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ABSTRACT

Compressive sensing (CS) finds broad applications in vari-
ous sparse reconstruction problems. It has been clearly estab-
lished that CS techniques achieve improved quality and res-
olution for many radar imaging problems where the scene is
sparse or can be sparsely represented. One of the major issues
that limits the applicability of CS techniques in radar systems
is the prohibitive complexity in large-scale imaging problems
encountered in, for example, synthetic aperture radar. How-
ever, as the actual scene and the back-projection images are
associated with the point spreading function which has a finite
support, it becomes possible to reconstruct the sparse scene
based only on local observations. In this paper, we develop
a novel segmented CS technique that achieves nearly optimal
sparse reconstruction performance with significant reduction
of computation complexity and memory requirements. The
effect of interference from neighboring segments is examined,
and the conditions of interference-free reconstruction of seg-
mented compressive sensing are devised. The effectiveness
of the proposed technique is verified by simulation results.

Index Terms— Compressive sensing, radar imaging,
synthetic aperture radar, large-scale scene, back-projection

1. INTRODUCTION

Conventional radar imaging uses Fourier-based methods such
as the back-projection algorithm [1, 2, 3]. These algorithms
work well when the data are sampled at the Nyquist rate.
In practice, we encounter many applications where the ob-
served data are incomplete or undersampled. One of such
scenarios is the multistatic passive radar that yields obser-
vations in multiple disconnected regions in the wavenumber
domain due to multiple narrowband signals corresponding to
available illuminators of opportunity [4, 5, 6]. In this case,
Fourier-based techniques yield images with a low resolution
and high sidelobes. An effective approach to achieve high-
resolution images in such scenarios is to use the recent ad-
vances of sparse reconstruction and compressive sensing (CS)
approaches [7]. Sparse reconstruction methods can accurately
reconstruct sparse scenes with a small number of randomly
sampled Fourier samples, and can resolve closely spaced tar-
gets beyond the Fourier resolution [8, 9].

An important issue to be considered in CS-based radar
imaging is the computation and storage requirements deter-
mined by the size of the sensing dictionary matrix. This
problem is less significant when dealing with small-scale

scenes, such as those emerging in ground-based through-
the-wall radar imaging (TWRI) and inverse synthetic aper-
ture radar (ISAR) [9, 10, 11]. On the other hand, there are
situations where the imaged scene is large scale. A repre-
sentative example is the airborne synthetic aperture radar
(SAR) imaging [12, 13]. In this case, the size of the sensing
dictionary matrix may become prohibitive. Consequently,
direct implementations of CS-based algorithms may become
infeasible, if not impossible. This calls for the development
of alternative approaches with a reduced complexity. In
[14], ground-penetrating radar imaging is considered and the
block-Toeplitz structure is used to dramatically reduce the
size of the CS dictionary. As a result, it allows for a reduction
in storage for each dimension. The dictionary used in [15]
has this translational invariance in two dimensions and allows
for the dictionary to be stored with more reduction in size.

In this paper, a new image formation approach is pro-
posed, which combines the Fourier and sparsity-based recon-
struction strategies. Herein, a Fourier-based reconstruction
method is first applied to produce a coarse-resolution image.
These images are then combined to produce a high-resolution
image through the exploitation of sparse reconstruction tech-
niques. The mapping between the coarse-resolution Fourier-
based image and the fused high-resolution image in this stage
allows the partition the entire image to multiple sub-images
and process them separately. As such, the required complex-
ity is significantly reduced as compared to the direct recon-
struction of the entire image through CS-based techniques at
the same time.

Notations: We use lower-case (upper-case) bold charac-
ters to denote vectors (matrices). (.)∗ implies complex con-
jugation, whereas (.)T denotes the transpose of a matrix or
vector. ‖ · ‖2 and || · ||1 respectively denote the Euclidean (l2)
and l1 norms.

2. SIGNAL MODEL

The signal model is presented in one-dimensional (1-D)
range, but the proposed technique is applicable to two-
dimensional (2-D) problems and simulation results will be
presented for 2-D applications.

Consider a sparse scene with a size of N pixels and in
the presence of K point targets, located at x1, . . . , xK . As-
sume that a monostatic radar emits signal s(t) to illuminate



the service area. The received signal can be expressed as

r(t) =

K∑
k=1

σks

(
t− 2xk

c

)
, (1)

where σk is the corresponding reflectivity of the kth target
and c is the propagation velocity.

3. IMAGING RECONSTRUCTION

In this section, we briefly summarize the two representative
imaging reconstruction approaches which are respectively
based on back-projection and CS.

3.1. Back-projection

The back-projection algorithm is implemented using a weighted
matched filter with a hypothetic range xi, i.e.,

g(xi) =

∫
w(t)r(t)s∗

(
t− 2xi

c

)
dt

=

K∑
k=1

σkρ

(
2(xi − xk)

c

)
,

(2)

for 1 ≤ i ≤ N , where w(t) is the window function and

ρ(τ) =

∫
w(t)s(t)s∗(t− τ)dt (3)

is the point spread function (PSF).
To illustrate the problem, we depict examples of the PSF

in Figs. 1(a) and 1(b) corresponding to rectangular and Black-
man windows, where the transmit signal is a linear frequency
modulated (LFM) signal with a bandwidth 20 MHz. The pixel
size is set to 3 m. The Blackman window yields a much lower
sidelobe level at the expense of a wider mainlobe. In Fig. 2,
we show an example of a 1-D sparse scene together with the
resulting back-projection images respectively using the two
different PSFs. The sparse scene consists of N = 200 pixels
with K = 11 targets, whose positions are identified using red
lines. It is observed in Fig. 2(a) that most sparse signals are
resolved with a high level of floor due to the sidelobe prob-
lem. In Fig. 2(b), on the other hand, the floor is reduced to
a negligible level, whereas the waveform width is extended,
making more targets unresolvable.
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Fig. 1. PSF (K=11 and N = 200).
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Fig. 2. Image reconstruction via matched filter (K=11).

3.2. Compressive Sensing Approach

The CS-based approach solves the inverse problem, depicted
in Eq. (1), by finding the sparsest solution q from the follow-
ing expression:

r = Bq, (4)

where r = [r(t1), ..., r(tQ)]
T is a Q × 1 vector that collects

the observations at Q time intervals, B = [b1, ...,bN ] is a
sensing matrix whose kth column is expressed as

bk =

[
s

(
t1 − 2xk

c

)
, ..., s

(
tQ − 2xk

c

)]T
, (5)

with q = [q1, ..., qN ]T being an N × 1 vector to be deter-
mined. The indexes of the sparse entries in vector q represent
the positions of the sparse targets, whereas their values repre-
sent the respective target reflectivities.

The above problem can be reformulated as the following
constrained l1-norm minimization problem

q̂ = argmin
q

||q||1 s.t. ||r−Bq||2 < ε, (6)

where ε is a user-specific bound. This type of problem has
been the objective of intensive studies in the area of CS, and
a number of effective numerical computation methods have
been developed. In this paper, we use the batch Lasso method,
but other methods may also be used. Fig. 3 depicts the re-
constructed image via the CS approach. As a comparison to
back-projection, the CS approach results in a better resolution
and it is clear that all the targets are identified.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

x (pixel)

Am
pl

itu
de

Reconstructed targets
True targets

Fig. 3. Image reconstruction via Lasso (K=11).

4. PROPOSED RECONSTRUCTION APPROACH

As discussed earlier, conventional CS techniques demonstrate
the capability of acquiring high-resolution images, such as
aircrafts in ISAR, and human objects in ground-based TWRI.
However, in very large-scale imaging applications, such as



airborne SAR imaging, the illuminated scene may extend to
a large area, e.g., in the order of tens of kilometers. It thus
becomes infeasible, if not impossible, to use conventional CS
techniques for the reconstruction of such large-scale scenes
due to the prohibitive computation and associated storage re-
quirements.

In this section, we propose a novel segmented CS method
by exploiting the characteristics of the PSF. Since the PSFs of
transmitted waveforms have a finite support, as shown in Fig.
1, in the sense that there exists a value of η such that the value
of ρ(n), which is a discretized version of ρ(τ) described in
terms of pixels, is negligible for |n| > η, i.e.,

ρ(n) ≈ 0, |n| > η. (7)

This property is illustrated in Fig. 4. As such, it becomes fea-
sible to segment the coarse image g = [g(x1), ..., g(xQ)]

T in
Eq. (2) into multiple small sub-images. The CS-based imag-
ing techniques are then applied at each segmented sub-image
data to reconstruct high-resolution sub-scene images. As
such, the sparse imaging problem is converted into a parallel
set of imaging problems with much smaller sub-scenes which
can be feasibly handled by conventional CS techniques.

 -     

PSF 

Fig. 4. PSF with a finite support.

Consider the vector-form expression of Eq. (2) as

g = Dq, (8)

where the (i, k)th element of D is ρ[2(xi − xk)/c] for i =
1, . . . , Q and k = 1, . . . , N . Note that, because of Eq. (7),
matrix D is a banded matrix with a finite support of 2η +
1 elements. As such, the sparse reconstruction of vector q
can be segmented into multiple parallel problems as detailed
below.

The entire coarse image data g via back-projection is di-
vided into M sub-images and the sub-image partition crite-
rion is shown in Fig. 5. In each sub-image, we are interested

in estimating q(m) = [q(n
(m)
1 ), . . . , q(n

(m)
2 )] with a width

of L = n2 − n1 + 1 pixels. By considering the width of

the PSF, the corresponding observation g̃(m) = [g(n
(m)
1 −

η), . . . , g(n
(m)
2 + η)] includes all the data generated by the

targets located within the imaging of interest region q(m).
However, due to the convoluting nature of the PSF, the ob-
served data also include contributions from neighboring pix-
els, yielding inter-partition interference. Such interference is
mitigated by reconstructing the sub-image over an extended

region q̃(m) = [q(n
(m)
1 −2η), . . . , q(n

(m)
2 +2η)] as the region

to be imaged because targets located outside of the [n
(m)
1 −

2η, n
(m)
2 + 2η] region have negligible influence to the sub-

image data in the area considered.

In practice, we may use a margin of ξ, which is suitably
larger than η, to reduce the effect of sidelobes of the PSF. That

is, ǧ(m) = [g(n
(m)
1 − ξ), . . . , g(n

(m)
2 + ξ)] is used to image

q̌(m) = [q(n
(m)
1 − 2ξ), . . . , q(n

(m)
2 + 2ξ)].

Based on the analysis above, we segment the entire coarse
image g in Eq. (2) into M sub-images and acquire

ǧ(m) = D(m)q̌(m), m = 1, . . . ,M, (9)

where D(m) is the sensing matrix as the collection of q over

a finite grid [q(n
(m)
1 − 2ξ), . . . , q(n

(m)
2 + 2ξ)].

Through the proposed segmentation approach, by exploit-
ing the finite support of the PSF, the reconstruction of the
entire scene can be divided into the multiple sub-scene re-
constructions, and each sub-scene is recovered with a high
resolution based on the CS technique. With respect to the

sub-scene reconstruction in Eq. (9), the desired result of q̌(m)

is represented as the solution to the following constrained l1-
norm minimization problem

q̂(m) = argmin
q̌(m)

||q̌(m)||1 (10)

s.t. ||ǧ(m) −D(m)q̌(m)||2 < ε(m),

where ε(m) is a user-specific bound. Note that the sparsity of
the targets should satisfy the requirement in every sub-image,
which is more strict than conventional CS approach as de-
scribed in Section 3.2. Then, the interested region is obtained

from q̂(m) as q(m) = [q̂(m)(2ξ + 1), . . . , q̂(m)(2ξ + L)].
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Fig. 5. Sub-image partition criterion.

5. SIMULATION RESULTS

We first present the results corresponding to the previous ex-
ample depicted in Figs. 2 and 3. The number of pixels con-
structed in each partition is set to L = 100, yielding the num-
ber of sub-images to be M = 2. In addition, the Blackman
window is exploited to reduce the sidelobe, whose support
consists of η ≈ 8 pixels and ξ = 10 is used. The results are
presented in Fig. 6, which shows similar performance as in
Fig. 3.
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Fig. 6. Image reconstruction via proposed approach (K=11).

Next, as an example of large-scale problem, a 2-D scene,
as depicted in Fig. 7(a), is considered, where K = 500
nonzero entries are randomly distributed in a region of
200× 200 pixels. The 2-D PSF function, shown in Fig. 7(b),
is assumed, which is the result of using the PSF depicted in
Fig. 1(b) in both x- and y-axes. The yielding imaging based
on back-projection is depicted in Fig. 7(c). For such a large
scene, conventional CS techniques need high computation
and storage requirements. In the proposed technique, the im-
age is segmented into a set of sparse reconstruction problems
with a smaller dimension, where an area of 60× 60 pixels are
used to reconstruct a sub-image of size 40 × 40, and the cor-
responding number of sub-images is M = 25. As such, the
CS reconstruction can be implemented with a much smaller
sensing matrix in each partition, and the proposed technique
can handle a much larger scenario. Fig. 7(d) shows the recon-
structed imaging using the proposed technique. Compared
to back-projection, the proposed approach resolves all the
targets with a fine resolution.

6. CONCLUSIONS

In this paper, we have proposed a compressive sensing algo-
rithm that enables effective imaging process of a large-scale
radar scene. The proposed technique utilizes the finite support
property of the point spreading function and achieves high-
resolution imaging with reduced computation complexity and
storage requirements through image partitioning. The condi-
tions for avoiding inter-partition interference were addressed,
and the effectiveness of the proposed technique was verified
by simulation results.
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