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Abstract—A novel wideband direction-of-arrival (DOA) esti-
mation method is proposed for co-prime arrays. After decom-
posing the wideband signals into different frequencies/subbands
through a discrete Fourier transform or, more generally, a
filter bank system, the increased degrees of freedom provided
by co-prime arrays are fully exploited with a group sparsity
based signal reconstruction method. Simulation results show
that this novel method can distinguish much more sources than
the number of physical sensors. Compared with the existing
narrowband DOA estimation method for co-prime arrays, the
proposed wideband method achieves a significant performance
improvement.

I. INTRODUCTION

To avoid spatial aliasing, the minimum spacing between
adjacent sensors in a uniform linear array (ULA) should be less
than λmin/2, where λmin is the minimum wavelength within
the frequency band of interest [1], [2]. This can be problematic
when considering arrays with a large aperture size, due to
the cost associated with the number of sensors. In the past,
sparse arrays have been proposed to avoid this problem [3]–
[6], where their non-uniform nature can avoid grating lobes
while allowing adjacent sensor spacings to be greater than
λmin/2. Minimum redundant linear array (MRLA) is a typical
example of sparse arrays [7]. However, there is no systematic
approach for finding an MRLA when the number of array
sensors is large.

Recently, a new class of sparse arrays called co-prime array
was proposed [8], [9]. Assume M and N are a pair of co-prime
positive integers. Then, a co-prime array can be constructed
by two sub-arrays, one with N sensors and one with M

sensors. The adjacent sensor spacing for the first sub-array
is Md, while it is Nd for the second one, where d is the
unit spacing. The entire co-prime array only has M +N − 1

sensors, but the difference co-array can provide more than
MN degrees of freedom. The increased degrees of freedom
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can be exploited in both beamforming and direction of arrival
(DOA) estimation [9]–[12]. In [9], a virtual array of a larger
aperture is generated from the co-prime array by vectorizing
the autocorrelation matrix. Then, rank restoring method based
upon spatial smoothing is utilized for narrowband DOA es-
timation. Sparsity-based signal recovery method is proposed
under the condition of imperfect correlation matrix in [10]. In
[12], a sparse signal recovery method based on compressive
sensing is used for narrowband DOA estimation, exploiting a
ULA with two co-prime frequencies. All the methods above
are designed for narrowband waveforms. The problem of how
to make full use of these increased degrees of freedom for a
wideband co-prime array has not been addressed yet.

Many wideband DOA estimation methods have been pro-
posed in the past, such as the incoherent signal subspace
method (ISSM) [13], the coherent signal subspace method
(CSSM) [14], and the recently proposed test of orthogonality
of projected subspaces (TOPS) method [15]. In particular,
a series of DOA estimation methods based on the sparse
signal recovery approach were developed in [16], [17]. In
[18], a subband information fusion (SIF) method based on
the concept of group sparsity is introduced to jointly explore
the information in all subbands.

In this paper, a method for wideband DOA estimation for
co-prime arrays based on group sparsity is proposed, which
can be considered as a further extension of the method in [11].
At first, the wideband signals received by the array are decom-
posed into different frequencies/subbands by a discrete Fourier
transform (DFT) or, more generally, a filter bank system. Vir-
tual arrays are then formed by vectorizing the auto-correlation
matrix in each subband. As the equivalent signal vector of each
virtual array is a column vector consisting of all impinging
signal powers, sparsity-based signal recovery method could be
used for DOA estimation at each subband. In order to jointly
exploit the information provided by all subbands, the group-
sparsity based signal reconstruction method is employed in
this paper for wideband DOA estimation. Simulation results
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Fig. 1. Structure of a general co-prime array.

show that a significantly improved performance is achieved by
our proposed method.

This paper is organized as follows. The wideband signal
model for co-prime arrays is presented in Section II. The
proposed wideband DOA estimation method is introduced in
Section III. Simulation results are provided in Section IV, and
conclusions are drawn in Section V.

II. WIDEBAND SIGNAL MODEL WITH CO-PRIME ARRAYS

A co-prime array consists of two uniform linear sub-arrays,
as shown in Fig. 1. M and N are co-prime and M < N is
assumed. The first sub-array has N sensors with a spacing of
Md, and the second sub-array has M sensors with a spacing
of Nd, where d ≤ λmin/2.

The zeroth positions of the two subarrays share the same
sensor and in total there are M + N − 1 sensors. The set
of sensor positions for each sub-array can be expressed as
S1 and S2, where the zeroth sensor is removed from S2 for
convenience of formulation at the next stage:

S1 = {Mnd, 0 ≤ n ≤ N − 1, n ∈ Z} ,

S2 = {Nmd, 1 ≤ m ≤ M − 1,m ∈ Z} .
(1)

Assume that there are K uncorrelated wideband signals
sk(t) with the same bandwidth impinging from incident angles
θk, k = 1, 2, . . . ,K, respectively, where θk is measured from
the broadside of the array. Then, the signals observed from
the two sub-arrays can be expressed as:

x1,n(t) =
K∑

k=1

sk [t− τ1,n(θk)] + n1,n(t) ,

x2,m(t) =
K∑

k=1

sk [t− τ2,m(θk)] + n2,m(t) ,

(2)

where 0 ≤ n ≤ N − 1 and 1 ≤ m ≤ M − 1. Take the zeroth
position of the co-prime array as the reference. Then, τ1,n(θk)
and τ2,m(θk) represent the time delay of the k-th impinging
signal with the incident angle θk arriving at the n-th sensor
of the first sub-array and the m-th sensor of the second sub-
array, respectively. n1,n(t) and n2,m(t) are noise observed at
the corresponding sensors.

With a sampling frequency fs, the discrete version of the
two sets of sub-array signals can be expressed as

x1[i] =
[
x1,0[i], x1,1[i], . . . , x1,N−1[i]

]T
,

x2[i] =
[
x2,1[i], x2,2[i], . . . , x2,M−1[i]

]T
,

(3)

where {}T denotes the transpose operation.
For each received sensor signal, every L samples are divided

into one group, and an L-point DFT is applied. There is
no overlap between adjacent DFTs. Then, the l-th frequency
bin/subband samples of the p-th group for each sub-array can
be grouped into one vector as follows

X1 [l, p] =
[
X1,0[l, p], X1,1[l, p], . . . , X1,N−1[l, p]

]T
,

X2 [l, p] =
[
X2,1[l, p], X2,2[l, p], . . . , X2,M−1[l, p]

]T
,

(4)

where

X1,n[l, p] =

L−1∑
i=0

x1,n[L · (p− 1) + i] · e−j 2π
L il ,

X2,m[l, p] =
L−1∑
i=0

x2,m[L · (p− 1) + i] · e−j 2π
L il ,

(5)

with p = 1, . . . , P , and 0 ≤ l ≤ L− 1.
Define Sk[l, p], N1,n[l, p], and N2,m[l, p] as the DFT of

the p-th group discrete-time impinging signals sk[i], discrete-
time noises at sensors of the two sub-arrays n1,n[i] and
n2,m[i], respectively. S[l, p] =

[
S1[l, p], . . . , SK [l, p]

]T is a
column vector holding signals at the l-th frequency bin, and
N1[l, p] =

[
N1,0[l, p], . . . , N1,N−1[l, p]

]T
and N2[l, p] =[

N2,1[l, p], . . . , N2,M−1[l, p]
]T

are the corresponding column
noise vectors at the two sub-arrays. Then, the output signal
model at the DFT domain can be expressed as

X1[l, p] = A1(l,θ)S[l, p] +N1[l, p] ,

X2[l, p] = A2(l,θ)S[l, p] +N2[l, p] ,
(6)

where A1(l,θ) = [a1(l, θ1), . . . ,a1(l, θK)] and A2(l,θ) =

[a2(l, θ1), . . . ,a2(l, θK)] are the steering matrices at frequency
fl corresponding to the l-th frequency bin. The column vectors
a1(l, θk) and a2(l, θk) are the steering vectors at frequency fl
and angle θk.

III. PROPOSED WIDEBAND DOA ESTIMATION METHOD

BASED ON GROUP SPARSITY

A. Virtual array generation

Denote X[l, p] =
[
XT

1 [l, p],X
T
2 [l, p]

]T
. Then, the auto-

correlation matrix of the observed array vector X[l, p] is

Rxx[l] = E
{
X[l, p] ·XH [l, p]

}
=

K∑
k=1

σ2
k[l]a(l, θk)a

H(l, θk) + σ2
n[l]IM+N−1 ,

(7)

where {}H denotes Hermitian transpose, E{} is the statistical
expectation operator, a(l, θk) =

[
aT1 (l, θk),a

T
2 (l, θk)

]T
and

IM+N−1 is the (M +N − 1)×(M +N − 1) identity matrix.
σ2
k[l] represents the power of the k-th impinging signal at the

l-th frequency bin, and σ2
n[l] is the corresponding noise power.

In practice, Rxx[l] can be estimated by

Rxx[l] ≈ R̂xx[l] =
1

P

P∑
p=1

X[l, p] ·XH [l, p] , (8)



where P is the number of signal blocks for DFT.
Vectorizing Rxx[l] yields

z[l] = vec {Rxx[l]} = Ã[l]̃s[l] + σ2
n[l]̃IM+N−1 , (9)

where Ã[l] = [ã(l, θ1), . . . , ã(l, θK)] with ã(l, θk) =

a∗(l, θk) ⊗ a(l, θk) (⊗ is the Kronecker product), and s̃[l] =[
σ2
1 [l], . . . , σ

2
K [l]

]T . ĨM+N−1 is a (M +N − 1)
2×1 column

vector obtained by vectorizing the identity matrix IM+N−1.
Eq. (9) characterises a virtual array, with Ã[l] as its steering

matrix and s̃[l] as its equivalent impinging signal vector.
Moreover, (9) can be modified into

z[l] = Ã[l]̃s[l] + σ2
n[l]̃IM+N−1 = Ã◦[l]̃s◦[l] , (10)

where Ã◦[l] =
[
Ã[l], ĨM+N−1

]
and s̃◦[l] =

[
s̃T [l], σ2

n[l]
]T

.

B. DOA estimation based on single frequency

For the l-th frequency, with a search grid of Kg potential in-
cident angles θg,1, . . . , θg,Kg , the steering matrix is generated
by Ãg[l] =

[
ã(l, θg,1), . . . , ã(l, θg,Kg )

]
. Construct a column

vector s̃g[l] consisting of Kg elements, with each of them
representing a potential source signal at the corresponding
incident angle. Denote

Ã◦
g[l] =

[
Ãg[l], ĨM+N−1

]
,

s̃◦g[l] =
[
s̃g[l], σ

2
n[l]

]T
.

(11)

The last element σ2
n[l] in s̃◦g[l] can also be considered as a

variable because the noise power is unknown. A compressive
sensing based DOA estimation method for narrowband co-
prime array was proposed in [11], and it can be applied
to a single frequency in the wideband case directly. The
formulation for the l-th frequency fl is shown in the following:

min
∥∥s̃◦g[l]∥∥1

subject to
∥∥∥z[l]− Ã◦

g[l]̃s
◦
g[l]

∥∥∥
2
≤ ε ,

(12)

where ε is the allowable error bound, ∥·∥1 is the l1 norm and
∥·∥2 the l2 norm.

C. Wideband extension based on group sparsity

We could apply the algorithm in (12) to the frequency
range of interest one by one and then average the results to
give the final estimation. A more effective approach, however,
is to estimate the DOA of the impinging signals across the
frequency range of interest simultaneously based on the group
sparsity concept, i.e. the DOAs corresponding to different
frequencies share the same spatial support, although they in
general have varying power values.

Assume that the frequency range or bandwidth of interest
covers Q frequency bins in the DFT domain, where the Q ≤
L frequency bins may or may not be continuous. For each
frequency bin lq ∈ Φl, 0 ≤ q ≤ Q− 1, where Φl is the set of
Q frequency bin indexes, the same search grid of Kg potential

incident angles are used to generate matrices Ã◦
g[l] and s̃◦g[l]

as described in (11).
First, we construct two matrices: a block diagonal matrix

B̃g using Ã◦
g[lq]

B̃g = blkdiag
{
Ã◦

g[l1], Ã
◦
g[l2], . . . , Ã

◦
g[lQ]

}
(13)

and a (Kg + 1) × Q matrix R using s̃◦g[lq] with R =[
s̃◦g[l1], s̃

◦
g[l2], . . . , s̃

◦
g[lQ]

]
. Then, we can obtain the following

wideband virtual array model

z̃ = B̃gr̃ , (14)

where z̃ =
[
zT [l1], . . . , z

T [lQ]
]T and r̃ = vec (R) is a (Kg +

1) ·Q× 1 column vector by vectorizing R.
We use the row vector rk, 1 ≤ k ≤ Kg + 1, to represent

kth row of the matrix R. Then, we form a new (Kg +1)× 1

column vector r̂ based on the l2 norm of rk, 1 ≤ k ≤ Kg+1,
as given below

r̂ =
[∥∥r1∥∥2,∥∥r2∥∥2, . . . , ∥∥rKg+1

∥∥
2

]T
. (15)

Finally, our group-sparsity based wideband DOA estimation
method is formulated as follows

min
r̃

∥r̂∥1

subject to
∥∥∥z̃− B̃gr̃

∥∥∥
2
≤ ε .

(16)

The problem in (16) can be solved using CVX, a software
package for specifying and solving convex programs [19],
[20]. The first Kg elements of the column vector r̂ are the
wideband DOA estimation results over Kg search grids.

IV. SIMULATION RESULTS

Consider an example with M = 4 and N = 5. With the
sampling frequency twice the highest frequency of interest,
the normalized frequencies of the impinging signals cover the
range from 0.5π to π, and the unit spacing d = λmin/2. The
number of signal samples in the time domain at each sensor
is 32768, and DFT of L = 64 points is applied. Then, the
number of data blocks used for estimating Rxx[l] in (8) at each
frequency bin is P = 512. A search grid of Kg incident angles
is formed within the full angle range with a step size of 0.02◦.
The normalized frequency range of impinging signals covers
the frequency bin set Φl = {17, 18, · · · , 31} with Q = 15.

For the first set of simulations, there are 14 uncorrelated
wideband signals impinging on the array, with incident angles
uniformly distributed between −70◦ and 70◦. The input SNR
is 0 dB and the allowable error bound ε is 10 for the
narrowband method in (12) and 50 for our proposed wideband
method in (16), which are chosen to give the best result for
each method. The much larger value for ε in the wideband
case is due to the norm operation based on Q = 15 frequencies
instead of one single frequency. For the narrowband method,
the best result is achieved at the highest frequency bin l = 31,
as for lower frequencies the relative spacing compared to
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(a) Narrowband DOA estimation results.
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(b) Wideband DOA estimation results.

Fig. 2. (a) DOA estimation results obtained by the narrowband method
for the frequency bin l = 31. (b) DOA estimation results obtained by the
wideband method. The dotted lines represent the actual incident angles of the
impinging signals, while the solid lines represent the estimation results.

signal wavelength becomes shorter, leading to a relatively
smaller array aperture. The results are shown in Fig. 2, where
Fig. 2(a) gives the DOA estimation result obtained by the
narrowband method, while Fig. 2(b) by the wideband method.
It is clear that all 14 sources have been distinguished correctly
by both methods, but the wideband method yields smaller
estimation errors.

To clearly compare the estimation accuracy of the two
methods with respect to a varied input SNR, the root mean
square error (RMSE) results are shown in Fig. 3, where each
point is based on an average of the results obtained by 500

simulation runs. It clearly shows that the proposed wideband
method consistently outperforms the narrowband one with a
big margin.

Finally, we give an example where the narrowband method
clearly fails while our proposed method can still give a good
result. The setting is the same as in the first set of simulations
except that now the 14 source signals are uniformly distributed
between −60◦ and 60◦. The results are shown in Fig. 4,
which again verifies the superior performance of the wideband
method.

V. CONCLUSION

A method for wideband DOA estimation with co-prime
arrays has been proposed, where the received array signals are
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Fig. 3. Root mean square estimation error versus input SNR.
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(a) Narrowband DOA estimation results.
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Fig. 4. (a) DOA estimation results obtained by the narrowband method
for the frequency bin l = 31. (b) DOA estimation results obtained by the
wideband method. The dotted lines represent the actual incident angles of the
impinging signals, while the solid lines represent the estimation results.

first partitioned into multiple frequencies/subbands and then a
virtual array with a much larger aperture based on the co-
prime array concept is formed at each frequency/subband. By
simultaneously exploiting the information at different frequen-
cies/subbands, a group-sparsity based optimisation problem is
formulated which is amenable to application of existing convex
optimisation toolboxes. It has been shown by simulations that
our proposed method can work effectively over a wide input
SNR range and achieve a much better estimation result than
the existing method using one frequency only.
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