher
number of virtual sensors and DOFs for CS-based DOA
estimation, but the consecutive virtual sensors required for
MUSIC-based approach is approximately halved.

Notations: We use lower-case (upper-case) bold charac-
ters to denote vectors (matrices). In particular, IN denotes
the N × N identity matrix. (.)∗ implies complex conjuga-
tion, whereas (.)T and (.)H respectively denote the transpose
and conjugate transpose of a matrix or vector. vec(·) denotes
the vectorization operator that turns a matrix into a vector by
stacking all columns on top of the another, and diag(x) de-
notes a diagonal matrix that uses the elements of x as its di-
agonal elements. ‖ · ‖2 and || · ||1 respectively denote the
Euclidean (l2) and l1 norms, and E(·) is the statistical expec-
tation operator.

⊗
denotes the Kronecker product, and real(·)

and imag(·) represent the real and imaginary part operations.

2. COPRIME ARRAY CONCEPT

A prototype coprime array, as described in the previous sec-
tion, is illustrated in Fig. 1. Without loss of generality, we

assume M̃ < Ñ . The unit interelement spacing d is set to
λ/2. The array sensors are positioned at

S = {nM̃d, 0 ≤ n ≤ Ñ − 1} ∪ {mÑd, 0 ≤ m ≤ M̃ − 1}.
(1)
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Fig. 1. Configuration of the prototype coprime array.

Because the two subarrays share the first sensor at the zeroth
position, the total number of the sensors used in the coprime

array is M̃ + Ñ − 1. Note that the minimum interelement
spacing in this coprime array is λ/2.

Denote p = [p1, ..., pM̃+Ñ−1]
T as the positions of the

array sensors where pi ∈ S, i = 1, ..., M̃ + Ñ −1, where the
first sensor is assumed as the reference, i.e., p1 = 0. Assume
that Q uncorrelated signals imping on the array from angles
Θ = [θ1, ..., θQ]

T , and their discritized baseband waveforms
are expressed as sq(t), t = 1, ..., T , for q = 1, ..., Q. Then,
the data vector received at the coprime array is expressed as

x(t) =

Q∑
q=1

a(θq)sq(t) + n(t) = As(t) + n(t), (2)

where

a(θq) =

[
1, ej

2πp2
λ sin(θq), ..., ej

2πp
M̃+Ñ−1

λ sin(θq)

]T
(3)

is the steering vector of the array corresponding to θq , A =
[a(θ1), ...,a(θQ)], and s(t) = [s1(t), ..., sQ(t)]

T . The ele-
ments of the noise vector n(t) are assumed to be independent
and identically distributed (i.i.d.) random variables following
the complex Gaussian distribution NC(0, σ2

n).
The covariance matrix of data vector x(t) is obtained as

Rxx = E[x(t)xH(t)] = ARssA
H + σ2

nIM̃+Ñ−1

=

Q∑
q=1

σ2
qa(θq)a

H(θq) + σ2
nIM̃+Ñ−1,

(4)

where Rss = E[s(t)sH(t)] = diag([σ2
1 , ..., σ

2
Q]) is the source

covariance matrix, with σ2
q denoting the input signal power

of the qth source, q = 1, ..., Q. In practice, the covariance
matrix is estimated using the T available samples.

From antennas located at the mth and nth positions in p,
the correlation E[xm(t)x∗

n(t)] yields an entry in Rxx with lag
pm − pn. As such, all the available values of m and n, where

0 ≤ n ≤ Ñ − 1 and 0 ≤ m ≤ M̃ − 1, yields virtual sensors
of the following difference co-array:

CS = {z|z = u− v,u ∈ S,v ∈ S}. (5)

3. DOA ESTIMATION

In this section, we briefly summarize the MUSIC algorithm
and CS approaches used in DOA estimation exploiting co-
prime arrays (refer to [2] and [4] for details).
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Fig. 2. The conventional coprime array configuration (Struc-

ture 1).

3.1. MUSIC Algorithm
Vectorizing Rxx yields

z = vec(Rxx) = Ãb+ σ2
ñi = Br, (6)

where Ã = [ã(θ1), ..., ã(θQ)], ã(θq) = a∗(θq)
⊗

a(θq), b =

[σ1, ..., σQ]
T , ĩ = vec(IM̃+Ñ−1). In addition, B = [Ã, ĩ] and

r = [bT , σ2
n]

T = [σ2
1 , ..., σ

2
Q, σ

2
n] are used to simplify the no-

tations. The vector z amounts to the received data from a
virtual array with a much longer array aperture whose corre-

sponding steering matrix is defined by Ã. However, the vir-
tual source signal becomes a single snapshot of b. Therefore,
the rank of the noise-free covariance matrix of z, Rzz = zzH ,
is one, and subspace-based DOA estimation techniques, such
as MUSIC, fail to yield DOA estimates when multiple signals
impinge to the array.

To overcome this problem, as shown in Fig. 2, it is pro-
posed in [2] to double the number of array sensor in the first
subarray, which has fewer sensors than the other. In this pa-
per, we refer to this array structure as the conventional co-
prime array. To distinguish the notation from the prototype
coprime array structure depicted in Fig. 1, we denote the num-
ber of sensors in the two subarrays as N and 2M , respec-
tively, where M < N . Because the zeroth sensor positions
of the two arrays are collocated, the total number of the phys-
ical sensors in this coprime array structure is N + 2M − 1.
Note that the minimum interelement spacing of this coprime
array configuration remains λ/2. This coprime array gener-
ates all the consecutive 2MN +2M − 1 lag differences from
−MN−M+1 to MN+M−1 [11]. By extracting these lags,
we can construct a (2MN+2M−1)×(2MN+2M−1) co-
variance matrix, denoted as R′

zz. Performing spatial smooth-
ing yields an (MN +M)× (MN +M) full-rank covariance
matrix so that the MUSIC algorithm can be used to estimate
DOAs of, in theory, up to MN +M − 1 sources.

3.2. Compressive Sensing Approach
Alternatively, (6) can be solved using the CS approach [4].
The desired result of b is represented as the solution to the
following constrained l1-norm minimization problem

r̂◦ = argmin
r◦

||r◦||1 s.t. ||z−B◦r◦||2 < ε, (7)

where ε is a user-specific bound, B◦ is a sensing matrix con-

sisting of the searching steering vectors and ĩ, whereas r◦ is
the sparse entries in these search grids to be determined.

This type of problems has been the objective of intensive
studies in the area of CS, and a number of effective numerical



computation methods have been developed. In this paper, we
use the batch Lasso method [12], but other methods may also
be used.

4. PROPOSED COPRIME ARRAY CONFIGURATION

We now develop CADiS configurations that maintain a large
interelement spacing but have a small and consecutive equiv-
alent spacing. Consider two uniform linear subarrays, as de-
picted in Fig. 3, where one consists of N antennas and the
other with 2M − 1 antennas. Similar to the conventional
array configuration, we assume M and N are coprime and
M < N . The N -element subarray has an interelement spac-
ing of Md, and the (2M − 1)-element subarray has an in-
terelement spacing of Nd. The difference to the conventional
coprime array structure lies in the fact that these two subar-
rays are placed collinearly with the closest spacing between
the two subarrays set to Ld, where L ≥ M . The total num-
ber of array sensors in the proposed coprime array structure
is 2M +N − 1, which is the same as the conventional array
configuration depicted in Fig. 2. Note that the minimum in-
terelement spacing is Md, as compared to d in the prototype
and conventional coprime arrays. In addition, the total array
aperture is (3MN − M − 2N + L)d, which is much larger
than that of the conventional coprime array, the maximum of
(2M − 1)Nd.

In the proposed CADiS configuration, the self-differences
of the two subarrays are given by the following set,

Dself = {Mnd, 0 ≤ n ≤ N−1}∪{Nmd, 0 ≤ m ≤ 2M−2},
(8)

whereas the cross-differences between these subarrays are
given by

Dcross = {M(N − 1)d+ kd+ Ld}, (9)

for different values of k that falls into the following set,

K = {Nm−Mn, 0 ≤ m ≤ 2M−2, 0 ≤ n ≤ N−1}. (10)

It is easy to confirm that k ∈ [−(N − 1)M, 2(M − 1)N ].
The following proposition about set K is useful to understand
the properties of the resulting virtual sensors.

Proposition 1: Set K has the following property:

(1) It contains at least MN +M − 1 consecutive integers
in the range −(N − 1) ≤ k ≤ MN +M −N − 1.

(2) There are holes at −(aM + bN) in the negative range,
where a ≥ 0, b > 0 are integers.

The proof is provided in the Appendix.

In the conventional array configuration, only non-negative
lags in Dcross are used since the negative lags form a subset
of, and overlap with, the flipping of the positive counterpart.
In the CADiS configuration, however, the negative lags do
not generally overlap with the flipping of the positive lags
because of the displacement two subarrays, necessitating the
consideration of both positive and negative lags. The lags
range between L and 3MN − M − 2N + L, among which
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Fig. 3. Proposed CADiS configuration (Structure 2).

MN +M − 1 are consecutive between (M − 1)(N − 1) +
L and 2MN − N − 1 + L. Note that this result contains
more consecutive lags than half of the result provided in [2].
On the other hand, because the coprime array has holes at
MN − M − (aM + bN) + L, where a ≥ 0 and b > 0
are integers, the number of consecutive lags can be extended
by choosing an approximate value of L so that some self-
difference lags are aligned to the negative cross-difference
holes. Specifically, a desirable choice is L = M + N which
results in MN + 2M + N − 1 consecutive lags between
MN −M −N + 1 and 2MN +M − 1. As a result, when
MUSIC is used, which requires consecutive virtual array lags
to perform spatial smoothing, the useable DOFs is slightly
larger than a half of the conventional one.

When the CS-based approaches are used for DOA es-
timation, the proposed CADiS configuration provides more
unique lags than the conventional one because of the utiliza-
tion of negative lags. In addition, the self-differences are less
likely to coincide with the cross-differences in the proposed
CADiS array configuration due to the displacement between
the two subarrays. Consequently, in addition to the larger vir-
tual array aperture, it also offers a higher number of virtual
sensors for improved DOA estimation. It can be shown that
the number of unique lags is 3MN +M −N for the conven-
tional array, and it becomes 4MN+2M−1 for the proposed
array configuration when L = M + N (The derivation is
omitted due to space limitation).

5. SIMULATION RESULTS

For illustrative purposes, we compare two coprime structures
i.e., the conventional array configuration (or Structure 1 for
convenience) and the CADiS configuration (or Structure 2)
with L = M + N . In both array configurations, we assume
M=6 and N=7, where the unit interelement spacing is d =
λ/2. Both arrays consist of 18 physical antenna sensors. The
minimum spacing of the proposed array configuration is 3λ,
as compared to λ/2 in the conventional one.

The subarray sensors are respectively located at [0:6:36]d
and [0:7:77]d in Structure 1, which form a virtual array
with 125 unique lags, among which 95 are consecutive. In
Structure 2, the subarray sensors are located at [0:6:36]d
and [49:7:119]d. It yields a virtual array of 179 unique
lags, among which 60 are consecutive. Different numbers of
uncorrelated narrowband sources, which are uniformly dis-
tributed between −50◦ and 50◦, are considered. We assume
512 noise-free snapshots in all simulations.

We first compare the performance of both array structures
when the MUSIC technique is used. With the coprime MU-
SIC algorithm that exploits the consecutive virtual array lags,
we can obtained 48 DOFs in Structure 1 and 30 DOFs in



Structure 2. In Fig. 4, we consider Q=26 narrowband sources,
which are higher than the number of physical sensors and
close to the DOFs of the Structure 2. It is noted that Structure
1 resolves all 26 signals because of its high DOFs, whereas
not all sources are correctly identified using Structure 2, as
shown in Fig. 4. The unavailability of coprime arrays to iden-
tify all signals below its DOFs is due to the imperfect sample
covariance matrix, based on which the virtual array is defined.

In the next example, the performance of MUSIC is com-
pared to the CS based technique. For CS, higher DOFs are
achieved because both consecutive and non-consecutive vir-
tual sensors are exploited. As an example, we choose Q = 41,
which is close to the number of DOFs of Structure 1. As
shown in Fig. 5, both MUSIC and CS techniques are capable
to estimate all the signals in Structure 1, while for Structure
2, only the CS technique provides successful DOA estimation
since the number of the sources exceeds its DOFs usable for
MUSIC. In performing the Lasso method, the regularization
parameter is set to λt=0.86, and the grid interval is chosen to
be θgi = 0.2◦. The results clearly show that MUSIC is less
effective than CS technique when a high number of sources is
present.

Finally, we compare the performance of both structures
using the CS based technique. We choose Q = 51, which
exceeds the DOFs usable for MUSIC using both structures. It
is evident from Fig. 6 that using Structure 2 achieved better
result than Structure 1 because of the higher number of virtual
elements and larger virtual aperture.
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Fig. 4. Spatial spectra estimated using coprime MUSIC for

both structures (Q=26).

6. CONCLUSIONS

We proposed effective coprime array configurations in which
the minimum interelement spacing is much larger than the
half-wavelength requirement. In addition to their flexibility
in applications with interelement spacing constraints, the pro-
posed configurations also achieve a higher number of degrees-
of-freedom to resolve more sources when compressive sens-
ing techniques are exploited.

7. APPENDIX

(1) Given any integer k satisfying

−(N − 1) ≤ k ≤ MN +M −N − 1, (11)

we need to prove that there exist integers m ∈ [0, 2M−
2] and n ∈ [0, N − 1] such that k = mN − nM holds.
The requirement n ∈ [0, N − 1] is equivalent to

0 ≤ nM ≤ MN −M. (12)
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Fig. 5. Spatial spectra estimated using coprime MUSIC and

Lasso for both structures (Q=41).
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Fig. 6. Spatial spectra estimated using the Lasso for both

structures (Q=51).

Because mN = k + nM , we obtain the following re-
lationship by combining (11) and (12),

−(N − 1) ≤ Nm ≤ 2MN −N − 1. (13)

This result can be equivalently expressed as −N <
Nm < 2MN−N, which implies −1 < m < 2M−1.
Because m is an integer, this requirement is equivalent
to

0 ≤ m ≤ 2M − 2, (14)

which is satisfied in the underlying coprime array con-
figuration.

(2) We prove the proposition by contradiction. Suppose
Nm − Mn = −(aM + bN) holds for some integers
m ∈ [0, 2M − 2] and n ∈ [0, N − 1], where a ≥ 0 and
b > 0 are integers, then relationship

N

M
=

n− a

m+ b
(15)

must be valid. From 0 ≤ n ≤ N − 1 and a ≥ 0, we
find n − a ≤ N − 1 < N . As such, due to the copri-
mality between M and N , we cannot find an integer m
to satisfy (15). Therefore, Nm−Mn �= −(aM+bN),
i.e., there are holes at −(aM + bN) in set K. �
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