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ABSTRACT
Falls of the elderly are a major public health concern. In this
paper, we develop an effective fall detection algorithm for ap-
plication in continuous-wave radar systems. The proposed
algorithm exploits time-frequency characteristics of the radar
Doppler signatures, and the motion events are classified using
the joint statistics of three different features. The effective-
ness of the proposed technique is verified through measure-
ment data.

Index Terms— Assisted living, fall detection, time-
frequency analysis, classification.

1. INTRODUCTION

Falls of the elderly are a major public health concern as they
often result in disability [1]. Falls are the main cause of acci-
dental death in the U.S. population over age 65 [2]. Immedi-
ate assistance after a fall can reduce complications of fall risk
[3]. Therefore, it is very important to detect elderly falls in a
timely and accurate manner so that immediate response and
proper care can be rendered.

A number of techniques have been proposed to sense vital
signs and motions for ambient assisted living [4, 5, 6]. These
sensing techniques include those monitoring physiological
signs (e.g., electrocardiography (ECG)) and accelerometers,
camera and thermography, passive infrared sensors, and radio
frequency identification (RFID) devices. Among those, ECG,
accelerometers, and RFID require that devices be attached to
human body, whereas laser vibrometer requires very accurate
control or placement. Camera systems are sensitive to light-
ing conditions, may be obscured by walls and fabrics, and
raise privacy concerns.

Radar is an excellent sensing modality due to its capa-
bility of detecting motions of humans. The general concept
of radar-based system is to transmit an electromagnetic (EM)
wave over a certain range of frequencies and analyze the radar
return signals. Specifically, low-cost narrowband radar sys-
tems estimate the velocity of moving objects by measuring
the frequency shift of the wave radiated or scattered by the
object, known as the Doppler effects.

The human gait classification based on radar Doppler
spectrograms was considered for different arm motion pat-
terns in the context of urban sensing [7, 8]. Gait charac-
terization using various machine learning algorithms shows

effective and satisfied performance [9, 10]. In addition, a
Hidden Markov model (HMM) based machine learning ap-
proach was applied for fall detection from a time-frequency
sequence [11].

In this paper, we examine a different approach for radar-
based fall detection that utilizes multiple features that are in-
trinsic to the time-frequency characteristics underlying the
radar returns. By applying the short-time Fourier transform
(STFT) to the raw data retrieved from the radar and analyzing
the energy content of the signal, it is possible to identify po-
tentially catastrophic events. These events are extracted from
the data for a tri-characteristic analysis in order to classify the
type of motion. The classification algorithm is examined be-
tween different motion patterns that respectively exhibit close
and distinct Doppler signatures. For this purpose, we have
selected falls, sitting and standing (S&S) motions, and bend-
ing over and standing up (B&S) motions for classification.
We designed and performed experiments that would allow us
to test the classification algorithm using the Villanova Radar
Imaging Lab at the Center for Advanced Communications.
With the data collected, we obtained quantifiable results to
verify the reliability of the proposed classification algorithm.

2. SYSTEM AND SIGNAL MODEL

2.1. Signal Model

A continuous-wave (CW) radar is considered in this pa-
per. Assume a sinusoidal signal, expressed as s(t) =
exp(j2πfct), is transmitted from a transmitter, where fc is the
carrier frequency. Consider a point target which is located at
a distance of R0 from the radar, and moves with a velocity of
v(t) toward a direction which forms an angle of θ between the
radar direction. As such, the distance between the radar and
the target at time instant t is R(t) = R0 +

∫ t

0
v(u) cos(θ)du,

and the received radar signal is expressed as

xa(t) = ρ exp[j2πfc(t− 2R(t)/c)], (1)

where ρ is the target reflection coefficient and c is the velocity
of EM wave propagation. The Doppler frequency correspond-
ing to xa(t) is

fD(t) = 2v(t) cos(θ)/λ, (2)

where λ = c/fc is the wavelength.



For a rigid body target, such as a human body, the return
signal is the integration over the target region, expressed as

x(t) =

∫
Ω

xa(t)da, (3)

where Ω denotes the target region. As such, the Doppler
signature is the superposition of each component Doppler
frequencies. Torso or gait motions generally generate time-
varying Doppler frequencies, and their exact signatures de-
pend on the target shape and the motion patterns.

In our experimental studies, the radar data sets were col-
lected in the Radar Imaging Lab at the Center for Advanced
Communications, Villanova University. The experiment
scene is shown in Fig. 1. An Agilent network analyzer was
externally triggered with a time sampling rate of 1 kHz, and
the carrier frequency is fc = 8 GHz. Background subtrac-
tion was performed before processing the data. The periodic
sampling results in discrete-time observations x[k] = x(kT ),
where T = 10−3 s is the sampling interval.

Fig. 1. Experiment scene.

2.2. Time-Frequency Analysis

By using joint time-frequency analysis methods, time-varying
Doppler frequency can be captured at various instances of
time. In this paper, we use the spectrogram, generated
through the STFT, to perform the time-frequency analysis
of the Doppler signature. The discrete-time STFT of signal
x(t) is defined as

X(t, f) =

∞∑
m=−∞

x(m)h(t−m) exp(−j2πfm), (4)

where h(t) is the window function that trades off the time and
frequency resolutions. We tested different Hamming window
sizes and found that a window size of 255 is chosen for our
processing. A larger window length may degrade the time res-
olution whereas as a smaller window length may compromise
the frequency resolution, as seen in Fig. 2.

2.3. Power Burst Curve

After the proper spectrogram of the data is obtained, the al-
gorithm determines exactly where important events have oc-
curred in the data. We utilize a power burst curve (PBC) of the

(a) window length 127 (b) window length 255

(c) window length 511 (d) window length 1023

Fig. 2. Spectrogram of fall generated with different window
sizes.

data (which was referred to as the energy burst curve in [12]
and [11]), which represents the summation of signal power
within a specific frequency band between frequencies f1 and
f2, expressed as

PBC(t) =

f2∑
f=f1

|X(f, t)|2 +

−f1∑
f=−f2

|X(f, t)|2. (5)

We choose f1 = 70 Hz and f2 = 100 Hz to detect high-
energy events, as catastrophic events, such as falls, typically
have high Doppler energy content within this frequency band.

The PBC of the ambient noise can be considered to fol-
low a Gaussian distribution, denoted as N (µP , σP ), where
µP and σP respectively denote the mean and variance of the
distribution. To keep the algorithm sensitive to human event
whereas sufficiently separated from the noise floor, the fol-
lowing threshold is used for event detection:

ηP = µP + 6
√
σP . (6)

Therefore, an event is determined whenever the PBC exceeds
this threshold, initiating the classification procedure as de-
scribed in the following section. Fig. 3 shows one example
of the PBC where a fall occurs.

3. CLASSIFICATION

Once an event is detected by thresholding the PBC, we
construct a 4-second window of the spectrogram, centered
around each of these points, to determine whether a fall has
happened. The proposed technique consists of segmenta-
tion and morphological processing to obtain a clean binary
time-frequency signature, which is then used to perform a
tri-characteristic analysis that determines the type of motion
represented in each window.



Fig. 3. An example of the PBC. The red line represents the
detection threshold.

3.1. Spectrogram Segmentation and Morphological Pro-
cessing

To obtain a clean binary time-frequency signature of the inter-
ested activities for the classification, the following two impor-
tant steps are executed on the spectrogram results: (a) image
segmentation; and (b) morphological operator. In this work,
the latter step includes image dilation and disconnected region
removal.

The objective of image segmentation is to separate the
Doppler signatures of human events from background noise.
The segmentation is performed using gray-scale spectrogram
images. In this case, thresholding is a commonly used image
segmentation technique [13, 14]. The determination of an
appropriate threshold value, which separates or segments a
gray-level time-frequency representation into target events
and background noise regions, is an important task of a
thresholding algorithm. Because the presence of the Doppler
signature is usually very weak around the extreme frequen-
cies, which are used as an important feature in the sequel, it
is important that the threshold is not too high to reject such
weak signals, whereas it is not too low as well so that the
entire time-frequency domain is cluttered.

The spectrogram may consist of weak components, par-
ticularly around the extreme frequencies, which may yield
broken segments after spectrogram segmentation [15]. Mor-
phological operation [16], specifically dilation, can bridge
closely related broken segments together. On the other hand,
the removal of disconnected regions will only keep the sig-
nificant time-frequency region which represent the target
activities. Note that the effect of dilation should be compen-
sated with the known number of dilated pixels in the peak
frequency determination.

Fig. 4 shows the binary time-frequency signature, corre-
sponding to the spectrogram depicted in Fig. 2(b), respec-
tively after segmentation and morphological operator. The
threshold level used for segmentation is µ + 1.5

√
σ, with

µ and σ respectively denoting the mean and variance of the
noise power in the spectrogram, which provides a good trade-
off between weak signal preservation and noise rejection.

3.2. Feature Definition and Fusion

For motion classification and fall detection, the following
three features are chosen: extreme frequency magnitude,
extreme frequency ratio, and length of event.

Fig. 4. Binary time-frequency signature obtained from the
spectrogram.

3.2.1. Extreme Frequency Magnitude

The extreme frequency magnitude is determined by

F = max(f+ max,−f−min), (7)

where f+ max and f−min, respectively, denote the maximum
frequency in the positive frequency range and the minimum
frequency in the negative frequency range. Critical falls of-
ten exhibit a significant amount of energy in frequencies of
great magnitude when compared to other types of observed
motions.

3.2.2. Extreme Frequency Ratio

The extreme frequency ratio is defined as

R = max

(∣∣∣∣f+ max

f−min

∣∣∣∣ , ∣∣∣∣ f−min

f+ max

∣∣∣∣) . (8)

For extreme falls, there is only high energy content in either
the positive or negative frequencies, resulting a high extreme
frequency ratio. On the other hand, other types of motions,
such as sitting and standing, often demonstrate high energy
content in both the positive and negative frequency bands,
corresponding to a low extreme frequency ratio.

3.2.3. Length of Event

This feature is the length of time, in milliseconds, between
the start and the end of an event, i.e.,

L = textrm − tbegin, (9)

where textrm denotes the time where the extreme frequency
occurs, whereas tbegin denotes the corresponding beginning
time the event has initiated. The beginning of an event is de-
termined by the time when the magnitude of the frequency
content of a signal passes a specific threshold. In general,
there were significant distinctions in the time spans of the
three critical motions that we were comparing.

3.2.4. Feature Extraction and Fusion

Assume that the three feature parameters, F ,R, and L, follow
the joint Gaussian distribution with probability density func-
tion (pdf)N (µ(q),Σ(q)), where superscript (·)(q) denotes the



class of events, i.e., q ∈ {Fall,S&S,B&S}. In addition,
µ(q) = [µ

(q)
R , µ

(q)
F , µ

(q)
L ]T denotes the mean vector obtained

from the training data belong to class q, where (·)T denote
transpose, and Σ(q) is the corresponding covariance matrix.
Specifically, Σ(q) = diag[σ

(q)
R , σ

(q)
F , σ

(q)
L ] in case F (q), R(q),

and L(q) are independently distributed, where diag(·) denotes
forming a diagonal matrix from a vector.

Denote yp = [Fp, Rp, Lp]T as the feature set obtain from
data set p to be classified. Then, the joint pdf of yp with
respect to class q is expressed as

f(y
(q)
p ) =

1

(
√

2π)3det(Σ(q))

· exp

(
−1

2
(yp− µ(q))T (Σ(q))−1(ym− µ(q))

)
,

(10)
where det(·) denotes the determinant.

The logarithm of the exponent in the joint pdf can be used
to determine the following Mahalanobis distance [17]

D(q)(yp) =
(

(yp − µq)T (Σ(q))−1(yp − µ(q))
)1/2

. (11)

Observation vector yp is classified to class q when

D(q)(yp) < D(k)(yp),∀k 6= q. (12)

4. EXPERIMENT RESULTS

4.1. Experiment Settings

We conducted experiments for 8 different motion patterns,
with each experiment pattern repeated for 10 times (5 times
each for 2 objects). The recording time for each experiment is
20 seconds. Every set of experiments contains a different type
of motion, including forward falling, backward falling, sit-
ting and standing, and bending over and standing up. We also
split each motion pattern into two different variations, one
demonstrating a standard type of motion whereas the other
one demonstrating a high-energy form of that motion in order
to study the impact of such variations on the classification per-
formance. The typical spectrograms of the 8 motion patterns
are shown in Fig. 5. The first 4 patterns are collectively con-
sidered as falls, whereas the last 4 patterns are collectively
considered as non-falls. The main objective of this paper is
the detection of falls.

4.2. Detection and Classification Results

Table 1 summarizes the resulting confusion matrix obtained
from the proposed technique for the 80 experiments being
conducted. We only classify them into fall and non-fall pat-
terns. The results generally show a good classification perfor-
mance. The false negative case was due to very weak return
signal from the target. Note that any single feature alone was
not able to provide comparable fall detection performance.

(a) Fall backward (b) Fall backward with arm motion

(c) Fall forward (d) Fall forward with arm motion

(e) Sit and Stand (f) Fast Sit and Stand

(g) Bend and stand (h) Fast bend and stand

Fig. 5. Spectrogram of typical motion patterns.

Table 1. Confusion matrix of the classification results
Classified Class
Fall Not Fall

Actual Class Fall 39 1
Not Fall 0 40

5. CONCLUSION

We have proposed an effective technique to process radar
Doppler signatures for fall detection. The proposed technique
treats the spectrogram as a gray-scale image, and image seg-
mentation and morphological processing of spectrogram are
performed before it is passed to perform feature analysis.
Three parameters, namely, the extreme frequency magnitude,
extreme frequency ratio, and the length of event, are used for
the classification. The Mahalanobis distance between an un-
known event under test and the known feature characteristics
is used for classification.
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