
DOA ESTIMATION OF SPARSELY SAMPLED NONSTATIONARY SIGNALS

Liang Guo † ‡, Yimin D. Zhang ‡, Qisong Wu ‡, and Moeness G. Amin‡

† School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
‡ Center for Advanced Communications, Villanova University, Villanova, PA 19085, USA

ABSTRACT
The paper deals with sparsely sampled nonstationary signals
in a multi-sensor array platform. We examine direction-of-
arrival (DOA) estimation using sparsity-based time-frequency
signal representation (TFSR). While conventional time-
frequency analysis techniques suffer from noise-like artifacts
due to missing data samples, high-fidelity time-frequency
signatures can be obtained by applying kernelled processing
and sparse reconstruction. Since the signals received at
different sensors occupy the same time-frequency regions and
share a common nonzero support, the recovery of TFSRs can
be cast as a group sparse reconstruction problem. The recon-
structed auto- and cross-sensor TFSRs enable the formation
of the spatial time-frequency distribution (STFD) matrix,
which is used, in turn, to propose the sparse time-frequency
MUSIC (STF-MUSIC). The proposed STF-MUSIC method
achieves effective source discrimination capability, leading to
improved DOA estimation performance.

Index Terms— Time-frequency analysis, DOA estima-
tion, compressive sensing, sparse sampling

1. INTRODUCTION

A large number of nonstationary signals encountered in
radar, sonar, communications, and biomedical applications
are frequency modulated (FM) and can be characterized by
their instantaneous frequencies (IFs) [1–3]. Time-frequency
signal representations (TFSRs) of such signals enable ex-
ploitation of signal sparsity and local signal behaviors. The
Cohen’s class defines a general bilinear TFSR framework [4],
within which reduced interference distributions employ time-
frequency (TF) kernels to mitigate the effect of undesirable
cross-terms [5–7].

For multi-sensor array applications, incorporation of the
signal TF signatures into parameter estimation and signal
recovery was accomplished within the framework of spatial
time-frequency distributions (STFDs). The STFD has ef-
fectively been used to serve both problems of direction-of-
arrival (DOA) estimation [8–13] and blind source separation
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[14–17] for nonstationary signals. Traditional TF analysis
and STFD applications assume that the nonstationary signals
are uniformly sampled with a rate satisfying the Nyquist
criterion. In many real-world applications, however, nonsta-
tionary signals are often observed with missing samples due
to fading, obstruction, and/or impulsive noise. The emerging
compressive sensing (CS) techniques also allow intentional
random undersampling for reduced system complexity [18].
Missing samples generally yield noise-like artifacts that
spread over the entire TF domain [19]. It is shown that
effective artifact mitigation can be achieved by applying TF
smoothing kernels [19, 20]. In multi-sensor systems, artifact
mitigation can also be accomplished by averaging the TFSRs
or ambiguity functions (AFs) corresponding to the different
available sensors [21–23].

In this paper, inspired by the TF-MUSIC developed
in the STFD context [8, 9, 11–13] and the sparsity-based
TFSR reconstruction as recently introduced in [22–25], we
examine the sparsity-based STFD reconstruction of sparsely
sampled nonstationary signals in a multi-sensor platform, and
propose the sparse time-frequency MUSIC (STF-MUSIC)
for effective DOA estimation. We exploit the fact that the
auto- and cross-sensor TFSRs share the same nonzero TF
support to cast their sparse reconstruction as a block-sparse
or group-sparse compressive sensing problem [26–30]. To
mitigate the effect of the artifacts due to missing samples
in TF kernel optimizations, the well-known data-dependent
adaptive optimal kernel (AOK) [6] is modified such that the
kernel operates on multi-sensor observations and applied to
the AF averaged over all available sensors [23].

Once the kernel is designed, the corresponding TFSRs can
be obtained using two-dimensional (2-D) Fourier transform
of the kernelled AF. CS techniques may, however, replace
the Fourier transform with sparse parametric estimation and
achieve enhanced resolution in the TF domain [24]. By
utilizing the one-dimensional (1-D) Fourier transform rela-
tionship between the instantaneous auto-correlation function
(IAF) and the TF distribution (TFD), in lieu of the 2-D Fourier
transform relationship between the AF and TF domains, CS
reconstruction not only reduces the computation complexity,
but also improves the performance as a result of the presence
of local sparsity over each time instant. Considering that the
TFSRs across different array sensors share the same nonzero



support, a group sparse compressive sensing algorithm is
adopted. The reconstructed auto- and cross-sensor TFSRs
enable formation of the STFD matrix, which is used to pro-
pose the STF-MUSIC algorithm for effective DOA estimation
of sparsely sampled nonstationary signals. The proposed
STF-MUSIC method achieves effective source discrimination
capability, leading to improved DOA estimation performance.

Notations. We use lower-case (upper-case) bold charac-
ters to denote vectors (matrices). Fx and F−1

x respectively
represent the discrete Fourier Transform (DFT) and inverse
DFT (IDFT) with respect to x. In particular, IN denotes the
N × N identity matrix. (·)∗ denotes complex conjugate of
a complex value, and (·)T and (·)H respectively denote the
transpose and conjugate transpose of a matrix or vector. In
addition, CN×K denotes the complete set of N ×K complex
entries.

2. PROBLEM FORMULATION

2.1. Signal Model

In narrowband array processing, consider K nonstationary
signals impinging on an array consisting of N sensors. The
N × 1 received data vector x(t) and the K × 1 source signal
vector d(t) are related by

x(t) = y(t) + n(t) = H(θ)d(t) + n(t), (1)

where t ∈ [1, · · · , T ] is the time index of a total number of T
data samples, H(θ) = [h(θ1),h(θ2), · · · ,h(θK)] ∈ CN×K
is the steering matrix with h(θq) denoting the steering vector
corresponding to the DOA θq of the q-th source. n(t) ∈
CN×1 is an additive noise vector which consists of indepen-
dent and identically distributed (i.i.d.) zero-mean, white and
complex Gaussian distributed processes with variance σ2

nIN .
For simplicity but without loss of generality, we assume σn to
be the same for all sensors, i.e., σn = σ, for n = 1, · · · , N .
The noise elements are assumed to be independent of the
signals, which are assumed to be deterministic. Here, each
element of vector d(t) = [d1(t), d2(t), · · · , dK(t)]T is a
single component FM signal. Consider the thinned sampling
of the array observations with a random pattern applied to
each array sensor, where the number of missing samples is
Mq satisfying Mq < T for q = 1, · · · , N . As such, for
the q-th array sensor, the thinned observation, xq(t), can be
expressed as the product of yq(t), expressed in (1), and the
following observation mask,

bq(t) =

{
1, if t ∈ Sq,
0, if t /∈ Sq,

(2)

where Sq ⊂ {1, · · · , T} is the set of observed time instants
and its cardinality is |Sq| = T −Mq . Note that bq(t) may or
may not be the same for each sensor.

2.2. The MUSIC Algorithm

Conventional MUSIC algorithm uses the correlation matrix
of x(t), defined as

Rxx = E[x(t)xH(t)]. (3)

In practice, it is commonly estimated from the measured
snapshots as

R̂xx =
1

N

N∑
t=1

x(t)xH(t). (4)

Let Ĝ denote the noise subspace of matrix R̂xx. The
MUSIC technique estimates the DOAs by determining the
values of ϑ for which the following spatial spectrum is
maximized [31]:

P (ϑ) =
1

hH(ϑ)ĜĜHh(ϑ)
, (5)

where h(ϑ) is the steering vector corresponding to DOA ϑ.
It is noted that missing data in each antenna will result in

a missing entry in the estimation of R̂xx.

3. CS-BASED SPARSE TIME-FREQUENCY MUSIC

3.1. Spatial Time-Frequency Distributions

The Cohen’s class of bilinear TFD for signals x1(t) and x2(t)
is given by [4]

Dx1x2(t, f)=

∫ ∞
−∞

∫ ∞
−∞
Ax1x2(θ, τ)φ(θ, τ)e

−j2πθt−j2πfτdθdτ,

(6)

where Ax1x2
(θ, τ) is referred to as the ambiguity function,

which is given by

Ax1x2(θ, τ) =

∫ ∞
−∞

x1(t+
τ

2
)x∗2(t−

τ

2
)e−j2πθtdt. (7)

In the above expressions, f , θ and τ , respectively, denote
the frequency index, the frequency shift, and the time lag.
The kernel φ(θ, τ) characterizes the distribution and will be
discussed later. Dx1x2(t, f) is referred to as auto-terms when
x1(t) = x2(t), and as cross-terms when x1(t) 6= x2(t).
Expressions (6) can be used to defined the data STFD matrix,
D(t, f), whose (i, k)th element is Dxixk

(t, f).
For the linear data model of (1), the STFD matrix can be

decomposed as [11, 14]

Dxx(t, f)=Dyy(t, f)+Dyn(t, f)+Dny(t, f)+Dnn(t, f).
(8)

Under the uncorrelated signal and noise assumption and the
zero-mean noise property, the expectation of the cross-term



STFD matrices between the signal and noise vectors is zero,
i.e., E[Dyn(t, f)] = E[Dny(t, f)] = 0, and it follows that

E[Dxx(t, f)] = Dyy(t, f) + E[Dnn(t, f)]

= HDdd(t, f)H
H + E[Dnn(t, f)],

(9)

where Ddd(t, f) is the source TFD matrix whose entries
are the auto- and cross-source TFDs of the source. For
narrowband array signal processing applications, matrix H
holds the spatial information and maps the auto- and cross-
source TFDs into auto- and cross-sensor TFDs [14]. Ex-
pression (9) is similar to (4) which used in DOA estimation
problems relating the signal correlation matrix to the data
spatial correlation matrix.

3.2. Multi-sensor Adaptive Optimal Kernel

Missing measurements produce artifacts in the TFD and AF
domains which resemble additive noise in the sense that they
spread over the entire respective domains of joint-variable
representations [19]. These artifacts can be mitigated by
applying proper TF kernels. In practice, to simplify the selec-
tion of auto-terms and suppress the cross-terms and artifacts,
we apply a smoothing kernel that significantly decreases the
contribution of the cross-terms in the TF plane. As discussed
in [19, 23], the well-known data-dependent adaptive optimal
kernel (AOK) is uesd for this purpose. AOK is obtained by
solving the following optimization problem defined in the
polar coordinates [6]:

max
Φ

∫ 2π

0

∫ ∞
0

|A(r, ψ)Φ(r, ψ)|2rdrdψ

subject to Φ(r, ψ) = exp

(
− r2

2σ(ψ)

)
,

1

4π2

∫ 2π

0

σ(ψ)dψ ≤ α,

(10)

where α ≥ 0. In this expression, A(r, ψ) is the AF, and
Φ(r, ψ) is the kernel function, both defined in the polar
coordinates.

In the underlying multi-sensor system, as discussed in
[23], averaging the AF obtained from each array sensor,
Aq(r, ψ), q = 1, ..., N , can enhance the auto-terms and
reduce cross-terms. Meanwhile, the missing data samples
yield artifacts that randomly spread over the entire AF do-
main, and the overall variance increases with more missing
data samples. As different sampling patterns in each sensor
generate distinct artifact distributions, averaging the AFs over
all sensors effectively reduces the presence of such artifacts
induced from missing samples.

Let Aq(r, ψ) denote the auto-sensor AF in the qth sensor,
q = 1, ..., N . The averaged AF over all sensors is given by

AΣ(r, ψ) =
1

N

N∑
q=1

Aq(r, ψ). (11)

Then, an improved kernel in the multi-sensor platform is
obtained by replacing A(r, ψ) in (10) by AΣ(r, ψ) in (11),
yielding better auto-term enhancement and artifact reduction.

3.3. Compressive Sensing Model

The auto- and cross-sensor TFDs can be computed as the
2-D Fourier transform of the corresponding kernelled auto-
and cross-sensor AFs, i.e., Axixk

(r, ψ)Φ(r, ψ), for i, k =
1, · · · , N . By converting the kernelled and averaged AFs to
the rectangular coordinate system, and denoting the result as
Ãxixk

(θ, τ), the corresponding TFDs is expressed as

Dxixk
(t, f) = F−1

θ {Fτ [Ãxixk
(θ, τ)]}. (12)

Alternatively, we can obtain the TFDs through a group
sparse reconstruction from the same kernelled and averaged
AFs. While earlier sparse TFD reconstructions were based
on the 2-D Fourier transform relationship between the AF
and the TFD [22, 24], it is shown in [19, 25] that the 1-D
Fourier transform relationship between the IAF and the TFD
yields simpler computations and enables the exploitation of
local sparsity in the TF domain.

For each pair of AF and IAF, the 1-D inverse Fourier
transform of Axx(θ, τ) with respect to θ yielding the ker-
nelled IAF,

Cxixk
(t, τ) = F−1

θ [Ãxixk
(θ, τ)]. (13)

For each pair of IAF and TFSR, we denote c
[t]
xixk as a

vector that consists of all IAF entries between xi(t) and xk(t)
along the τ dimension corresponding to time t, and w

[t]
xixk

as a vector contains all the corresponding TFD entries with
respect to the frequency for the same time t. According to the
Fourier relationship between the IAF and the TFD, we obtain

c[t]
xixk

= Φw[t]
xixk

+ ε[t]
xixk

, (14)

for 1 ≤ t ≤ T and i, k = 1, · · · , N . Note in the
above expression that all the w

[t]
xixk entries have the sparsity

support for different sensor pairs, i.e., the respective positions
of the nonzero entries of w

[t]
xixk are the same for different

pairs of i and j. In addition, since the same Φ is shared
for all sensor pairs, the above problem is referred to as a
multiple measurement vector (MMV) model. Such problem
can be solved using block OMP (BOMP) [26], group Lasso
(GLasso) [27], or multi-task BCS [29, 30]. In this paper,
the BOMP algorithm is used as it is simple and allows
specification of the sparsity, but other techniques may also
be used.

3.4. Sparse Time-Frequency MUSIC

To perform the STF-MUSIC, we form an STFD matrix
corresponding to a TF region S, expressed as

D̂(S)
xx =

∑
(t,f)∈S

Dxx(t, f). (15)
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Fig. 1. Waveform with missing samples marked in red circles.

Depending on the separability of the TFSRs of the sources,
the TF region S may include only a single source, a subset
of sources, or all the sources. Generally, the selection of
fewer sources in the TFSRs yields better DOA estimation
performance [11].

Let Ĝ(S) denote the noise subspace of matrix D̂
(S)
xx . The

proposed STF-MUSIC technique estimates the DOAs of K0

(where 1 ≤ K0 ≤ K) selected sources by determining
the values of ϑ for which the following spatial spectrum is
maximized,

P (S)(ϑ) =
1

hH(ϑ)Ĝ(S)(Ĝ(S))Hh(ϑ)
. (16)

When K0 < K, the above procedure should be repeated for
other TF regions until the DOA of all sources are estimated.
It is also noted that, with the source selection capability, the
total number of sources, K, may exceed the total number of
sensors, N , as long as K0 ≤ N − 1 is satisfied in each TF
region in which the STF-MUSIC algorithm is performed.

4. SIMULATION RESULTS

In this section, we consider a uniform linear array (ULA)
of N = 4 sensors with a half-wavelength interelement
spacing. Two nonstationary signals (K = 2) impinge on the
array with their respective arbitrary spatial signatures. The
signals emitted from the two sources are polynomial-phase
FM signals with closely separated signatures. Their IF laws
are expressed as

f1(t) = 0.05 + 0.1t/T + 0.1t2/T 2,

f2(t) = 0.15 + 0.1t/T + 0.1t2/T 2,
(17)

where t = [1, · · · , T ] and T = 128. The two sources imping
from respective angles of θ1 = −3◦ and θ2 = 3◦. The input
signal-to-noise ratio (SNR) is 0dB for both signals, and 50%
of the data samples are randomly missing in each array sensor
with different missing patterns. The real part of the waveform
is shown in Fig. 4.

Fig. 2(a) shows the pseudo Wigner-Ville distribution
(PWVD), as used in [11], of the signal received at the first
array sensor. It is clear that, due to the 50% missing data
samples, the TFDs are highly cluttered by the artifacts, and
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Fig. 2. PWVD and CS-based TFD of the sparsely samples signals.
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Fig. 3. DOA estimation results.

strong cross-terms are present between the auto-terms. As
such, it is difficult to perform instantaneous frequency esti-
mation and source selection from this result. In comparison,
Fig. 2(b) shows the TFD obtained from the CS technique for
the first sensor, where the AOK function is obtained based
on array averaged AF. The TFD shown in Fig. 2(b) clearly
reveal the true instantaneous frequencies of the two impinging
sources for individual source selection. As a result, we can
separately perform the proposed STF-MUSIC on each of the
two sources.

The estimated STF-MUSIC pseudo spectra, overlaid for
separated obtained results of both sources, are shown in Fig.
3(a) for three trials for each source, where the estimated
spectrum peaks respectively point to each DOA. On the other
hand, conventional MUSIC algorithm, which does not have
the capability for source selection, fails to separate the two
sources in its estimated pseudo spectra, as shown in Fig. 3(b).

5. CONCLUSION

Compressive sensing techniques, combined with proper data-
dependent kernel design, enable effective time-frequency sig-
nature reconstruction from randomly sampled nonstationary
signals due to the sparsity of such signals in their time-
frequency signal representations (TFSRs). The group sparsity
of the TFSRs of the signals observed in different sensors
allows auto- and cross-sensor time-frequency distribution re-
construction, which leads to the formation of the spatial time-
frequency distribution matrix. The letter was used to define
the sparse time-frequency MUSIC (STF-MUSIC) algorithm
which demonstrated effective source selection and direction-
of-arrival (DOA) estimation capabilities.
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