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ABSTRACT 
 

Multiple-input multiple-output (MIMO) radar systems allow 
array antennas to transmit different waveforms and, as such, 
enable flexible transmit beampattern synthesis. Most 
existing transmit beampattern synthesis methods focus on 
narrowband MIMO radar systems. In this paper, we propose 
a novel method to design transmit waveforms for wideband 
MIMO radar systems. The proposed technique is based on 
the optimization of the cross-spectral density matrix and 
achieves a low peak-to-average power ratio (PAR) as 
desired in practical radar operations. Simulations results are 
provided to verify the low PAR waveform design capability 
corresponding to arbitrary beampatterns. 
 

Index Terms—Wideband MIMO radar, beampattern 
synthesis, waveform design, peak-to-average power ratio  
 

1. INTRODUCTION 
 

Optimized multiple-input multiple-output (MIMO) radar 
waveform design is key to achieving desirable transmit 
beampatterns and has attracted considerable interest in the 
radar community [1-4]. The majority of existing literature 
on MIMO radar waveform design focuses on narrowband 
signals [5-14]. These methods can be classified into two 
major categories. Methods in the first category, such as 
beampattern matching design and minimum sidelobe design, 
directly optimize the cross-correlation matrix of the transmit 
waveforms to synthesize desired transmit beampatterns [5, 8, 
9]. As transmit beampattern is a linear function of the corre-
lation matrix, the formulated optimization problems can be 
easily solved to obtain the desired beampatterns. Methods in 
the other category design actual transmit waveforms based 
on a given cross-correlation matrix. Partially correlated 
signal design methods are also developed for narrowband 
MIMO radars [13, 14], while orthogonal signals are trans-
mitted in sub-array MIMO radars [10, 11]. 

Studies on transmit beampattern synthesis for wideband 
MIMO radar systems, on the other hand, are still very 
limited [15-17]. Inspired by the methods developed for 
narrowband MIMO radar systems, wideband transmit 
beampattern synthesis through optimizing the cross-spectral 
density matrix (CSDM) was first proposed in [15]. As the 
CSDM optimization is often constructed as a convex 
optimization problem that can be conveniently solved, such 

approach enables flexible design of beampatterns. Some 
beampattern design methods based on CSDM optimization, 
such as those through beampattern matching and sidelobe 
minimization, were introduced in wideband MIMO radar 
beamforming [15, 17]. To the authors’ best knowledge, 
however, such results have not yet led to the wideband 
MIMO waveform design based on the optimized CSDM. 
Several other methods are developed for the design of 
wideband MIMO waveforms outside the CSDM context. 
For example, waveforms designed by the Spectral density 
Focusing Beampattern synthesis Technique (SFBT) [16] do 
not take the peak-to-average ratio (PAR) into account and 
thus may not be the desirable choice in practice 
applications. The Wideband Beampattern Formation via 
Iterative Technique (WBFIT) [18] links the beampattern to 
signals through the Fourier transform. The Fast One-
Dimensional Frequency Invariant Wideband Transmit 
Beampattern (F1D-FIWTB) method [19] designs wave-
forms through the Fourier transform by exploiting the 
frequency invariant beamforming (FIB) method developed 
in [20]. However, as these beampattern design methods are 
not based on CSDM optimization, the resulting 
beampatterns cannot account for other desired constraints, 
such as achieving low sidelobes and simultaneously 
synthesizing multiple beams at different frequencies.   

In this paper, we optimize the CSDM and synthesize 
the corresponding transmit waveforms in the wideband 
MIMO radar context. The proposed approach enables 
flexible design of the transmit beampatterns and achieves a 
low PAR. We first briefly introduce beampattern design 
methods to optimize transmit beampatterns based on CSDM. 
Then, the proposed novel waveforms design algorithm is 
described for the synthesis of wideband beampatterns.  
Simulations results are provided to verify the low PAR 
waveform design capability corresponding to arbitrary 
beampatterns. 

Notations: we use lower-case (upper-case) bold charac-
ters to denote vectors (matrices). (·)* stands for complex 
conjugation, and Re(·) denotes the real part of a complex 
value. (·)T and (·)H, respectively, denote transpose and 
conjugate transpose of a matrix or vector. trace(·) implies 
matrix trace. 0A means that A is a positive semi-definite 
matrix. In addition, E(·) denotes statistical expectation.  



2. SIGNAL MODEL AND CSDM OPTIMIZATION 
 

2.1 Signal Model 
 

Consider a uniform linear array (ULA) consisting of M 
omnidirectional antennas with an inter-element spacing of d. 
Denote the signal transmitted by the mth antenna as 

    2 ,cj f t
m ms t x t e   m = 1, …, M, where fc is the carrier 

frequency and xm(t) is the baseband waveforms occupying a 
wide spectral band of [–B/2, B/2]. In the far field, the total 
received signal can be expressed as 
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where τm denotes the time delay between the mth antenna 
and the reference one. Therefore, the total signal power due 
to all signals is given by [15] 
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Stacking the correlation function of xm(t) for all sensor pairs 
yields the following correlation matrix  
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2.2 CSDM based Beampattern Optimization 
 

For narrowband signals, because    0ij ijR R  , the spatial 

power distribution becomes [15],  
 ( , ) ( , ) ( , ),H

c c cP f f f   a Ra         (6) 

where a(θ, fc) is the narrowband array steering vector, θ is 
the spatial angle, and  0R R . However, in the wideband 

case, the spatial power distribution becomes frequency-
dependent. The CSDM is defined as [15],  

 2( ) ( ) j ff e d   S R ,                 (7) 

and the corresponding power pattern can be expressed as  
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where a(θ, fc+f ) is the array steering vector at frequency 
fc+f. Divide the spectral band [fc – B/2, fc + B/2] into N 
samples, denoted as , / 2,..., / 2 1n n N Nf    , where, 

without loss of generality, we assume N to be an even 
integer for notational convenience. The spatial angle region 
[–π/2, π/2] is divided into a K-point uniform grid with the 
kth entry denoted as θk, k=1, …, K. The power distribution 
at spatial angle θk and frequency fn can then be written as 

        , , , .H
k n k n n k np f f f f   a S a   (9) 

From eq. (9), it is clear that, at each frequency fn, we can 
appropriately choose the CSDM S ( fn ) to design the 
transmit beampattern in a similar manner to the narrowband 
case. Similar to the narrowband MIMO radar beampattern 
design described in [5], the wideband MIMO radar 
beampattern can also be designed by optimizing the CSDM 
S ( fn ) to achieve low sidelobe beampatterns [17]. The 
beampattern sidelobe level can be minimized by solving the 
following semi-definite programming problem (SDP)    
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where q is an auxiliary variable, Θ is the sidelobe regions, 
θ0 represents the main beam direction, and θl and θr are 
respectively the lower and upper angles corresponding to 
the 3dB beam-width at each frequency. The above 
constraints require a feasible solution to have a semi-
definite CSDM at every discrete frequency. Additionally, 
the transmit energy at each frequency is set to unity with a 
total energy of N. Other CSDM optimization methods, such 
as beampattern matching design in [15], are also developed 
for wideband MIMO radar beamforming, in which we can 
also arbitrarily choose the desired beampattern to synthesize 
an approximate beampattern for wideband MIMO radar. 
 

3. LOW PAR WAVEFORMS DESIGN METHOD 
 

In narrowband MIMO radar, transmit waveforms can be 
designed according to a given correlation matrix R [5, 8, 9]. 
For wideband MIMO radars, however, transmit waveform 
design based on the correlation function matrix 

 R becomes more complicated as it involves different 

lags. In the following, we propose an alternative approach 
to design low PAR waveforms that approximately satisfy a 
given CSDM. The problem is first considered for the case 
where the CSDM is rank-one, and then a general case for a 
higher-rank CSDM is considered.  
 

3.1 Single-rank Case 
 

We first consider the simple case where the CSDM S( fn ) at 
each frequency has a single primary eigenvalue, whereas the 
other eigenvalues are negligible. In this case, S( fn ) can be 
expressed as 

   ,H
n n nfS = y y                           (11) 

where yn represents the primary eigenvector. Note that yn is 



subject to a group phase ambiguity because yn φn φn
*

 yn
H = 

ynyn
H

 = S( fn ) for any φn. Performing eigen-decomposition of 
S( fn ) for each frequency ,nf  / 2,..., / 2 1n N N   , we 
express the transmit waveforms in the frequency domain as 
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where T
m
y denotes the mth row of Y. The N-symbol 

transmit sequence corresponding to each m
y can then be 

computed through inverse discrete Fourier transform 
(IDFT).  

As the waveform is independently optimized in each 
frequency, the yielding waveforms that combine all the 
frequency components will have a high PAR. Maintaining a 
low PAR is important in practice to minimize energy loss 
and signal distortions. For this purpose, the low PAR 
waveform design problem is described as 
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where 
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IDFT(·) is the IDFT operator, φ=[φ-N/2,…, φn, …, φN/2-1] 
represents the aforementioned group phase ambiguties. In 
addition, E0 is the energy transmitted from each transmitter, 
and ρ≥1 is the maximum permissible PAR of the mth 
sequence, which is defined as 
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Note that ρ=1 implies that the resulting waveforms are 
constant modulus. 

Because of the complex expression (17), the minimi-
zation in (13) with respect to X and φ does not have a 
closed-form solution. However, several local optimal 
solutions with respect to either X or φ dimension are 
available. In the proposed iterative algorithm, this optimi-
zation problem is solved by iteratively updating the indivi-
dual optimization problems with respect to the transmit 
waveforms X and the phase ambiguities φ. This kind of 
optimization techniques has been applied in other fields [21, 
22], so that the convergence of the proposed method can be 
guaranteed. The computation complexity of the proposed 
algorithm is O(M 

3+LMN(N+log2N)), where L is the number 
of iterations. The proposed iterative algorithm is 
summarized in Table I.  

 

3.2 General Case 
In this subsection, we extend the proposed method to the 
general case where the CSDM S( fn ) has a higher rank. In 
this case, the number of the primary eigenvalues of S( fn ) 

denoted as D, is larger than one. In this case, S( fn ) is 
expressed as 

  1 1 1 2 2 2 ,H H H
n n n n n n n nD nD nDf     S y y y y y y     (21) 

where εnd and ynd denote the dth largest eigenvalue and the 
corresponding eigenvector, respectively. Similar to the 
single-rank case as described in Section 3.1, each set of 
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N
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y can be used to compute a set of {Yd, Zd, Xd}. 

Note that the eigenvalues εnd is included in ynd in the 
optimization process, for the purpose of approximately 
matching the optimized S( fn ).  

It is noted that simultaneous transmission of the 
optimized waveforms , 1,...,d d DX , will violate the PAR 

constraints. As such, the D waveforms are sequentially 
transmitted, i.e., the transmit waveforms are expressed as 

 1 2, , ,ˆ ,D M DN
 Z Z  Z Z               (22)  

  1 2, , ,ˆ .D M DN
 X X  X X   (23) 

Consequently, the low PAR waveform design problem in 
(15) can be modified as 
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The solution of the minimization problem in (24) follows 
the same iterative steps as the algorithm described in 
Section 3.1. The computation complexity of the proposed 
algorithm in general case is O(M  

3+ LDMN(N+log2N)). 

Table I: Proposed Iterative Algorithm 
 

Step 1. Apply eigen-decomposition to the given S( fn ), 
initialize φ=[ ej0,…, ej0], and compute Y and Z 
using eqs. (12), (14), and (15); 

Step 2. For each m, m=1,…, M, solve the nearest-vector 
problems [23] to obtain xm based on φ: 
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Step 3. For each n, n = -N/2, …, N/2-1, update φ based 
on the estimated  X  by solving 

 
n

min ,n n
φ

n y y                                (13) 

            where ˆ
ny is the nth column of [DFT(x1), 

DFT(x2), …, DFT(xM)], with DFT(·) 
representing the discrete Fourier transform 
(DFT) operator. This minimization problem (19) 
has a closed-form solution: 

  n exp arg[ ] .H
n nφ j y y                       (14) 

Step 4. Repeat steps 2 and 3 until convergence is 
achieved.  



3.3 Analysis  
 

Unlike the WBFIT method [17], which only solves the 
beampattern matching problem, and the SFBT method [16], 
which does not design waveforms based on a given CSDM, 
the proposed algorithm can synthesize transmit waveforms 
which match any given CSDM. This enables the proposed 
method to design wideband MIMO radar beampatterns 
much more flexibly. However, the proposed method is 
generally suboptimal because there are distortions between 
the resulting beampattern and the desired one due to two 
factors. One is caused by the negligence of insignificant 
eigen-terms in eqs. (11) and (21). This error can be 
controlled by properly choosing the number of effective 
eigenvalues of S( fn ). A large value of D yields a smaller 
error in (21), but will result in a long transmit sequence. The 
small components in S( fn ) will make it much more difficult 
to satisfy the low PAR constraint. Consequently, we should 
properly choose the number of primary eigenvalues, D, e.g., 
whose sum exceeds a certain percentage (say, 99%) of the 
total sum of all eigenvalues. A similar strategy was utilized 
in [24]. On the other hand, strict low PAR constraint also 
results in mismatches between the optimized beampattern 
and the desired one, especially in multi-rank case. This can 
only be relieved by choosing a larger value of  ρ within the 
acceptable limit.  
 

4. SIMULATION RESULTS 
 

In this section, we provide simulation results to demonstrate 
the effectiveness of the proposed algorithm for wideband 
MIMO waveform design based on given a CSDM, which 
can be obtained by the optimization method described in 
Section 2. Throughout the simulations, a MIMO radar with 
a ULA of M=16 omni-directional antennas is assumed. The 
carrier frequency of the transmitted signals is fc=1GHz, the 
bandwidth is set as B=100MHz, and N=64 frequency-
domain samples are assumed. The inter-element spacing is 
set as half wavelength of the highest in-band frequency to 
avoid grating lobes. The spatial angle is divided into K=181 
grid points. 

In this example, the min-max sidelobe beampattern 
design method is adopted to design the desired beampattern 
pointing at 0° with a main beam width of 8°. The sidelobe 
regions are set as 

   90 , 9 9 , 90 , / 2  / 2 1.N n N              (25) 

Note buffer zones with a width of 5° are assumed between 
the 3dB power points and the sidelobe regions. By solving 
the optimization problem in (10), we obtain the CSDM S(fn) 
at each frequency fn. The desired beampattern computed 
from the optimized CSDM is shown in Fig. 1(a). In the 
proposed method, D is chosen as 2, and the PAR constraint 
is set as ρ=2. As shown in Fig. 1(b), the beampattern 
synthesized by the actual waveforms is very approximate to 
the desired one, only with a little distortion in the sidelobe 
regions. On the other hand, we also compare the proposed 

method with the method in [17] in the spatial-angle 
dimension, which is shown in Fig. 2. It is shown that our 
method can obtain lower sidelobe performance, because the 
low sidelobe constraint in CSDM optimization which 
cannot be solved by the method in [17]. 

 
(a)  

 
                                (b) 

Fig 1. Beampatterns synthesized with respect to spatial angle and 
frequency using (a) the optimized CSDM and (b) the proposed 
iterative algorithm with ρ=2. 

 
Fig. 2. Comparison of beampatterns generated by two different 
methods with respect to spatial angle dimension. 

 

5. CONCLUSION 
 

In this paper, we have proposed an optimization method to 
design wideband MIMO radar transmit waveforms based on 
the arbitrary CSDM. In particular, the proposed waveform 
design methods achieve low PAR constraints while meeting 
the specified CSDM. Simulation results verified the 
effectiveness of the proposed algorithm for designing low 
PAR waveforms that synthesize the desired beampatterns. 
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