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ABSTRACT
We consider gridless direction-of-arrival (DOA) estimation

of much more targets than the number of physical sensors

through the exploitation of multi-frequency sparse array de-

sign and processing which increase the degrees of freedom as

more frequency components are used. A modified sensor in-

terpolation technique is developed to accurately estimate the

signal covariance matrix using very few snapshots, thereby

eliminating the requirement of a large number of snapshots

as in conventional different coarray-based DOA estimation.

Simulation results demonstrate high-resolution gridless DOA

estimation capability of more targets than the number of phys-

ical sensors.

Index Terms— Sparse array, multi-frequency sensing, ar-

ray interpolation, direction-of-arrival estimation.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation of targets is an impor-

tant array signal processing area that finds broad applications

in radar, sonar, wireless communications, navigation, radio

astronomy, and seismology [1, 2]. Recently, there are signif-

icant renewed interests in underdetermined DOA estimation,

i.e., determining the DOAs of more targets than the number

of sensors. In particular, the recent development of systemat-

ical design of sparse arrays has generated a significant wave

of interests in this area and resulted in new designs of sparse

arrays and analyses of the achievable degrees of freedom

(DOFs) and performance bounds (e.g., [3–15]). The essence

behind these approaches is the utilization of the difference

coarray concept, i.e., because DOA estimation deals with

spatial power spectrum, we can utilize the autocorrelation

function lags which have much more non-zero entries than

the number of physical array sensors and thus can fill in miss-

ing positions in a sparse array. In general, sparse array design

and processing may achieve O(N2) DOFs using only N sen-

sors [16, 17]. A series of algorithms have been developed for

effective DOA estimation using sparse arrays [18–23].

In [24], a novel concept of constructing a virtual coprime

array using a single uniform linear array (ULA) through

the exploitation of two frequencies with a coprime relation-

ship was developed. This extends the coprime array concept

into a joint spatio-spectral domain virtual array construction,

thereby offering high flexibility in array design and achieving

much higher efficiency. The extension to more than two fre-

quencies, high-order statistics, and the analysis of the achiev-

able number of DOFs and DOA estimation performance are

provided in [25–30].

Existing sparse array designs exploiting two or more fre-

quencies suffer from two important issues: First, the forma-

tion of difference coarrays requires a high-accuracy covari-

ance matrix estimate based on a large number of snapshots,

which may not be applicable in many real-world applications

(e.g., automotive radar [31]). Second, the use of ULA in coar-

ray construction causes inherent lag redundancies, thereby re-

ducing the achievable number of DOFs [12, 26].

In this paper, we develop a new multi-frequency sparse

array framework to achieve high-resolution DOA estima-

tion. First, the physical arrays are in general nonuniformly

spaced to reduce lag redundancies. The processing scheme

is based on modified array interpolation which, unlike differ-

ence coarray-based approaches that require a large number of

snapshots, provides robust DOA estimation based on very few

snapshots. The effectiveness of the proposed multi-frequency

sparse array design and processing framework is illustrated

using design examples and simulation results.

Notations: We use lower-case (upper-case) bold charac-

ters to describe vectors (matrices). In particular, IL stands

for the L × L identity matrix, and (·)T and (·)H respectively

denote the transpose and conjugate transpose of a matrix or

vector. ‖ · ‖∗ and ‖ · ‖F respectively represent the nuclear

norm and Frobenius norm. Moreover, | · | denotes the cardi-

nality of a set and ◦ is the Hadamard product. In addition,

T (x) denotes a Hermitian Toeplitz matrix with x as its first

column and Tr(·) represents the trace operator.

2. MULTI-FREQUENCY SPARSE ARRAY

2.1. Multi-Frequency Sparse Array Model

We consider a DOA estimation problem by simultaneously

emitting I continuous wave signals with frequencies of

fi, i = 1, 2, · · · , I , from a single transmit antenna or a phased

array. Extension to multiple transmitter cases is straightfor-

ward based on the multiple-input multiple-output (MIMO)

radar concept [32]. Assume a virtual L0-sensor ULA with

interelement spacing d. For the convenience of presenta-

tion and without loss of generality, the frequencies fi are

illustrated for the scenarios such that all Mi values are in-



tegers and satisfy Miλi/2 = d, where λi is the wavelength

corresponding to fi. Extension to multi-frequency sparse

array designs involving fractional values will be reported

separately.

The set Si containing the sensor positions for the ith fre-

quency are expressed as:

Si = {Mild̄ | l ∈ P}, (1)

where P = {0, 1, 2, · · · , L0 − 1} and d̄ denotes half-

wavelength in a normalized frequency sense (i.e., no specific

frequency is referred to).

For K far-field targets whose respective DOAs are θk, k =
1, 2, · · · ,K, the return signal vector associated with the ith
frequency component is expressed as:

x̃Si(t) = ej2πfit
K∑

k=1

ρik(t)aSi(θk) + ñSi(t), (2)

where ρik(t) is the reflection coefficient which is in general

frequency-dependent because both phase delay and target re-

flectivity vary with frequency. In addition,

aSi(θk)=

[
1, e

−j
2πd1
λi

sin(θk), · · · , e−j
2πdL−1

λi
sin(θk)

]T
, (3)

is the steering vector corresponding to θk, dl is the physi-

cal location of the lth element with respect to the reference

sensor, and L is the number of physical sensors. The sen-

sor indexed by l = 0 is defined as the reference sensor, i.e.,

d0 = 0. Furthermore, ñSi(t) ∼ CN (0, σi
nIL) denotes the

additive white Gaussian noise.

After downconverting the received signal vector through

separated low-pass filtering corresponding to each frequency

component, we obtain the following baseband signal model:

xSi(t)=

K∑
k=1

ρik(t)aSi(θk)+nSi(t)=ASiρ
i(t)+nSi(t), (4)

where ASi = [aSi(θ1), · · · ,aSi(θK)] and ρi(t) = [ρi1(t), · · · ,
ρiK(t)]T.

As we discussed earlier, difference coarray reconstruction

based on a ULA inherently causes lag redundancies. There-

fore, to achieve redundancy-free coarrays, we consider an L-

sensor sparse array design by choosing l from P
′ ⊂ P with

cardinality |P′| = L < L0. In this case, the sensor locations

for frequency fi are given by:

Si = {Mild̄ | l ∈ P
′}. (5)

By incorporating the virtual sensors due to all I frequencies,

we define the set S of the combined sensor positions as:

S =

I⋃
i=1

Si =

I⋃
i=1

{Mild̄ | l ∈ P
′}. (6)

Note that the reference sensors of all I virtual arrays overlap

at the zeroth position. Therefore, the number of unique virtual

sensor positions is given by |S| ≤ (L − 1)I + 1, where the

equality is achieved when all virtual sensors do not overlap

except at the reference position.
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(a) Configuration of multi-frequency sparse array
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(b) Binary mask for convariance matrix interpolation

Fig. 1. Illustration of array configuration and binary mask for

covariance matrix interpolation

2.2. Lag Analysis

Unlike coprime array interpolation discussed in [22, 23], the

I virtual arrays in this paper share the same L sensors. On

the other hand, the phase terms between xSi(t) and xSj (t),
for 1 ≤ i, j ≤ I, i �= j, depend not only on the spatial

angles of the impinging signals, but also on the unknown

phase difference between the reflection coefficients ρik(t) and

ρjk(t) [24]. The existence of such unknown phase difference

prohibits the direct utilization of the cross-lags obtained from

the different frequency pairs, since ρik(t) differs from ρjk(t) in

general. Therefore, the array interpolation method developed

in [22, 23] cannot be readily applied to the underlying DOA

estimation problem.

Based on the fact that the self-lags corresponding to

each single frequency component are not affected by the

phase shift, we employ the self-lag set for the array inter-

polation purpose. The array interpolation is implemented

by interpolating additional sensors into integer multiplies of

half-wavelength in the L0-element array. Note that the |S|
unique virtual sensors resulting from I frequencies cannot be

equivalently treated as |S| physical sensors due to the phase

shift differences among different frequency pairs.

To have an intuitive understanding, we use a simple exam-

ple of multi-frequency sparse array configuration with I = 3
frequencies as illustrated in Fig. 1(a). We set f2 = 1.5f1 and

f3 = 2f1. The sensor positions for frequency f1 is given as:

S1 = {0, 2, 6}λ1/2, (7)

i.e., M1 = 2 and P
′ = {0, 1, 3}. From the frequency ratios,

we have M2 = f2M1/f1 = 3 and M3 = f3M1/f1 = 4. The



resulting virtual sensor positions corresponding to frequen-

cies f2 and f3 are expressed as:

S2 = {0, 3, 9}λ2/2, S3 = {0, 4, 12}λ3/2. (8)

Collecting all virtual sensor positions and expressing them in

terms of half-wavelength d̄, regardless of the actual frequency,

we obtain the collective sensor positions as:

S = S1 ∪ S2 ∪ S3 = {0, 2, 3, 4, 6, 9, 12}d̄. (9)

The non-negative self-lag positions for the three fre-

quency components are respectively expressed as C
1
self =

{0, 2, 4, 6}d̄, C2
self = {0, 3, 6, 9}d̄, and C

3
self = {0, 4, 8, 12}d̄.

The yielding non-negative self-lag positions are given as:

C
+
self = {0, 2, 3, 4, 6, 8, 9, 12}d̄. (10)

Note that this example involves redundant lags.

The received signals of the interpolated ULA can be ini-

tialized by augmenting xSi(t) as

〈yU(t)〉� =
{
〈xSi(t)〉� , �d̄ ∈ Si,
0, �d̄ ∈ U\Si, (11)

where U = Pd̄ and 〈·〉� denotes the element corresponding

to the sensor located at �d̄ [7]. Accordingly, we define an

L0-dimensional binary vector bi to describe the presence of

virtual sensors indexed in the ULA U. Elements of vector

bi with value 1 imply the existence of virtual sensors with

frequency fi, whereas 0 stands for sensor positions to be in-

terpolated, i.e.,

〈bi〉� =
{

1, �d̄ ∈ Si,
0, �d̄ ∈ U\Si. (12)

We can initialize the received signals of the interpolated

ULA yU(t) by

yi
U(t) = xi

U(t) ◦ bi, (13)

where xi
U
(t) is the theoretical received signal for frequency

fi using the ULA and is modeled as follows:

xi
U(t)=

K∑
k=1

ρik(t)aU(θk) +ni
U(t)=aUρ

i(t) +ni
U(t). (14)

Here, aU(θk) is the array manifold vector of the interpolated

ULA corresponding to the kth source and is expressed as:

aU(θk)=

[
1, e

−j
2πd1
λi

sin(θk),· · · ,e−j
2πdL0−1

λi
sin(θk)

]T
. (15)

In practice, the covariance matrix Ri
y
U
y
U

is unavailable

and is approximated by its sample covariance matrix as:

R̂
i

y
U
y
U
=

1

T

T∑
t=1

yi
U(t)

(
yi
U

)H
(t), (16)

where T is the number of snapshots. It is important to em-

phasize that the number of required snapshots can be very

small for the proposed strategy (i.e., smaller than the number

of sources or even a single snapshot can be utilized).

3. PROPOSED ARRAY INTERPOLATION AND DOA
ESTIMATION

In this section, we propose a novel gridless DOA estimation

algorithm based on multi-frequency sparse array interpola-

tion. The concept of array interpolation is employed to gen-

erate the same aperture as the L0-sensor ULA. The unknown

covariances are subsequently recovered via solving a convex

optimization problem. The resulting covariance matrix en-

ables to estimate more sources than the number of physical

sensors, and the number of DOFs can be increased with more

frequency components.

To enable effective information fusion of the covariance

matrices associated with different frequencies, we define

Bi = bi(bi)T as the mask whose entries distinguish the

known and unknown elements in R̂
i

y
U
y
U
. The synthesis co-

variance matrix exploiting the I frequencies is given by

R̂y
U
y
U
=

(
I∑

i=1

R̂
i

xUxU
◦Bi

)
◦D, (17)

where the (u, v)th element in D for (u, v) ∈ {1, · · · , L0}2
denotes the inverse of the overlapping times, expressed as:

D(u, v) =
1∑I

i=1 B
i(u, v) + ε

, (18)

where ε is a small positive value in order to provide stability.

Accordingly, the L0 ×L0 binary matrix B distinguishing the

known and unknown elements in R̂y
U
y
U

is

B = D ◦
I∑

i=1

Bi. (19)

For the design example illustrated in Fig. 1(a), the positions of

the zero entries are represented by the empty boxes depicted

in Fig. 1(b).

As indicated in [23], matrix completion fails to fill in the

missing entries in R̂y
U
y
U

since several columns or rows are

completely missing. Recall that the theoretical covariance

matrix for a ULA has a Hermitian Toeplitz structure, and the

number of targets is smaller than the number of sensors in the

interpolated ULA, i.e., K < L0. Therefore, we can reformu-

late the covariance matrix recovery problem as the following

low-rank structured matrix completion problem:

min
w

rank(T (w))

s.t.
∥∥∥T (w) ◦B − R̂y

U
y
U

∥∥∥2

F
≤ δ

T (w) � 0,

, (20)

where δ is the error tolerance. Note that the problem (20) is

NP-hard. In the following, we relax the rank minimization

objective by exploiting the nuclear norm minimization. As

the nuclear norm of T (w) can be expressed as ‖T (w)‖∗ =
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(c) K = 4, SNR = 0 dB
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(d) K = 10, SNR = 0 dB

Fig. 2. DOA estimation results (T = 9).

Tr(
√
T H(w)T (w)), we reformulate (20) as follows:

min
w

∥∥∥T (w) ◦B − R̂y
U
y
U

∥∥∥2

F
+ ζ Tr

(√
T H(w)T (w)

)
s.t. T (w) � 0,

(21)

where ζ is the regularization parameter. Note that the problem

(21) is convex and can be solved using [33]. Subsequently,

we exploit the MUSIC algorithm [34] to perform the DOA

estimation, given its good trade-off between high resolution

and computational simplicity. Other gridless DOA estimation

methods, such as root-MUSIC and ESPRIT, can also be em-

ployed.

4. SIMULATION RESULTS

In this section, we present simulation results to demonstrate

the DOA estimation performance of the proposed method for

the design example described in Section 2.2. In this case,

we have |Si| = L = 3 physical sensors. |S| = 7 virtual

sensors are obtained based on the use of I = 3 frequencies,

and |P| = L0 = 13 sensors are rendered in the interpolated

ULA. The regularization parameter ζ for covariance matrix

recovery is set to 0.25.

K uncorrelated targets are assumed to be uniformly dis-

tributed in [−50◦, 50◦]. The noise power at the three frequen-

cies are assumed to be the same, and the input SNR values

for all sources are assumed to be identical. The phase dif-

ference between the received signal corresponding to differ-

ent frequencies is independently and uniformly distributed in

[0, 2π]. To verify the performance of the proposed method

with few snapshots, only T = 9 data snapshots are used.
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Fig. 3. RMSE versus SNR (T = 9).

Fig. 2 depicts the MUSIC pseudo-spectra. When the input

SNR is 10 dB, as shown in Figs. 2(a) and 2(b), the proposed

scheme successfully resolves both cases respectively with 4

and 10 targets, thus verifying the capability of the proposed

method when the number of sources exceed the number of

physical sensors and the number of snapshots. When SNR

takes a lower value of 0 dB, the DOA estimation performance

degrades. For the case of 4 targets, as shown in Fig. 2(c), the

proposed algorithm remains effective to resolve all 4 targets.

For the scenario with 10 targets, as shown in Fig. 2(d), most

targets are still detected with one missing target.

We evaluate the performance of the proposed DOA esti-

mation strategy in terms of root mean squared error (RMSE)

for varying SNR. The RMSE is defined as follows:

RMSE =

√√√√ 1

NK

N∑
n=1

K∑
k=1

(
θ̂k,n − θk

)2

, (22)

where θ̂k,n denotes the estimate of the kth source θk in the

nth Monte-Carlo trial. Fig. 3 shows the RMSE performance,

obtained from 500 Monte-Carlo trials, with respect to the in-

put SNR for both K = 4 and K = 10 cases. A lower RMSE

value is obtained for the case with a smaller number of tar-

gets. We observe that the proposed algorithm has a floor at

the high SNR region because of the small number of samples

being used. For K = 4 and K = 10, the RMSE is respec-

tively 0.5◦ and 3.5◦ at 20 dB input SNR with the use of 9

snapshots.

5. CONCLUSION

In this paper, we proposed a multi-frequency sparse array

framework that can provide enhanced DOA estimation capa-

bility and resolve more targets than the number of physical

sensors as well as the number of snapshots. The self-lags ob-

tained at each frequency component are incorporated in a syn-

thesis covariance matrix to achieve higher DOFs. A modified

structured matrix completion scheme is developed to fill the

missing entries in the resulting covariance matrix. Simula-

tion results demonstrated that the proposed strategy provides

promising performance for the DOA estimation especially for

the case of less number of snapshots.
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