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ABSTRACT which respectively define TFD, instantaneous auto-cdiogla

In this paper, we examine the time-frequency represelmtatiofunCt'On (IAF), and ambiguity function (AF). We analytiéal

(TER) and sparse reconstruction of non-stationary si nalshow that the missing data samples yields missing entries in
in the preserl?ce of missing data samples Thesg sagmpl e IAF following certain patterns related to the time iretic
lend themselves to missing entries in the instantaneows aut tge m|SS|_r]!g daFa shamTplleDs. OdnAt\flledother han(rj]_, rrr:lssmg %?ta
correlation function (IAF) which, in turn, induce artifact produce artifacts in the an omains whicn resemb’e
in the time-frequency distribution and ambiguity function addmve. noise |n.the sense thqt they spread over the entire
The artifacts are additive noise-like and. as such. can be mirespectlve domains of joint-variable representationses€h
igated by using proper time-frequency’ kernels, We sho artifacts can be mitigated by applying time-frequency kén
that the sparse signal reconstruction methods éppliedeto th par_ncular, the paper demons_trates that the use of signal
time-lag domain improve the TFR over the direct applica- dap'qve kernels provides superior p_erformance compared t
tion of Fourier transform to the IAF. Additionally, the pape data-independent kernels when missing data are present.

. . . Furthermore, we show that the sparse signal reconstruc-
demonstrates that the use of signal-adaptive kernelsgesvi tion methods applied to the IAF improve performance over

\?vuhpeennr%risl?s?r?;)rdn;;lngreecr?rrgsps;? d to data-independent Iserne,E. e direct application of Fourier transform to the IAF. Un-
' like the sparsity-based TFD reconstructions which aredase

Index Terms— Time-frequency analysis, missing data on the two-dimensional (2-D) Fourier transform relatidpsh
sample, sparse signal reconstruction, compressive ggnsirbetween the AF and the TFDs [4, 5], in this paper, the TFD
non-stationary signals. reconstruction is based on the one-dimensional (1-D) Eouri
transform that relates the IAF and the TFD domains. The lat-
ter method embeds significantly lower complexity.

Notations. A lower (upper) case bold letter denotes a vec-
dor (matrix). (-)* denotes complex conjugation.[-Erepre-
RENts the statistical mean operatiof, (-) and F L) re-
§pectively represent the discrete Fourier transform (D)
inverse DFT (IDFT) with respect te, whereasF;(-) denotes

two-dimensional (2-D) DFT]| - ||1 and|| - ||> respectively
enote thel.; and L, norm operations. In addition(t) and
&(t, 7) respectively denote 1-D and 2-D Kronecker delta func-
tions, andvar(-) denotes the variance.

1. INTRODUCTION

Spectrum estimation and waveform reconstruction in th

presence of missing data samples have broad applicatio

in astronomy, seismology, paleoclimatology, and genetic

[1, 2]. Missing data may be a consequence of removal o

data samples contaminated by impulsive noise, or a result

intentional undersampling to enable digital signal preoes

of wideband signals and to reduce hardware complexity.

large class of non-stationary signals, particularly thegh

instantaneous narrowband waveforms, such as frequency-

modulated (FM) signals with time-varying instantaneous 2. SIGNAL MODEL

frequencies (IFs), are widely used in the area of communica-

tions, radar systems, and biomedical applications [3] tffier ~ Consider a discrete-time signat(t),t = 1,...,7, which

type of signals, it is advantageous to use time-frequenmy re comprises a single or multiple components of FM signals.

resentations (TFRs) to characterize the local signal hiehav Denoter(t) as its observation data witN missing samples,

and determine the signal instantaneous frequency laws, ev&vhere0 < N < 7. The missing sample positions are as-

when many of the data samples are missing. sumed to be randomly and uniformly distributed over time.
In this paper, we examine the effect of missing data orAs such,(t) is the product ofz(¢) and an “observation

time-frequency distribution (TFD) performance and joint-mask”,R(t), i.e.,

variable representations. In particular, we consider fineet

domains of time-frequency, time-lag, and lag-frequency, r(t) = x(t) - R(1), (1)
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S < {1,..,T} is the set of observed time instants and itsFrom the definitions, we obtain
cardinality is|S| = 7' — N. The observed waveform with

N
missing samples can be expressed as the difference betwe B L
the original waveform and the “missing samples”, i.e., gn 25 t—ti+T 1; Ot —tp — )
r(t) = x(t) — m(t), @ =6t —tir (t oyt ;tk) _

ti¢S ti,ty €S

where the missing data is expressed as ti—ty 0, oven

(13)
The first term in the right-hand side includes the entriebén t
t-axis (i.e.;/ = 0), whereas the last term represents entries off
the t-axis due to different missing data samples. The cross-
X(t) =1, ¥, ) term IAF Cx s (¢, 7) is given by

m(t) = x(t) - M(t), (4)

with M (t) = X (t) — R(t) denoting the “missing data mask”,
and

is an “all-pass” mask.

N
To facilitate the analysis, we express the missing data COxm(t,7) = ZX(t + 7)ot —ti —7)

mask as N v (14)
=36t —t:), ti¢s. (6) =3 ot —th T —tr + 1),
i=1 1=1 k=1
Accordingly, the missing signal is expressed as which is a straight line across all valuesto& [1, 7], where
T satisfiesr = t — t; for all missing data sample positions
N N t; ¢ S. On the other hand, the cross-term 18R, x (¢, 7)
m(t) =x(t) - M(t) =Y x(t)d(t—t;) = » x(t;)0(t—1t;), is symmetric toCx (¢, 7) with respect to the-axis, and is
i=1 i=1 given by
. . M N
and the observed data with the missing samples is expressed
as Cux(t,7) = 6(t—ti+7)X(t—7)
N Vo (15)
r(t) = z(t) —m )= > w(t)s(t—ti). (8) =D 6t =t T+t — 1),
=1 i=1 k=1
which is a straight line that satisfies= —t+¢; forall t; ¢ S.
3. TIME-FREQUENCY REPRESENTATIONS WITH Notice that the non-zero entries 6%, (¢, 7) are located at
MISSING DATA SAMPLES the positions where the two IAF cross-terms meet, thereby
. . maintaining the value of’y (¢, 7) not to exceed 1.
3.1. Instantaneous Auto-correlation Function In reality, the IAF is affected by the window effect due
The IAF of z(t) is defined as to zero-padding. The length of the rectangular window along
ther dimension depends arand is expressed as
Cox(t,7)=x(t+1)2" (t—7T), 9 Q.(t)=T—|T+1-2t], t=1,..T. (16)
wherer is the time lag. _ By taking this into account, @-sample functiori () would
From (1) and (9), the IAF of(t) is expressed as haveT? /2 non-zero entries if is even, o T2 +1) /2 entries
- if T is odd. Without loss of generality, we consider an even
Crr(t,7) = Cao(t, T)CRR(E, 7), (10)  Value ofT hereafter. In this case, the number of unit-value en-

whereCrr(t, 7) is the |AF of the observation madk(t). To tries of Cp(t, 7), in t_he presence oV missing data samples,
’ §an be well approximated as

examine the effect of the missing data samples more clearly,
we useR(t) = X (t) — M (¢) to obtain N = NT — N?/2. 17)

Crr(t,7)= Cxx(t, 7)+Cnm (t, 7)—Cxur (t, T)—CMx(fH), This implies the same number of missing entrie€jn(z, 7).

whereCx x (t,7) and Cysp (¢, 7) are the IAF of X (¢) and . . C
M(t), respéctiv)ely, and?xj\g(t,)r) andCyx (t, 1) a(lrze two 3.2. Wigner-Ville Distribution

IAF cross-terms betweeh/ (t) and X (¢). The difference in  The DFT of the IAFC,.(t,7) with respect tor is the well-
the mask IAF due to the missing data samples can be ekxnown Wigner-Ville distribution (WVD), which represents
pressed as the time-frequency (TF) characteristics of the signal,

Cp(t,7) = Cxx(t,7) — Crr(t,T) Waa(t, f) = Fr[Cru(t, 7)) Coa(t,T)e 7477 (18)
:CXM(t,T)+CMx(t,T)—CM1\,{(t,T). (12) ( [ Z



Note that4r is used in the DFT instead @fr because the As such, the missing data samples yield spreading artifacts

time-lagr takes an integer value. BecauSg, (¢, 7) is con-  that are randomly distributed over the entir¢ domain, and

jugate symmetric an@'r (¢, 7) is symmetric with respectto the overall variance increases as the number of missing data

7, Crr(t, 7) IS conjugate symmetric with as well. As such, samples increases. It is evident from the above expression

the WVD of the observed datél/,.. (¢, ) = F-[Cy-(t,7)],is  that, for(¢, ) points wheréV,, (¢, f) is zero or insignificant,

real-valued. the variance is uniformly distributed ovér whereas the vari-
Because the missing data sample positions are randomince depends anbecause of the zero-padding effect.

and uniformly distributed, from the above discussion, the p

sitions of the missing IAF entries can also be considered ran

domly and uniformly distributed overandr. Then, fora 3.3. Ambiguity Function

specifict, out of the@, (¢) non-zero samples af... (¢, 7),

the number of missing entries @, (¢, 7) is

N ONT — N2
TQ—/2QT(t) - TQT(t) (19)

Therefore, the number of the observed non-zero IAF samples
for a specifict is obtained as

The IDFT of the IAFC,..(t, 7) with respect tat yields the
AF, expressed as,

K. (t) = _
®) A (0,7) = F; MO0 (t, 7)) Zom (t,7)el> 0 (26)

whered is the frequency shift or Doppler. As such, the AF
(T — N)? is mathematically very similar to the WVD. The exception is
Lr(t) = Q- (1) - K+ (t) = TQT(W (20) that, as the IAF is conjugate symmetric only withbut not
with ¢, the AF entries are in general complex. Rather, The AF
entries are conjugate symmetric with respect to the origin.
eI We similarly define the window length along thdimen-
Wor(t, f) = Z Cas(t:7) (21) sion, which is expressed as a functionrof

We can expres®/,.,(t, ) as

TES,(t)

whereS; (t) is the set of non-zere entries for a specifi¢ Qur)=T—27|, 7=-(N/2)+1,..,(N/2)—1. (27)

with a cardinality of|S-(t)| = L. (t), andr takes values be-

tween—[Q-(t) — 1]/2 and[Q-(t) — 1]/2. Out of the@(7) samples of”,., (¢, ) for a specific value of
Using the uniform distribution of the missing entries in 7 the number of missing entries @ (t,7) is

t andr, it is straightforward to verify that EV,.,.(, f)] =

[Lr(t)/Qr(t)|Wys(t, f), i.e., W,-(t, f) is an unbiased esti- N INT — N2

mator of W, (¢, f) for everyt and f, subject to a scaling Ki(7) = 7575 Qu(7) = ——75——Q:(7).  (28)
factoré = L, (t)/Q,(t) = (T — N)?/T2. Write W,.,(t, f) 12/2 T

as Wi (t, f) = Wao(t, f) — Walt, ), (22)  We can similarly verify that EA,..(0,7)] = (Li(7)/Q:(T))

Ago(0,7), whereL, (1) = Qu(7) — Ky(7). Thatis, A, (0, 7)

is an unbiased estimator df,.. (¢, 7) for everyd andr, sub-

rTJ*ect to the same scaling facter= L(7)/Q.(7) = (T —
N)?/T?. The variance ofd,..(6, 7) is given as

Wherer(t f) mz(t f) +Wmm(t f) mm(t f)
denotes the artifacts in the WVD due to the missing data sa
ples. Then, from the above discussion, we obtain

L. (t) K. (t)
EWalt, ] (1= SR Waslts 1) = GE 3 Woa0.1).

d Qr(t) Qr(t) (23) var[AM(H,T)] — Z |sz (t,T)|2 _ g;—g;Mm(eﬂ')Pa
BecausdV,..(t, f) is deterministic, we can obtain the vari- tg5(T) ' (29)
ance ofi¥;.,(t, f) as whereS;(7) is the set of non-zero entries for a specifie:
var[W,r(t, f)] = var[Wu(t, f)] with a cardinality of|S; ()| = L.(7), andt takes values be-

K. (t) 2 tweenl and7'. The variance becomes
T P 1 )
K Arrea =K i2_—Azzea
= Y 10ult)P - 5 E;) Waat, pyfp. A O] = H) ; ail” = gy A= 07
¢S, (1) (30)

3 _ . . (24)  whenu(t) is the mixture of P FM signals with magnitude
Specifically, whenz(t) is a mixture of P FM signals with ., — 1 " P, as described earlier.

amplitudesa;,7 = 1,..., P, we can simplify the above ex-  aq guch, the missing data samples yield artifacts that ran-

pression as domly spread over the entifer domain, and the overall vari-
ance increases as the number of missing data samples in-
var[Wao (t, f)] Z| |2 - Woaa(t, f)|? creases. Faf¥, ) entries wherel,. (6, 7) is zero or insignif-
) icant, the variance is uniformly distributed ovewhereas the

(25) variance depends anbecause of the zero-padding effect.



4. MITIGATION OF MISSING DATA ARTIFACTS 6. SIMULATION RESULTS
USING TIME-FREQUENCY KERNELS
For illustration purposes, we use a two-component FM sjgnal
The effect of the artifacts due to missing data samples reserhere the instantaneous phase laws of the two components
bles that due to noise in the WVD and AF domains in theare respectively expressed as,
sense that they respectively spread over the efijras well . 2 3 2
as thed- regions. Therefore, such effect can be mitigated d1(t) = 0.05¢ + 0'O5t2/T + 0.1t3/T27
through a proper mask, or time-frequency kernel. This is a ¢2(t) = 0.15¢ + 0.05¢%/T + 0.1¢° /1%,
welcomed news because such kernels also mitigate undesirggt + — 1, ... T, whereT is chosen to be 128. The two FM

time-frequency cross-terms. As such, a less cluttered TFRomponents have the same power, and no noise is considered.
can be expected with the suppression of both missing data arhe real-part waveform, WVD, AF, and IAF are depicted in
tifacts and cross-terms. The best kernel in this case is ongg. 1. The WVD, AF, and IAF are shown in terms their mag-
that only keeps the signal signature whereas the othemegionjtydes for better demonstration of the artifacts due temgs

are filtered out. One of the best choices for this purpose igata samples. It is observed that the WVD shows clear cross-
the adaptive optimal kernel (AOK) [6], which is known t0 terms between the two components, as well as those between

provide signal-adaptive filtering capability in the AF ddma  the same components due to the non-linear IF signatures. In
Furthermore, to understand the difference between notde ayqgition, the total number of 8192 non-zero entries of thie 1A

the missing data samples, we also consider the Choi-W#liamhs a diamond shape because of zero-padding.

distribution (CWD) [7] as an example of non-adaptive ker-  Now, we consider the same waveform, but with a 50% (or

nels. 64) missing data samples that are randomly distributed over
the 128 data samples. The waveform is shown in Fig. 2, where
the missing data positions are marked with red dots. Per the
analysis presented in Section 3, the IAF is a product of the
original IAF and a mask function that nullifies its presente i

_ . ) a significant amount of entries. For this specific realizgtio
When the signals are sparsely presented in the time-frejueny,e missing IAF entries due to the missing data samples is
domain, their TFDs can be reconstructed based on their spag1 44 (which is 75% of the total entries of the original IAF),
sity. For notation convenience, we denog as a vector that whereas the approximated value obtained from (17) is 6143.5
contains all IAF entries along thedimension corresponding The average number of missing entries obtained from 100 in-

to time ¢, anddlk as a vector collecting all the TFD entries dependent trials is 6128.1.

for the same time. Note thatcgﬂc may denote the original It is evident in Fig. 2 that the missing IAF entries induce

IAF, which corresponds to the WVD, or its smoothed versionWVD and AF artifacts. The artifacts in the WVD are spread

as a result of applying a kernel. Then, these two vectors areevenlylover_thefrf%uer)cy axis bgt has strcondger pre;er;whein tf
- ! central portion of the time axis due to the diamond shape o
related by the IDFT with respect i expressed as the IAF. They show certain periodicity because of the twe sig

nal components with parallel IF laws. These artifacts $igni
cantly obscure the proper identification of the time-fretmye
. . , . signatures in the WVD. Likewise, they are evenly distriloute
whereG s is a matrix performing the IDFT with respectfo  jy'the AF over the Doppler frequency, and shows higher pres-
Vectorclk may have missing entries due to missing dataence when the time lag is close to zero.
or because of the kernel. By removing the IAF entries with  The TFD obtained from the AOK is shown in Fig. 3(a)
zero or negligible values, we can construct a veatdy, for 50% of missing data samples. Itis evident that the AOK
which becomes substantially mitigates the missing data artifacts. Beedhe
cll — @&, qlt (32) AOK is originally designed for cross-term suppression, the
xx F 0 resulting TFD shows a TFR with clear auto-term character-
istics, even with 50% of missing data samples. The TFD

}Ar/gr?qrgc'ff Is the result after removing the corresponding TOWSsbtained from the CWD is shown in Fig. 3(b) for the same

B the sianal | ted in the i 50% of missing data samples. A 7-sample Hamming window
ecause eIS|gnas are sparsey. represented in the U pproximatelyl /20 of the entire data samples) is applied to

frequency domain, the non-zero entriesidt, can be recon- g and a 43-sample Hamming window (approximatel$ of

structed through sparse signal recovery techniques. Te pr the entire data samples) is appliedrtoBecause the CWD is

(34)

5. RECONSTRUCTION THROUGH L;-NORM
BASED SIGNAL RECOVERY

cfl =Gradltl, vt (31)

XX

lem is formulated as not data-adaptive, it emphasizes the locality of the olesbrv
) . i I data when rejecting the artifacts due to missing data sanple
min [|dlf ||, st &l —Gyall =0, V& (33) vyielding missing or weak TFD entries around missing data

positions. This distinguishes the effect of the artifactsrf
In this paper, we use the orthogonal matching pursuithat of additive noise.
(OMP) [8] for each time instant. The reason of choosing the  Finally, we depict the TFDs results obtained from the ob-
OMP is that it allows us to specify the number of non-zeroserved data with missing samples by exploiting sparse kigna
entries (i.e., iterations) in each time instant. reconstructions. It is clear that the signal is locally spar



when considered through a window. The reconstructed TFDs original
using the OMP algorithm with few iterations are shown in 2
Fig. 4. The result presented in Fig. 4(a) is obtained from the
original IAF. Three iterations were allowed for each time in
stant to account for the cross-terms. The artifacts dueeto th
missing data samples are still noticeable. On the other,hand
Fig. 4(b) shows the results obtained from the IAF after apply o 50
ing the AOK, with two iterations used for each time instant.

In this case, the reconstructed TFD shows a TFD with very 50

little clutter.

waveform - real part

7. CONCLUSIONS

We have examined the effect of missing data samples of non- %5 9 05 0 50 100
stationary signals on the time-frequency representasods Fig. 1 Real-part waveform, WVD, AF, and IAF of the two-
their sparse reconstructions. The Wigner-Ville distribat mponent signals without missing samples.

(WVD) of such observed signals is shown to be an unbiased

estimator of the full-data WVD, and the estimated variance >
is analyzed. The artifacts due to the missing data samples
are spread over the entire time-frequency domain and can be
effectively suppressed by using proper time-frequency ker
nels. Waveform-adaptive kernels, such as the adaptive op-
timal kernel, demonstrated superior artifact suppressasn
pability. Sparsity-based reconstruction techniquesiagyb
interference-reduced distributions results in exceltéme-
frequency representations.

waveform - real part
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