
THROUGH-THE-WALL RADAR IMAGING BASED ON MODIFIED
BAYESIAN COMPRESSIVE SENSING

Qisong Wu, Yimin D. Zhang, Moeness G. Amin, and Fauzia Ahmad

Center for Advanced Communications, Villanova University, Villanova, PA 19085, USA

ABSTRACT
In this paper, a novel modified complex multi-task Bayesian
compressive sensing (MCMT-BCS) algorithm is proposed to
acquire high-resolution images in stepped-frequency through-
the-wall radar imaging (TWRI) exploiting multipath. Un-
like traditional TWRI approaches that assume frequency-
independent scattering model, we develop a practical subband
scattering model to characterize real-world scattering mech-
anisms. The target imaging is reformulated as a multi-task
sparse signal recovery problem across all frequency subbands
as well as multipath modes, where the sparse entries of
each task share the same support in the imaged scene. The
proposed MCMT-BCS algorithm accounts for both types of
coexisting group sparsity to achieve improved high-resolution
imaging capability. Simulation results verify the effectiveness
of the proposed algorithm.

Index Terms— Through-the-wall radar imaging, sparse
construction, multipath exploitation, Bayesian compressive
sensing, group sparsity.

1. INTRODUCTION

Imaging through building walls using radar has received
significant attention due to its numerous civil and military
applications. Through-the-wall radar imaging (TWRI) has
the capability of acquiring high-resolution images of targets
of interest behind an opaque obstacle [1–5].

To acquire high-resolution images, TWRI systems have
to utilize wide-band signals. A stepped-frequency wide-
band signal is a good choice for low-cost implementation
[4]. A number of TWRI algorithms have been developed to
acquire high-resolution images [6–10]. However, all these
algorithms are developed based on the assumption that the
scattering coefficients are independent of the transmitting
frequencies. Considering the fact that the transmitted signal
bandwidth typically ranges from hundreds of Megahertz to a
few Gigahertz [4,6,7], such frequency-independent scattering
model is impractical according to the radar cross section
(RCS) principle [1]. On the other hand, there exist multipath
propagations that stem from electromagnetic wave reflections
off the targets in conjunction with the walls. Such multipath
reflections may lead to the so-called ghost targets at positions
away from those of the actual targets. These ghost targets
clutter the imaged scene and make target detection difficult
[9]. Earlier work proposed an effective approach to mitigate
the effects of multipath propagation [1], whereas more recent
approaches are based on multipath exploitation for target

signal enhancement [9, 10]. Compressed observations arise
primarily due to logistic difficulties in securing observations
at desired antenna positions and frequency bins. In this as-
pect, multipath exploitation has been effectively implemented
using compressive sensing techniques that take advantages of
the group sparsity of the targets due to multipath propaga-
tions. In essense, the multipath scenes assume the same target
support but differ in target scattering coefficients [10].

A number of algorithms have been developed to recover
group sparse signals. These algorithms include greedy-
based algorithms, such as block orthogonal matching pur-
suit (BOMP) [11], and basis pursuit-based ones, such as
group basis pursuit (GBP) [12] and group Lasso (gLasso)
[13]. Group sparse Bayesian learning algorithms based on
relevance vector machine (RVM) form a different class of
sparse signal reconstruction algorithms, which generally yield
improved performance over other techniques particularly in
the presence of high-coherence sensing vectors [14, 15].
The multi-task compressive sensing (mt-CS) algorithm [15]
provides solutions to a large class of group sparse problems.
This approach is extended to effectively process complex-
valued problems as encountered in radar sensing applications
[16]. However, those algorithms can be used to recover
sparse signals with group structure across tasks, and take no
consideration of the group sparsity in each task.

In this paper, a modified complex multi-task Bayesian
compressive sensing (MCMT-BCS) algorithm is proposed to
acquire high-resolution images by exploiting both types of
group sparsity due to multipath propagations and frequency-
dependent scattering characteristics. The latter is represented
using a subband scattering model where the target scattering
coefficients are assumed to be constant within a subband but
vary independently across different subbands. The TWRI
approach is then formulated as a multi-task sparse signal
recovery problem, and the proposed MCMT-BCS algorithm
accounts for both types of coexisting group sparsity to achieve
improved high-resolution imaging capability. The superiority
of the proposed algorithm over existing techniques is demon-
strated by simulation results.

Notations: We use lower-case (upper-case) bold charac-
ters to denote vectors (matrices). In particular, IN denotes the
N×N identity matrix. (·)T denotes the transpose of a matrix
or vector, p(·) denotes the probability density function (pdf),
N (x|a, b) denotes that random variable x follows a Gaussian
distribution with mean a and variance b, dx/ye denotes the
modulus after x over y, and bx/yc denotes the remainder after
x over y. In addition, Tr(·) denotes the trace operation of a



matrix, Re(·) and Im(·), respectively, represent the real and
imaginary components of a complex element.

2. SIGNAL MODEL

The signal model is formulated using a monostatic stepped-
frequency approach [4]. Assume that N wideband
transceivers are arranged as a uniform linear array (ULA)
with element positions xn, n = 1, · · · , N , that are uniformly
separated by an inter-element spacing of d. In the stepped-
frequency approach, a wideband pulse is approximated by
M monochronmatic signals. The frequency fm with m ∈
{1, · · · ,M} are uniformly spaced over the signal bandwidth
B. In the case of compressed observations, the transceivers
and employed frequencies can be both nonuniform, describ-
ing random spatial-frequency sampling. In this paper, only
target returns are considered after the front-wall responses are
properly suppressed using one of the wall clutter mitigation
techniques [17–19]. In the monostatic operation, the target
returns can be expressed as [10],

y(m,n) =

NxNy∑
p=1

wp exp(−j2πfmτpn), (1)

where Nx and Ny , respectively, denote the number of gates
in crossrange and downrange within the region of interest,
τpn represents the round-trip propagation delay between the
pth scatterer and nth transceivers, and wp is the complex
reflectivity corresponding to the pth pixel. We assume the
knowledge or an accurate estimation of the wall thickness
and permittivity and thus the wall effect can be perfectly
compensated [1, 2].

2.1. Subband scattering model

To model frequency-dependent scattering coefficients, we
group the M measured stepped-frequencies into L subbands.
These frequencies, {fm,m = 1, · · · ,M}, are labelled as
{f (1)1 , · · · , f (1)g1 , · · · , f

(L)
gL }, where gl is the number of fre-

quencies in the lth subband, and
∑L

l=1 gl =M . As such, Eq.
(1) can be rewritten in each subband as,

y(l)(m′, n) =

NxNy∑
p=1

w(l)
p exp(−j2πf (l)m′τpn), (2)

where m′ ∈ {1, · · · , gl}, and w
(l)
p is frequency-dependent

scattering coefficient of the pth pixel at the lth subband.
Stacking the measurements y(l)(m′, n) corresponding to the
frequencies belonging to the lth subband, we have

y(l) = Φ(l)w(l), (3)

where y(l) = [y(l)(1, 1), · · · , y(l)(1, N), · · · y(l)(gl, N)]T ∈
CglN , Φ(l) ∈ CglN×NxNy whose (i, p)th element is given by

[Φ(l)]ip = exp(−j2πf (l)m′τpn), (4)
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Fig. 1. Multipath propagations via reflections at interior walls

for i ∈ {1, · · · , glN}, m = di/gle, and n = bi/glc, and
w(l) ∈ CNxNy . Note that the supports of the sparse targets
are identical across the L groups (i.e., the nonzero entries of
w(l) lie in the same positions across different values of l ),
whereas their scattering coefficients are generally different.

2.2. Interior Wall Multipath

In TWRI, multipath propagation corresponds to indirect paths
which involve secondary reflections at an interior wall. The
dominant multipath component corresponds to a ‘bistatic’
scattering scenario. That is, the transmitted signal propagates
directly to the scatterer and then the scattered wave travels
back to the transceiver after being reflected by an interior
wall or vice versa. This type of multipath leads to ghost
targets that lie within the perimeter of the imaged room [9,10].
Other multipath scenarios exist, but can usually be mitigated
by time-gating due to weak ghost targets or because they are
located outside the room.

For example, consider the effect of the interior specular
wall located at x = xw in Fig. 1. The effect of the front
wall is ignored for simplicity. The pth target is located at
zp = [xp, yp]

T . The direct path is from a transceiver to the
target along the path P ′′ and back to the receiver along the
path P , whereas the dominant multipath propagation consists
of the forward path from the transceiver to the target along the
path P ′′ and the return path from the target via a reflection
at the interior wall along path P ′. In this case, the length
of the return path P ′ can be equivalently computed as the
distance between the transceiver and the virtual target located
at z′p = [2xw − xp, yp]. A similar multipath consists of
propagation along P ′ and P ′′ in the reverse direction. We can
calculate the multipaths via other interior walls in a similar
manner. Assume one direct path and a maximum number of
K − 1 multipaths. Then, the forward model with multipath
propagations in the lth subband can be modified as [10],

ỹ(l) = Φ
(l)
1 w

(l)
1 + Φ

(l)
2 w

(l)
2 + · · ·+ Φ

(l)
K w

(l)
K , (5)

where Φ
(l)
1 ∈ CglN×NxNy and w

(l)
1 ∈ CNxNy respectively

denote the measurement matrix and complex reflectivities in
the direct path, whereas Φ

(l)
k and w

(l)
k with k ∈ {2, · · ·K} are

those corresponding to the kth multipath. It should be noted
that the complex reflectivities w

(l)
k , k = 1, ...,K shares the

same sparsity support across all paths, i.e., they have the same
respective positions of nonzero entries, although the exact
value of the reflectivity coefficients generally differ. This



group sparse property provides a feasible way to enhance the
recovery of scatterers.

Rewrite Eq. (5) as

ỹ(l) = Ψ(l)w̃(l) + ε(l), l ∈ {1, · · · , L}, (6)

w̃(l) = [w
(l)
1 , · · · ,w(l)

K ]T ∈ CNxNyK , (7)

w
(l)
k = [w

(l)
1,k, · · · , w

(l)
NxNy,k] ∈ C

1×NxNy , (8)

where ỹ(l) ∈ CglN denotes observation data in the lth
subband, Ψ(l) = [Ψ

(l)
1 , · · · ,Ψ(l)

K ] ∈ CglN×NxNyK is the
joint measurement matrix in the lth subband, w̃(l) represents
the complex reflectivity vector. Without loss of generality, a
measurement noise vector ε(l) ∈ CglN is added in (6).

It becomes evident that two types of group sparsity,
respectively due to multipath propagation and subband obser-
vations, coexist in this TWRI problem. That is, w

(l)
k in Eq. (8)

with k ∈ (1, · · · ,K) shares the same support across all paths
for k = 1, ...,K in each subband, and w̃(l) in Eq. (7) shares
the same support across subbands for l = l, ..., L. It is noted,
however, that the measurement signals are resolvable for each
subband but generally unresolvable for the multipaths.

3. MODIFIED COMPLEX MULTI-TASK BAYESIAN
COMPRESSIVE SENSING

Conventional group inversion algorithms, such as BOMP [11]
and gLasso [13], guarantee reliable estimations only when
the dictionary meets the so-called G-RIP condition [20].
Unfortunately, such a condition cannot be easily verified
since it is computationally demanding [21]. The G-RIP
condition requires that the dictionary behaves like an isometry
system on sparse signal. For high-resolution TWRI, however,
the coherence of the dictionary Φ may become very high.
In this case, sparse Bayesian learning algorithms based on
RVM generally yield improved performance [14, 15]. The
work in [16] proposed an effective approach to complex
group sparse signal recovery based on the Bayesian learning
technique under a multi-task model. However, this approach
only considers the group structure across tasks and takes no
consideration of the group sparsity in each task. The objective
of this paper is to develop a modified complex multi-task
Bayesian compressive sensing (MCMT-BCS) algorithm to
handle the aforemention TRWI problem wherein two types
of group sparisity coexist.

Similar to the work in [16], we place a Gaussian distri-
bution on the target reflectivities and the real and imaginary
components follow an independent Gaussian distribution with
mean zero and pixel-dependent variance αm , i.e.,

w
(lR)
p,k ∼ N (w

(lR)
p,k |0, αp), w

(lI)
p,k ∼ N (w

(lI)
p,k |0, αp), (9)

where p ∈ (1, · · · , NxNy), k ∈ (1, · · · ,K), w(lR)
p,k and

w
(lI)
p,k are respectively the real and imaginary parts of the p-

th complex scattering coefficient of the kth path in the lth
subband. It is emphasized that, because αp, to be determined
later, varies with each pixel, the overall distribution of the

reflection coefficients does not assume a specific distribution
across the scene.

It is important to note that the parameters α =
{αp}p=1,NxNy

assume identical values across the K paths
and the L subbands. The MCMT-BCS algorithm extends the
approach in [16] to group sparsity across both L subbands
and K paths by shared parameters αp. The benefits of this
approach will be demonstrated later through simulations.

Without loss of generality, a Gaussian prior is placed on
the additive measurement noise, i.e.,

ε̂
(lR)
m,k ∼ N (ε̂

(lR)
m,k |0, β0), ε̂

(lI)
m,k ∼ N (ε̂

(lI)
m,k|0, β0), (10)

where ε̂(lR)
m,k and ε̂(lI)m,k are the real and imaginary parts of the

complex noise respectively, and β0 is the noise variance. Now
we consider the posterior pdf of

ω̂(l)= [w
(lR)
1,1 , · · · , w(lR)

NxNy,K
, w

(lI)
1,1 , · · · , w

(lI)
NxNy,K

]. (11)

The posterior distribution of ω̂(l) is evaluated analytically
based on Bayes’ rule as,

Pr(ω̂(l)|ŷ(l),Ψ(l),α, β0) = N (ω̂(l)|µ(l),Σ(l)), (12)

where

µ(l) = β−10 Σ(l)(Ψ̂
(l)
)T ŷ(l), (13)

Σ(l) =
(
β−10 (Ψ̂

(l)
)T Ψ̂

(l)
+ A−1

)−1
, (14)

Ψ̂
(l)

=

[
Re(Ψ(l)) −Im(Ψ(l))

Im(Ψ(l)) Re(Ψ(l))

]
, (15)

A = diag(α1, · · · , αNxNy
, α1, · · · , αNxNy

), (16)

and ŷ(l) = [Re(y(l)), Im(y(l))]T .
Given α and β0, the mean and covariance of each scat-

tering coefficient can be obtained using (13) and (14). The
associated learning problem thus becomes a search for the
parameters α and β0. A fast learning algorithm of α was
proposed and the updated expression of α is expressed as
in [16],

α(new)
p =

√√√√1

η

2K∑
k=1

L∑
l=1

[
ω̂

(l)
p+(k−1)NxNy

]2
, (17)

where

η =

2K∑
k=1

L∑
l=1

Tr
[
C−1l

(
Ψ̂

(l)

p+(k−1)NxNy

)T
Ψ̂

(l)

p+(k−1)NxNy

]
,

Cl = β0I + Ψ̂
(l)

A(Ψ̂
(l)
)T , and Ψ̂

(l)

p is the p-th in the Ψ̂
(l)

.
Also, the noise precision β0 is updated by [14, 16]

β
(new)
0 =

L∑
l=1

{
Tr
[
Σ(l)Ψ̂

(l)
(Ψ̂

(l)
)T
]
+
∥∥∥ŷ(l) − Ψ̂

(l)
µ(l)

∥∥∥2
2

}
2KML

.

(18)



Note that α(new) and β
(new)
0 are functions of {ω̂(l)}Ll=1,

{µ(l)}Ll=1 and {Σ(l)}Ll=1, while {ω̂(l)}Ll=1, {µ(l)}Ll=1 and
{Σ(l)}Ll=1 are functions of α and β0. This suggests an
iterative algorithm, which iterates (12), (13), (14) and (17),
(18), until a convergence criterion is satisfied.

4. SIMULATION RESULTS

In the simulations, a 40-element monostatic ULA with an
inter-element interval of 2.5 cm is used for imaging. The
origin of the coordinate system is chosen to be the center of
the array. The front wall is located parallel to the array at
1 m downrange and its effect is ignored due to perfect wall
parameter estimation and compensation, as described earlier.
We consider three interior walls; the left and right walls are
located at ±2 m crossrange, while the back wall is at 5 m
downrange.

A stepped-frequency signal, consisting of 360 equally
spaced frequency steps from 1.5 GHz to 2.5 GHz band,
is employed for scene. The entire bandwidth is uniformly
divided into 3 subbands. The scattering coefficients are
assumed invariant in each subband, whereas they differ across
the subbands. The scattering coefficients in the direct path
are drawn from N (0, 1) , and the amplitudes of reflectivity
in the multipath propagations decay with the distance. Only
20% frequencies and 20% array elements in each subband are
randomly selected for the CS-based imaging whereas the full
data set is used when performing conventional backprojection
(BP) algorithm.

In the simulation,Q = 8 scatterers are adopted. As shown
in Fig. 2(a), 4 scatterers are clustered together in the center
whereas the other 4 scatterers are distantly located. The ad-
jacent interval along both crossrange and downrange is 0.075
m. The received signal comprises of the direct return along
with reflected paths via three interior walls, yielding a total
number of K = 4 paths. An additive Gaussian noise with a
variance of 0.1 is added in the simulated measurements.

The results depicted in Fig. 2(b) and Fig. 2(c) do not
utilize the multipath model for image reconstruction. In
particular, Fig. 2(b) shows the reconstruction result using con-
ventional BP algorithm [1]. It is observed that the downrange
resolution is reduced due to frequency-dependent scattering
coefficients that prevent coherently accumulation across all
subbands and thus yield defocused images. In addition, we
also observe many ghosts in the reconstructed image as a
result of multipath propagation, making the image highly
cluttered. Fig. 2(c) shows the result based on CMT-BCS
algorithm [16] which only considers group sparsity across
subbands without assuming the multipath propagation model,
resulting in a high number of ghost targets.

The imaging results depicted in the sequel assume the
multipath propagation model as well the group sparsity em-
bedded therein. We first perform the proposed MCMT-BCS
approach to process the data in each subband separately,
and the fused image of all subband images is shown in
Fig. 2(d). It is observed that the consideration of the mul-
tipath propagation model effectively suppresses the distant
ghost targets, while some spurious targets remain due to the
narrow frequency bandwidth in each single subband. Fig.
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Fig. 2. Comparison of reconstruction results. (a) original scene;
(b) result of BP; (c) result of CMT-BCS without group sparsity of
multipath; (d) fused result of individually constructed images; (e)
result of BOMP; (f) result of the proposed algorithm.

2(e) shows the result of the BOMP algorithm that uses all
the three subbands with the true sparsity, which fails to
acquire the true target positions because of the high coherence
in the measurement matrix. Finally, Fig. 2(f) shows the
successfully reconstructed result of all targets based on the
proposed algorithm that uses all three subbands. In general,
the proposed algorithm significantly improves the recovery
performance of targets by exploiting group sparsity across
multipath propagations and multiple subbands. Note that the
proposed technique is capable of automatical inference of the
scene sparsity.

5. CONCLUSION
There exists two types of group sparsity in a typical stepped-
frequency through-the-wall radar imaging (TWRI) system
when multipath propagation is considered and the targets
exhibit frequency-dependent scattering characteristics. In this
paper, a frequency-dependent subband scattering model is
developed to characterize real-world scattering mechanism,
and the TWRI is then formulated as the sparse signal re-
covery problem across all subbands and all paths. A novel
modified complex multi-task Bayesian compressive sensing
algorithm is proposed to account for these two types of group
sparsity and perform high-resolution sparse target imaging in
the presence of highly coherent measurement matrix. The
proposed algorithm is developed based on the nonparametric
hierarchal Bayesian model and, thereby, does not require any
prior information of target sparsity.
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