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ABSTRACT
In this paper, a novel sparsity-based multi-target localization
approach is proposed by exploiting a coprime array operated
with multiple narrowband signals of distinct but closely sepa-
rated carrier frequencies. The cross-covariance matrix is for-
mulated between baseband array data corresponding to dif-
ferent sensing frequencies to generate virtual difference coar-
rays, which enable direction-of-arrival (DOA) estimation of
more targets than the number of physical sensors. In addition,
the use of well designed multi-frequency signals unwraps the
propagation phase information, thereby enabling unambigu-
ous estimation of the target ranges. The DOA and range esti-
mations are cast as a sparse reconstruction problem and are
solved using the complex mulititask Bayesian compressive
sensing (CMT-BCS) technique. The effectiveness of the pro-
posed technique is verified through simulation results.

Index Terms— Target localization, DOA estimation, co-
prime array, Bayesian compressvie sensing, sparse array

1. INTRODUCTION

Target localization is an important area that finds variety of
applications in radar, sonar, communication, and navigation
[1]–[4]. In recent years, simultaneous localization of multi-
ple targets has been intensively investigated using array pro-
cessing and multiple-input multiple-output (MIMO) systems
(e.g., [5]–[8]). The target location information can be charac-
terized using range, angle, or both [9]–[11]. In this paper, tar-
get location is determined using the DOA and range informa-
tion. The number of detectable targets in DOA estimation is
determined by the number of degrees-of-freedom (DOFs) of
the array, i.e., an N -element uniform linear array (ULA) can
localize up to N − 1 targets by using conventional methods.
To increase the number of detectable targets, sparse arrays are
often used to achieve a higher number of DOFs through the
exploitation of the coarray concept [12]. Among a number
of techniques that are available for sparse array construction,
coprime array is very attractive due to its systematical design
capability and DOF analysis [13]–[15]. In addition, the co-
prime array configurations can also be implemented using a
ULA with signal measurement made in two coprime frequen-
cies [16],[17].

In this paper, we consider target localization problems in
a coprime array using a set of continuous-wave (CW) sig-
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nals with distinct but closely separated frequencies. Direct
search of targets in both range and DOA domains requires
computational intensive operations. As we cannot recover
signal waveforms of more sources than the number of sensors
in either the physical array or difference coarray context, the
number of detectable targets may still subject to the number
of physical array sensors when performing a direct search.

In the novel technique developed in this paper, the joint
DOA and range estimation is cast as a sparse reconstruction
problem and solved by exploiting the compressive sensing
(CS) techniques [18]. In particular, the cross-covariance ma-
trix obtained from the baseband signals corresponding to dif-
ferent sensing frequency pairs is first formulated to generate
difference coarrays. In this way, the number of detectable tar-
gets is determined by the number of virtual sensors which is
usually much higher than the number of physical sensors. The
positions of the nonzero entries of the resulting sparse vector
correspond to the signal DOAs in the discretized spatial do-
main, whereas the phase information of each nonzero entry
carries the target range information as it corresponds to the
propagation phase difference of the different frequency pair.
However, due to phase wrapping, the phase information ob-
tained from a single frequency pair does not yield meaning-
ful range estimation. The use of well designed multiple fre-
quencies allows effective phase unwrapping for unambiguous
range estimation.

A high number of CS algorithms have been proposed to
solve the joint DOA and range estimation problem. As the
preferred approach, we use CS algorithms in the Bayesian
sparse learning context as they achieve superior performance
and are insensitive to the coherence of dictionary entries. To
handle the complex-valued observations and entries in the un-
derlying problem, the complex multitask Bayesian compres-
sive sensing (CMT-BCS) [19] is used in this paper. The CMT-
BCS achieves improved sparse signal reconstruction because
it utilizes the group sparsity of the real and imaginary compo-
nents as they are merely the projection of the same complex
value into two orthogonal axes.

Notations: We use lower-case (upper-case) bold charac-
ters to denote vectors (matrices). In particular, IN denotes
the N × N identity matrix. (.)∗ implies complex conjuga-
tion, whereas (.)T and (.)H respectively denote the transpose
and conjugate transpose of a matrix or vector. vec(·) denotes
the vectorization operator that turns a matrix into a vector by
stacking all columns on top of the another, and diag(x) de-
notes a diagonal matrix that uses the elements of x as its diag-
onal elements. E(·) is the statistical expectation operator and



⊗
denotes the Kronecker product. Pr(·) denotes the proba-

bility density function (pdf), and N (x|a, b) denotes that ran-
dom variable x follows a Gaussian distribution with mean a
and variance b. Re(x) and Im(x) denote the real and imagi-
nary parts of complex element x, respectively.

2. SIGNAL MODEL

Without loss of generality, we limit our discussion in this
paper to far-field targets in the two-dimensional (2-D) space
where the DOA is described by the azimuth angle only. Ex-
tension to three-dimensional (3-D) space is straightforward.

Consider a scene with Q far-field targets whose location
is modeled as (θq, Rq), q = 1, 2, · · · , Q. As shown in Fig. 1,
a coprime array utilizes a coprime pair of uniform linear sub-
arrays, i.e., 2M -element subarray with an interelement spac-
ing of N units, and N -element subarray with an interelement
spacing of M units [14]. The unit interelement spacing is de-
noted as d. The integer numbers M and N are chosen to be
coprime (M < N ), i.e., their greatest common divisor is one.
The array sensors are positioned at

P = {nMd|0 ≤ n ≤ N − 1}
⋃

{mNd|0 ≤ m ≤ 2M − 1}.
(1)

Because the two subarrays share the first sensor at the zeroth
position, the total number of the sensors used in the coprime
array is 2M +N −1. Denote p = [p1, ..., p2M+N−1]

T as the
positions of the array sensors where pi ∈ P, i = 1, ..., 2M +
N − 1. The first sensor, located at p1 = 0, is assumed as the
reference.

Assume K continuous-wave (CW) signals are emitted
from an antenna collocated with the coprime receive array.
For a CW waveform with frequency fk, k = 1, . . . ,K, the
signal received at the coprime array is expressed as

x̌k(t) = exp(j2πfkt)

Q∑
q=1

ρq(t)e
−j

4πfk
c Rqak(θq) + ňk(t),

(2)
where ρq(t), q = 1, . . . , Q, are complex scattering coeffi-
cients of the targets, which are assumed to be uncorrelated
zero-mean random variables with E[ρ∗qρp] = σ2

qδq,p, 1 ≤
q, p ≤ Q, due to, e.g, the radar cross section (RCS) fluctu-
ations. In addition, c is the velocity of electromagnetic wave
propagation and ak(θq) is the steering vector corresponding
to θq , expressed as

ak(θq) =

[
1, e

−j
2πp2
λk

sin(θq), ..., e
−j

2πp2M+N−1
λk

sin(θq)

]T
,

(3)
where λk = c/fk denotes the wavelength corresponding to
fk. Furthermore, ňk(t) is the additive noise vector, whose
elements are assumed to be spatially and temporally white,
and are independent of the target signals.

The received signal vector is converted to baseband sig-
nals corresponding to the respective frequencies, followed by
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Fig. 1. The coprime array configuration.

low-pass filtering, yielding

xk(t) =

Q∑
q=1

ρq(t)e
−j

4πfk
c Rqak(θq) + nk(t) (4)

= AkBkd(t) + nk(t), (5)

where Ak = [ak(θ1), · · · ,ak(θQ)] and d(t) = [ρ1(t), · · · ,
ρQ(t)]

T . In addition, the diagonal matrix

Bk = diag([e−j
4πfk

c R1 , · · · , e−j
4πfk

c RQ ]) (6)

contains the phase information as a function of the range with
respect to fk, and nk(t) is the noise at the filter output with a
variance σ2

nk
.

The cross-covariance matrix between data vectors xk(t)
and xl(t), respectively corresponding to frequencies fk and
fl, 1 ≤ k �= l ≤ K, is obtained as

Rxkl
= E[xk(t)x

H
l (t)] = AkBkRddB

H
l AH

l

=

Q∑
q=1

σ2
qe

−j
4πΔfkl

c Rqak(θq)a
H
l (θq), (7)

where Rdd = E[d(t)dH(t)] = diag([σ2
1 , . . . , σ

2
Q]) repre-

sents the target scattering power, and Δfkl = fk − fl is the
frequency difference. Note that we assume the target scatter-
ing coefficients to be frequency-independent for the K CW
signals. This is satisfied by chosen close frequencies such
that their maximum difference is small and is within the co-
herent signal bandwidth. In practice, the covariance matrix is
estimated using the T available samples, i.e.,

R̂xkl
=

1

T

T∑
t=1

xk(t)x
H
l (t). (8)

By vectorizing the matrix R̂xkl
, we obtain the following mea-

surement vector:

zkl = vec(R̂xkl
) = Ãklbkl, (9)

with

Ãkl = [ãkl(θ1), . . . , ãkl(θQ)], (10)

bkl = [σ2
1e

−j
4πΔfkl

c R1 , . . . , σ2
Qe

−j
4πΔfkl

c RQ ]T , (11)



where ãkl(θq) = a∗l (θq)
⊗

ak(θq) for 1 ≤ q ≤ Q. Bene-
fiting from the Vandermonde vector a(θq), we can regard zkl
as a received signal from a single snapshot signal vector bkl

and the matrix Ãkl corresponds to a larger virtual array which
has sensors located at the cross-lags between the two subar-
rays. The number of DOFs is determined by the number of
unique cross-lags, which is 3MN+M−N [15]. As such, the
increased number of DOFs enables DOA estimation of more
targets than the number of sensors.

3. TARGET LOCALIZATION USING CMT-BCS

The signal vector zkl, 1 ≤ k �= l ≤ K, in Eqn. (9) can be
sparsely represented over the entire discretized angular girds
as

zkl = Φklrkl, (12)

where Φkl is defined as the collection of steering vec-
tors ãkl(θg) over all possible grids θg , g = 1, . . . , G,
with G � Q. It is important to note that the DOAs
θq, q = 1, . . . , Q are indicated by positions of the nonzero
entries in rkl, whose values describe the corresponding co-

efficients σ2
qe

−j
4πΔfkl

c Rq . Generally, the nonzero entries
corresponding to different frequency pairs share the same
positions as they are associated with the same DOAs of the Q
targets. However, their values differ for each frequency pair.
Therefore, rkl exhibits a group sparsity across all frequency
pairs and the problem described in (12) can be solve in the
group sparse context.

CS techniques can be used for effective sparse reconstruc-
tion and a number of effective algorithms are available [20]–
[24]. In this paper, we exploit the Bayesian sparse learning
methods due to their superior performance and robustness to
dictionary coherence. In particular, as we deal with com-
plex entries, the CMT-BCS approach [19] is used because
it avoids achieves improved estimation accuracy by utilizing
group sparsity between the real and imaginary components
that are merely the projection of the same complex value into
two orthogonal axes.

It is clear from the above discussion that the phase term
of each nonzero entry contains the range information of each
individual target and is proportional to the frequency dif-
ference. A single frequency pair usually does not provide
enough unambiguous range, but exploitation of multiple un-
equally spaced frequencies will yield desirable unambiguous
range estimation [25], [26]. The detailed discussion of the
range estimation is discussed in Section 3.2.

3.1. CMT-BCS algorithm
Assume that the entries in sparse vectors rkl are drawn from
the product of the following zero-mean Gaussian distribu-
tions:

rgkl ∼ N (rgkl|0, αgI2), g ∈ [1, . . . , G], (13)

where rgkl is a vector consisting of the real part coefficient rgRkl
and imagery part coefficient rgIkl with respect to the gth grid

in rkl. In addition, α = [α1, . . . , αG]
T is the variance of

Gaussian pdf. It is easy to confirm that rgkl trends to be zero
when αg is set to zero [22].

To encourage the sparsity of rkl, a Gamma prior is placed
on α−1

g , which is conjugate to the Gaussian distribution,

α−1
g ∼ Gamma(α−1

g |a, b), g ∈ [1, . . . , G], (14)

where Gamma(x−1|a, b) = Γ(a)−1bax−(a−1)e−
b
x , with

Γ(·) denoting the Gamma function. It has been demonstrated
in [27] that a proper choice of the hyper-parameters a and
b encourages a sparse representation for the coefficients in
rkl. As the covariance matrix is obtained on basis of received
data samples in Eqn. (8), a Gaussian prior N (0, β0I2) is also
placed on the additive noise. Similarly, the Gamma prior is
placed on β−1

0 with hyper-parameters c and d.
The CMT-BCS algorithm carries out Bayesian inference

by the Gibbs samplers [19]. Define r̂RI

kl =
[
(r̂R

kl)
T , (r̂I

kl)
T
]T

with r̂R

kl = [r̂1R

kl , . . . , r̂
GR

kl ]T and r̂I

kl = [r̂1I

kl , . . . , r̂
GI

kl ]
T . Then,

Pr(r̂RI

kl |zkl,Φkl,α, β0) = N (r̂RI

kl |μkl,Σkl), (15)

where

zRI

kl = [Re(zkl)
T , Im(zkl)

T ]T (16)

μkl = β−1
0 ΣklΨ

T
klz

RI

kl , (17)

Σkl =
[
β−1
0 ΨT

klΨkl + F−1
]−1

, (18)

Ψkl =

[
Re(Φkl) −Im(Φkl)
Im(Φkl) Re(Φkl)

]
, (19)

F = diag(α1, . . . , αG, α1, . . . , αG). (20)

It is noted that, the real and imaginary parts share the same α
to ensure their group sparsity. The mean and variance of each
scattering coefficients can be derived, once we obtain α and
β0, which is determined by maximizing the logarithm of the
marginal likelihood [19].

3.2. Target localization
The estimated sparse vector rkl can be expressed as

r̂kl = r̂R

kl + jr̂I

kl. (21)

The DOA of the qth target, θq , is indicated by the position of
the qth nonzero entry in rkl and the corresponding phases is
obtained as

φqkl
= tan−1

(
r̂I
qkl

r̂R
qkl

)
, (22)

where r̂qkl
= r̂R

qkl
+ jr̂I

qkl
is the estimated coefficient with

respect to θq . Then, the corresponding range Rq is estimated
as

R̂q =
cφqkl

4πΔfkl
, (23)

without considering phase wrapping. In reality, however,
phase observations are wrapped within the [0, 2π) range.
Therefore, the true phase can be expressed as

φ(true)
qkl

= φqkl
+ 2mqkl

π, (24)

where mqkl
is an unknown integer. As a result, the range

estimate is subject to range ambiguity [25], i.e.,

R̂q =
cφqkl

4πΔfkl
+

cmqkl

2Δfkl
. (25)



The latter term in Eqn. (25) implies ambiguity in range due to
phase wrapping. Thus, the range can be assumed as infinite
values separated by Rmax,kl = c/(2Δfkl), which is referred
to as the maximum unambiguous range for the frequency pair
of fl and fk.

As discussed earlier, a single frequency pair usually does
not provide enough unambiguous range. By exploiting mul-
tiple frequencies that satisfy certain relationship, an extended
unambiguous range can be achieved based on the Chinese re-
mainder theorem [25], [26]. Without loss of generality, we

denote k̃th frequency pair consisting of adjacent frequencies

with Δfk̃ = fk̃+1 − fk̃, k̃ = 1, . . . ,K − 1, and denote the
wrapped phase observation as φqk̃

= φqk̃+1,k̃
. Then, the range

estimate in Eqn. (25) can be rewritten as

R̂q =
cφqk̃

4πΔfk̃
+

cmqk̃

2Δfk̃
=

νk̃φqk̃

4π
+

mqk̃
νk̃

2
. (26)

where νk̃ = c/Δfk̃. By choosing νk̃ as a multiple of a con-
stant Δd, which represents a range bin and its value is to
be determined by the range resolution, we can express νk̃ as
νk̃ = ξk̃Δd, where ξk̃ is a nonnegative integer. In this case,
based on the Chinese reminder theorem, the maximum unam-
biguous range of the above expression, constructed from the
K − 1 frequency pairs, is

Rmax =
Δd

2
· LCD(ξ1, . . . , ξK−1), (27)

where LCD(·) denotes the least common denominator opera-
tor. In particular, when ξ1, . . . , ξK−1 are mutually coprime,
LCD(ξ1, . . . , ξK−1) takes a maximum value of ξ1 · · · ξK−1.
It is noted that, the value of Δd should be determined based on
the achievable wrapped phase estimation accuracy in each fre-
quency pair. High errors in the wrapped phase estimate may
yield very high error in the resulting overall range estimate.
In such a case, the robust Chinese reminder theorem allows
robust range reconstruction in the presence of high wrapped
phase errors [28].

4. SIMULATION RESULTS

In the simulations, we assume M = 3 and N = 4, and the
unit interelement spacing is d = λ1/2, where λ1 is the wave-
length corresponding to f1 = 900 MHz. As shown in Fig.
2, the coprime array consists of 2M + N − 1 = 9 physical
antennas, yielding 3MN +M − N = 35 coarray elements.
In addition, we choose Δd=12 m, ξ1 = 4, and ξ2 = 25. The
corresponding frequencies are respectively f2 = 906.25 MHz
and f3 = 907.25 MHz, and the resulting unambiguous range
is Rmax = 600 m.

We assume Q = 13 targets, which are uniformly dis-
tributed between −60◦ and 60◦ with random ranges uni-
formly distributed between 200 m and 600 m. Identical
noise power is assumed at the three frequencies, and the
input SNR is 0 dB for all targets. As the virtual array is
obtained from the estimated covariance matrix which is sen-
sitive to the noise contamination, we use a high number of
6000 snapshots to obtain a relatively clean covariance matrix.
The hyper-parameters used in the BCS algorithm are set to

a = b = c = d = 0. The maximum number of iterations
in the Gibbs sampling is set to 200, and the sampler with
the maximum marginal likelihood in the last 20 samples is
chosen as the estimate of rkl. Fig. 3(a) shows the estimated
DOA positions whereas Fig. 3(b) depicts the range estimates.
For each target, the closest ranges obtained from the two
frequency pairs are averaged to yield the respective range
estimate. It is evident that the range positions corresponding
to different frequency pairs exhibit a good agreement with
the true target range for all 13 targets, whose corresponding
localization results are shown in Fig. 4.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a) Array configuration (�: subarray 1; ∇: subarray 2)

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20

(b) Resulting coarray

Fig. 2. Array configuration and the corresponding coarray.
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Fig. 3. DOA supports and range estimates (◦: true targets; �:

estimated with f1 and f2; �: estimated with f2 and f3).
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Fig. 4. Localization results (◦: true targets; ∇: estimated).

5. CONCLUSIONS

In this paper, we have proposed a novel algorithm for multi-
target localization using a multi-frequency coprime array.
The proposed technique forms virtual arrays to achieve higher
degrees-of-freedom, and properly designed multiple frequen-
cies allow effective phase unwrapping to enable target range
estimation with a large unambiguous range. As such, the
proposed method localizes more targets than the number of
array sensors. The effectiveness of the proposed technique
was verified by simulation results.
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