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Abstract—In sky-wave over-the-horizon radar systems, the
received signal contains local multipath signal components as
a result of reflection and refraction from ionosphere and the
earth surface. For a maneuvering target, these multipath signals
generally yield three distinct, yet closely separated, and highly
time-varying Doppler components. Due to the proximity of
these Doppler frequencies, it is a challenging task to accurately
estimate the difference between these signatures, which reveal
the important elevation velocity of the target. In this paper,
we propose a group sparsity-based approach that exploits the
correlation between these Doppler signatures and utilizes the a
priori information about their characteristics. Simulation results
verify the effectiveness of the proposed approach.

Index Terms—Doppler frequency, group sparsity, over-the-
horizon radar, target geo-location tracking, time-frequency anal-
ysis.

I. INTRODUCTION

A traditional sky-wave over-the-horizon radar (OTHR) op-
erates in the high-frequency (HF) band to detect targets that
are located well beyond the limit of conventional line-of-
sight radars by utilizing ionospheric reflections and refractions
of the radar signals. OTHR performs wide-area surveillance,
with a typical coverage of several thousand kilometers [1].
The narrow signal bandwidth constrained by the ionospheric
conditions [2], along with other limiting conditions, such as
low signal-to-noise ratio (SNR), and effective array aperture,
adversely affect the range and cross-range resolutions of an
OTHR system [3]. The range resolution of a typical skywave
OTHR is measured in the order of tens of kilometers [3]. Due
to the early warning nature of OTHR, high range resolution
may not be required. However, high-resolution estimation of
the target altitude, in the order of few kilometers or less, is
needed for further target classification [4–6].

In practice, different multipath signals of a maneuvering
target, generated due to the local multipath, i.e., reflections
of the radar signal from the ocean/ground surface, along
with ionospheric reflections, manifest themselves as distinct,
yet closely separated, and highly time-varying Doppler fre-
quency signatures. These Doppler signatures provide useful
information for target geo-location, especially regarding the
target’s elevation velocity [7]. In the last two decades, vari-
ous techniques, devised based on effective utilization of this
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local multipath model, have been proposed for maneuvering
target detection and parameter estimation [4, 5, 8–10]. In an
attempt to resolve these local multipath Doppler signatures,
high-resolution time-frequency (TF) methods are employed
[4, 5]. Nevertheless, due to the proximity of these non-linear
Doppler components, it is not trivial to accurately obtain
the difference between these components for accurate target
altitude estimation. Besides, the existing techniques [4, 8–10]
also suffer from high complexity due to the requirements of
the exhaustive parametric analysis.

A low-complexity approach, which utilizes the prior in-
formation of these Doppler characteristics, is presented in
[11]. In this approach, the squared magnitude of the received
signal is first utilized to stationarize the nominal frequency
component, leaving only the difference component of these
Doppler signatures. Then, the short-time Fourier transform
(STFT) [12, 13] is utilized to obtain the targeted Doppler
frequency difference. While the method presented in [11]
is effective in estimating the frequency difference when the
difference Doppler frequency signatures are isolated, it does
not yield accurate results particularly when multiple Doppler
difference components are closely spaced. The low frequency
resolution of the STFT for rapidly time-varying difference
Doppler signatures is also a factor that compromises the
estimation accuracy.

Recently, various sparse reconstruction-based TF analysis
techniques [14–17] are shown to be effective in robust in-
stantaneous frequency (IF) estimation of non-linear frequency
modulated (FM) signals, which can be sparsely represented
in the TF domain. We observe that, in the squared magni-
tude operation [11], the two difference Doppler components
corresponding to the local multipath signals generate their
harmonics, yielding four symmetrical components around the
stationarized nominal Doppler frequency component. These
four components are fully associated with the fundamental
frequency as its negative frequency component and their har-
monics. However, such group sparsity has not been considered
in the context of OTHR local multipath signals.

Motivated by these observations, we propose a new group
sparsity-based approach for effective Doppler difference es-
timation in this paper. We first remove the nominal Doppler
component by using the squared magnitude of the received
signal as in [11]. Then, we formulate the Doppler difference
estimation as a group sparse reconstruction problem and
design the dictionary that effectively represents the remaining
components as the appropriate harmonics of the fundamental



frequency signature. The resulting problem is solved using
one of the existing Bayesian compressive sensing-based group
sparse reconstruction methods [18–21].

The key offering of the proposed method lies in that, by
formulating the Doppler difference estimation as a group
sparse reconstruction problem, the search space is reduced
to one-fourth of the original search space for the multipath
model considered in [4, 5, 10, 11], thus, greatly reducing
the computational cost. At the same, the consideration of the
four signal components that share a common sparse support
would enhance the robustness and accuracy of their frequency
estimation. The effectiveness of the proposed approach is
verified through simulation results.

Notations. A lower (upper) case bold letter denotes a vector
(matrix). IN is the N × N identity matrix. (·)T, (·)H, and
(·)∗, respectively, denote transpose, Hermitian, and complex
conjugation operations. bdiag(·) represents a block diagonal
matrix. Tr(·) stands for matrix trace. x ∼ CN (a, b) defines
complex Gaussian distributed variable x, with mean a and
variance b.

II. SIGNAL MODEL

We consider a monostatic OTHR system with a flat-earth,
local multipath propagation model [11] that assumes prop-
agation through the stable E-layer of the ionosphere. This
geometry is depicted in Fig. 1, where R and h are, respectively,
the time-varying ground range and target altitude, whereas
H is the height of the ionosphere which is considered con-
stant over the processing interval and known from periodic
ionosonde measurements. Note in Fig. 1 that the propagation
paths and target below the ionosphere layer are the true ones,
whereas those above the ionosphere layer are the equivalent of
these paths, illustrated for computational convenience of the
associated slant ranges.

From Fig. 1, the slant ranges associated with multipaths I
and II are respectively given by

l1 =
(
R2 + (2H − h)2

)1/2
, l2 =

(
R2 + (2H + h)2

)1/2
.

(1)
Since h� H � R holds in practice, the slant ranges can be
computed using the following approximations:

l1 ≈ R+
2H2 − 2Hh

R
, l2 ≈ R+

2H2 + 2Hh

R
. (2)

The horizontal and the vertical velocities of a maneuvering
target are respectively defined as Ṙ(t) = dR(t)/dt and ḣ(t) =
dh(t)/dt, where (t) is used to emphasize the time-dependency
of the target parameters. From (2), we obtain

dl1(t)

dt
≈ Ṙ(t)− 2H2

R2(t)
Ṙ(t)− 2H

R(t)
ḣ(t),

dl2(t)

dt
≈ Ṙ(t)− 2H2

R2(t)
Ṙ(t) +

2H

R(t)
ḣ(t).

(3)

The model presented in Fig. 1 has three unique propagation
paths, created due to the local multipaths: (i) Mode I-I: when
both transmit and receive signals follow path I, (ii) Mode II-II:
when both transmit and receive signal follow path II, and (iii)
Mode I-II: when the receive signal follows different path than

Fig. 1. Local multipath propagation model.

the transmit signal (i.e., either path I-II or II-I). The associated
Doppler frequencies of these three different propagation paths
are, respectively, obtained as

fi(t) = −2fm
c

dl1(t)

dt
≈ −2fm

c
B(t)Ṙ(t) +

4fmH

R(t)c
ḣ(t),

fii(t) = −2fm
c

dl2(t)

dt
≈ −2fm

c
B(t)Ṙ(t)− 4fmH

R(t)c
ḣ(t),

fiii(t) = −fm
c

dl1(t) + dl2(t)

dt
≈ −2fm

c
B(t)Ṙ(t),

(4)
where fm is the carrier frequency, c is the speed of the
electromagnetic wave propagation, and for simplicity, we
define B(t) = 1 − 2H2/R2(t). It is clear from (4) that the
Doppler frequencies for the first path and the second path
are symmetric around that of the third path. Note that, in
(4), the component −2fmB(t)Ṙ(t)/c is shared by all three
paths and carries an important information regarding the target
velocity in the range direction. We refer to it as the nominal
Doppler frequency, denoted as fN (t). Similarly, we represent
the differential Doppler component as

fD(t) =
4fmHḣ(t)

R(t)c
, (5)

which revels an important information regarding elevation
velocity, ḣ(t), of a maneuvering target. Then, we can rewrite
(4) as

fi(t) = fN (t) + fD(t),
fii(t) = fN (t)− fD(t),
fiii(t) = fN (t).

(6)

From (4), it is clear that an accurate estimation of Doppler
difference fD(t) plays a crucial role in target altitude es-
timation and tracking. However, the target altitude and its
elevation velocity are, respectively, much smaller than the
target range and its horizontal velocity. Hence, fD(t) is very
small compared to fN (t), thus making its accurate estimation
challenging, particularly for a maneuvering target with time-
varying nominal Doppler frequency signatures.



Let an and θn(t), n = 1, ..., 3, respectively, be the magni-
tude and the instantaneous phase of the nth path. Then, the
noise-free received signal can be expressed as

s(t) =

3∑
n=1

an exp(jθn(t)), (7)

where the phase laws of the three unique multipaths are given
by

θ1(t) = −2π
∫ t
0
fi(t)dt = φ(t)− ϕ(t),

θ2(t) = −2π
∫ t
0
fii(t)dt = φ(t) + ϕ(t),

θ3(t) = −2π
∫ t
0
fiii(t)dt = φ(t),

(8)

where φ(t) = 4πfmB(t)R(t)/c and ϕ(t) =
8πfmHh(t)/(R(t)c). Note that the change in R(t) over
the processing time is negligible, and thus it can be treated
as a constant when obtaining the phase θn(t), n = 1, ..., 3.
Due to the symmetry of Doppler signatures in (6), the sign
of the Doppler difference cannot be obtained using local
multipath-based approaches.

III. DOPPLER DIFFERENCE ESTIMATION THROUGH GROUP
SPARSE RECONSTRUCTION

Because of the small value of fD(t), it is often a challeng-
ing task to resolve the local multipath Doppler frequencies,
particularly when the target is maneuvering, thus yielding non-
linearity in the Doppler signatures. In this section, we present
a group sparsity-based method to accurately estimate the
Doppler frequency difference. First, we use the squared mag-
nitude of the received signal [11] to demodulate the Doppler
signatures and remove the nominal Doppler component. Then,
based on the prior knowledge of the characteristics of these
Doppler signatures and their group sparsity, we formulate
a group-sparse reconstruction problem, which is effectively
solved using a block sparse Bayesian compressive sensing
technique [19].

A. Demodulation of Doppler signatures

The stationarization-based TF analysis techniques presented
in [4, 9] require highly time consuming processing of the
data and often yield inaccurate estimation of the nominal
Doppler frequency component. The self-demodulation tech-
nique, presented in [11], provides much simpler, yet more
accurate Doppler signature demodulation without the need for
a complicated nominal Doppler component estimation process.
This procedure is summarized below.

The squared magnitude of the noiseless received signal,
s(t), can be obtained by multiplying it with its conjugate, as

|s(t)|2 = s(t)s∗(t)
=
(
|a1|2 + |a2|2 + |a3|2

)
+ (a1a

∗
3 + a∗2a3) exp(jϕ(t))

+ (a∗1a3 + a2a
∗
3) exp(−jϕ(t))

+a1a
∗
2 exp(j2ϕ(t)) + a∗1a2 exp(−j2ϕ(t)).

(9)

The operation in (9) yields four demodulated, localized
frequency components, symmetrically located around the sta-
tionarized (i.e., DC) nominal Doppler component. As observed

in (9), |s(t)|2 does not contain φ(t). In order to obtain the
elevation velocity of the maneuvering target, we only need to
estimate ϕ(t) from the Doppler signatures of |s(t)|2 depicted
in (9).

B. Group Sparse Reconstruction Problem Formulation

The resulting Doppler difference components in (9) are
sparsely represented in the spectral domain. In order to es-
timate the differential Doppler component, we formulate it as
a group sparse reconstruction problem as follows.

Denote r(t) = s(t) + v(t) as the noisy received signal for
t = 1, · · · , T , where v(t) denotes zero-mean complex white
Gaussian noise. Let,

y(t) = |r(t)|2 = |s(t)|2+|v(t)|2+δ(t) = |s(t)|2+Λ(t), (10)

where δ(t) accounts for the cross-terms between s(t) and v(t),
and Λ(t) represents combined effects of the noise and cross-
terms. Without loss of generality, we refer to Λ(t) as the noise
terms. Define

y = [y(1), · · · , y(T )]T. (11)

Dividing y into M overlapping segments, with N being the
number of elements in each segment and Q being the frame
hop, yields the following N ×M matrix:

Y = [y1,y2, ...,yM ], (12)

where

ym = [y((m− 1)Q+ 1), ..., y((m− 1)Q+N)]T. (13)

From (9), it is clear that, other than the DC component, ym
comprises of four mutually associated frequency components,
with one of them being the fundamental frequency, one being
its mirrored negative frequency component, and the other two
being their corresponding second-order harmonics. Using this
information, we define the fundamental frequency vector as
f = [f1, f2, ..., fU ]T, where U represents the total number
of fundamental frequencies. Consequently, the frequency vec-
tor of all possible frequencies, including harmonics, which
contains U groups and a total number of 4U frequencies, is
defined as

f̃ = [fT1 , ..., f
T
U ]T, (14)

where

fu = [−2fu,−fu, fu, 2fu]T, 1 ≤ u ≤ U, (15)

represents a group of four frequencies related to the funda-
mental frequency fu. Let

α̃m = [α̃1(m)T, ..., α̃U (m)T]T (16)

be the associated magnitude vector, which describes the
Doppler difference spectrum of the signal, in the mth segment.
Then, ym can be expressed as the weighted sum of different
frequencies plus noise terms. The group sparse reconstruction
problem of ym is formulated as

ym = Ψ̃α̃m + Λ̃, (17)

where Ψ̃ is an N×4U inverse Fourier transform matrix, given
by

Ψ̃ = [Ψ̃1, ..., Ψ̃U ], (18)



and

Ψ̃u=


1 1 1 1

e−2b e−b eb e2b

...
...

...
...

e−2b(N−1) e−b(N−1) eb(N−1) e2b(N−1)

, (19)

where b = j2πfnu for some n that is associated with the spe-
cific fundamental Doppler frequency, fnu = fu/fw, 1 ≤ u ≤
U , is the normalized frequency, and fw is the pulse repetition
frequency. Note that the amplitude α̃u(m), 1 ≤ u ≤ U , and
fnu, are assumed to be time-invariant within each segment due
to the consideration of a small time period.

Because the demodulated Doppler frequencies are sparsely
represented in the TF domain, the solution vector α̃m is
sparse, i.e., most of its blocks are zero. Ideally, in the absence
of noise, other than the DC component, only one group of
frequencies should assume a non-zero value for the entire
segment. However, in practice, the estimation may contain few
non-zero groups.

C. Group Sparse Reconstruction
While the group sparse reconstruction problem (17) can

be solved using a number of group sparsity-based algorithms
[18–23], Bayesian compressive sensing algorithms [18–21]
generally provide superior results due to their adaptive learning
framework. In this paper, we use the expectation maximiza-
tion (EM)-based block sparse Bayesian learning (BSBL-EM)
method [19] due to its proven superiority. The BSBL-EM was
originally developed for real valued signals, and was extended
for spectrum estimation of complex-valued harmonic speech
signals [24]. The main steps of the algorithm in the context of
our group sparse Doppler difference estimation problem are
summarized below.

In the group sparse framework, each group α̃u(m) ∈
R4×1, 1 ≤ u ≤ U , is assumed to satisfy the following
parameterized multi-variate Gaussian distribution:

p (α̃u(m);λu,Cu) ∼ CN (0, λuCu) , u = 1, · · · , U, (20)

where the unknown, non-negative parameter λu controls the
block-sparsity of the solution vector α̃m, whereas the un-
known parameter Cu ∈ R4×4 is a positive-definite matrix
that captures the correlation structure of the uth block of α̃m.
As the solution vector comprises of only few blocks (ideally
only one block in the underlying problem), λu assumes a zero
value for most blocks. The prior of α̃m is given by

p
(
α̃m; {λu,Cu}Uu=1

)
∼ CN (0,Σ0) , (21)

where Σ0 = bdiag{λ1C1, ..., λUCU}. Assuming that the
vector representing the noise terms satisfies p(Λ̃; γ) ∼
CN (0, γIN ), where γ > 0, the posterior of α̃m is given by

p
(
α̃m|ym; γ, {λu,Cu}Uu=1

)
= CN

(
µαm

,Σαm

)
, (22)

where

µαm
= Σ0Ψ̃

H
(
γIN + Ψ̃Σ0Ψ̃

H
)−1

ym, (23)

and

Σαm
=

(
Σ−1

0 +
1

γ
Ψ̃
H

Ψ̃

)−1

. (24)

TABLE I
KEY PARAMETERS

Parameter Notation Value
Initial range of target R(0) 1,500 km
Height of ionosphere H 160 km
Initial height of target h(0) 10 km
Maximum range direction velocity vR,max 175 m/s
Maximum elevation velocity vh,max 19.68 m/s
Carrier frequency fm 16 MHz
Waveform repetition frequency fw 40 Hz
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Fig. 2. Target parameters. (a) Target horizontal positions; (b) Target altitude.

Using the EM algorithm, the learning rules of λu and γ can
be derived as:

λu ←
1

4
Tr
[
C−1
u

(
Σu
αm

+ µuαm

(
µuαm

)T)]
, u = 1, · · · , U,

(25)

γ ←

∥∥∥ym − Ψ̃µαm

∥∥∥2
2

+
∑U
u=1 Tr

(
Σu
αm

(
Ψ̃u

)T
Ψ̃u

)
N

.

(26)
It is worth noting that assigning a different Cu to each

block may result in over-fitting [19]. In order to avoid that,
parameter averaging is usually considered. This is achieved by
constraining Cu = C, ∀u, provided that each block has the
same size. Using this constraint and the EM algorithm, the
learning rule for C can be derived as

C← 1

U

U∑
u=1

Σu
αm

+ µuαm

(
µuαm

)T
λu

. (27)

After the parameters {λu,Cu}Uu=1 and γ are obtained, the
maximum a-posteriori (MAP) estimate of α̃m is obtained as
the mean of the posterior, given by

α̂m ← Σ0Ψ̃
H
(
γIN + Ψ̃Σ0Ψ̃

H
)−1

ym. (28)

IV. SIMULATION RESULTS

The effectiveness of the proposed method is verified through
simulation results. We consider a maneuvering aircraft sce-
nario [11] in which an aircraft makes a 360o circular turn
of 5 km radius in approximately T0 = 179.5 seconds, and
descend by about 2.25 km. The horizontal velocity of the
aircraft is assumed to be constant at 175 m/s, whereas its
elevation velocity varies sinusoidally. The aircraft trajectory
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Fig. 3. Doppler signatures of s(t). (a) True signatures; (b) Spectrogram.

is shown in Fig. 2. The other key parameters used in the
simulations are provided in Table I. All local multipath signals
are assumed to be the portion of the same range cell.

The time-varying altitude of a maneuvering target is given
by

h(t) = h(0)− vh,maxT0
π

[
1− cos

(
πt

T0

)]
. (29)

The corresponding elevation velocity is obtained as

ḣ(t) = −vh,max sin

(
πt

T0

)
. (30)

From (5) and (30), it is clear that the differential Doppler
component fD(t) is a function of ḣ(t) and varies sinusoidally.
The peak values of fD(t) and fN (t) are, respectively, obtained
as 0.4478 Hz and 18.66 Hz, for the parameters considered
in Table I. We assume that the clutter is filtered out using
auto-regressive (AR) pre-whitening techniques [5, 25]. The
effective input SNR after radar beamforming is set to 0 dB.

Fig. 3(a) shows multipath generated true Doppler frequency
signatures. The corresponding spectrogram is shown in Fig.
3(b). It is clear that, due to proximity of these Doppler com-
ponents and the time-varying nominal frequencies, the local
multipath signals are not resolvable, making direct estimation
of the Doppler frequency difference fD(t) challenging.

The true demodulated Doppler signatures, corresponding to
|s(t)|2, are shown in Fig. 4(a). Figs. 4(b) and 4(c), respectively,
show the spectrogram and the Doppler TF signature obtained
using the proposed approach, applied to the corresponding
noisy signal y(t) = |r(t)|2. In our simulations, the values of
N , Q, M , and U are, respectively, taken as 512, 32, 210, and
201. Although the spectrogram in Fig. 4(b) catches the general
trend of the time-varying Doppler frequency difference, the
frequency resolution is poor. In particular, the harmonic com-
ponents interfere to each other when the Doppler frequency
difference is small. In Fig. 4(c), the result obtained using
the proposed approach demonstrates high-resolution Doppler
difference signatures and their robustness against harmonic
interference and noise.

Fig. 5 describes the details of the proposed approach and
provides a comparison with the existing result based on the
spectrogram. Due to the symmetry of the harmonic Doppler
difference signatures around the DC component, analysis of
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Fig. 4. Demodulated Doppler difference signatures. (a) True signatures; (b)
Spectrogram; (c) Estimated signatures using the proposed method.

only the positive frequency side is required. The spectrogram
depicted in Fig. 5(a) is obtained by fusing the Doppler
signatures of the fundamental frequency and the harmonic
frequency components [11], whereas Fig. 5(b) shows the
corresponding estimate of the difference Doppler signature ob-
tained using peak detection. Because the spectrogram depicted
in Fig. 5(a) provides a low resolution and includes cross-
terms between the fundamental and harmonic components, the
peak detection results, as shown in Fig. 5(b), fail to provide
accurate Doppler difference estimation in the first and the
last 30 seconds of the observation period, where the Doppler
difference is small. The TF representation of the estimated
Doppler difference fD(t) is provided in Fig. 5(c), and the
estimated difference Doppler signatures are plotted in Fig.
5(d). The root mean square error (RMSE) in terms of the
normalized Doppler frequency using spectrogram and the pro-
posed method are, respectively, obtained as 0.0282 and 0.0231.
As such, both quantitative analysis and qualitative results
confirmed the superiority of the proposed method in enhancing
the frequency resolution and improving the robustness against
noise.

V. CONCLUSION

In this paper, we developed a new group sparsity-based
method to accurately estimate the Doppler frequency differ-
ence of the local multipath signals in OTHR systems. To
achieve an accurate and robust estimation of this crucial
information for determining the target elevation velocity, the
proposed approach effectively utilizes the group sparsity be-
tween these frequencies and provides an improved estimation
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Fig. 5. The Estimated Doppler frequency difference, fD(t). (a) Spectrogram;
(b) Peak detection result from spectrogram; (c) TF representation obtained
from the proposed method; (d) Peak detection result from the proposed
method.

result with a higher frequency resolution. Simulation results
confirmed the effectiveness of the proposed technique, com-
pared with existing methods.
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