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Abstract—In this paper, we consider the Doppler signatures
of local multipath target signals in an over-the-horizon radar and
the objective is to separate signals corresponding to the ordinary
(O) and extraordinary (X) propagation modes. As signals of
these two modes are reflected at different ionosphere heights, the
rendered Doppler signatures are more complicated and cannot be
directly analyzed for parameter estimation using conventional lo-
cal multipath models which are developed for a single propagation
mode. We consider a mixed O/X-mode signal model and analyze
the resulting Doppler signatures comprising of more signal
components. It is shown that sparsity-based methods estimate
the Doppler components with improved resolution and accuracy.
Moreover, the proposed group sparsity-based strategy enables
separation of the resolved Doppler components corresponding to
the two propagation modes. We present the simulation results for
a challenging scenario where the multipath Doppler signatures
corresponding to the two modes are interlaced.

keywords: Doppler parameter estimation, fractional Fourier
transform, group sparsity, over-the-horizon radar, ordinary and
extraordinary modes.

I. INTRODUCTION

Sky-wave over-the-horizon radar (OTHR) systems enable
surveillance of targets that are beyond the limit of the earth
horizon [1–6]. So far, significant research efforts have been
dedicated to target parameter estimation in OTHR [7–12].
In this context, an important parameter which facilitates the
target classification is the target altitude. In practice, target
altitude estimation is very challenging because of the nar-
rowband nature of OTHR sensing signals. Moreover, time-
varying ionosphere conditions add further uncertainties and
make target altitude estimation more difficult. Existing target
altitude estimation techniques in OTHR are generally based on
one of the following three major approaches: (a) performing
target tracking that includes target altitude information in
the target state [8–11, 13–15]; (b) joint estimation of target
and ionosphere parameters based on their statistical model
[12, 16]; and (c) high-resolution time-frequency analysis of
local multipath signal components [17–25]. The proposed work
considered in this paper is based on the last approach.

An important strategy to estimate the target altitude for
OTHR is to employ the local multipath model [8]. In this
model, the OTHR signals back-scattered by the target and
received at the radar receivers follow three distinct round-
trip paths due to their reflections from the ionosphere and the
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earth surface. The overall Doppler frequency profile of these
three multipath signal components consists of three spectrally
equidistant Doppler components. The spectral distance of these
three Doppler components and their spectral average enables
the estimation of target parameters such as the target elevation
velocity and height [17, 20, 21].

In practice, two distinct electromagnetic propagation
modes, known as the ordinary (O) and extraordinary (X)
modes, may arise in the ionosphere [26–28]. The signals
propagating through these two modes are reflected at different
ionosphere heights, resulting in different slant ranges and
different Doppler signatures for the two modes. Recently, the
Doppler signatures of mixed O/X-mode signals was considered
in [29], focusing on the detectability of the Doppler parameters
when the difference between the reflection heights of both
modes is very small.

In this paper, we consider the separation of the Doppler
signatures corresponding to the mixed O/X modes when the
Doppler difference due to the two modes is comparable to
that due to the local multipath. For a target that moves with a
constant horizontal velocity and a constant height, we reveal
that all Doppler components in both modes exhibit the same
chirp rate. As the conventional methods fail to resolve these
Doppler components, we exploit Lasso-based approach [30]
to achieve high-resolution Doppler frequency estimation of
the mixed O/X mode signals which are generally present as
six distinct chirp components. Finally, a group sparsity-based
strategy [31, 32] is devised to separate the signal components
corresponding to the two propagation modes.

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). In particular, (.)T and (·)∗ re-
spectively denote the transpose and conjugate operators of a
matrix or vector. Moreover, | · |1 and | · |2 respectively denote
the l1- and l2-norms of a vector. Furthermore, 1N is the N -
length column vector of all ones, ◦ is the Hadamard product,
and

√· denotes the element-wise square root of a vector.

II. MULTIPATH O/X-MODE SIGNAL MODEL

The OTHR signals following the O and X propagation
modes are reflected at different ionosphere heights, referred
to as the virtual ionosphere heights. These virtual heights
usually vary depending on the operating frequency of the
OTHR and the incidence angle of the transmitted signals [26–
28]. Fig. 1 illustrates the flat-earth multipath signal model
by incorporating both O- and X modes of signals. Without
loss of generality, we consider that the virtual ionosphere
height of the X-mode wave is lower than that of the O-mode
wave. In Fig. 1, H denotes the virtual ionosphere height of
the O-mode wave whereas H − ΔH represents that of the
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Fig. 1: Flat-earth local multipath propagation model of OTHR
for O-mode (solid lines) and X-mode (dashed lines) waves.

X-mode wave with ΔH � H . Moreover, h denotes the
target altitude. We further assume that a coarse estimate of
the ionosphere virtual heights is known from, e.g., ionosonde
monitoring. We consider stationary ionospheric conditions, i.e.,
the ionosphere height does not change during the coherent
processing interval (CPI) of the OTHR operation, and the target
is flying with a fixed altitude and a constant horizontal velocity.
For mathematical convenience, we consider that the O- and X-
mode signals have the same operating frequency.

It is observed in Fig. 1 that the two propagation modes
result in different round-trip paths, which are respectively
illustrated as solid and dashed lines. The signals following
each propagation mode can either follow path I (reflected only
by the ionosphere) or path II (reflected by the ionosphere
and the earth surface) for transmission as well as reception.
They render three distinct round-trip propagation paths for
each propagation mode, given by: (a) transmitted and received
along path I; (b) transmitted and received along path II; and
(c) transmitted along path I and received along path II, and
vice versa.

In the following, we first consider the slant range and the
resulting Doppler signatures for the O-mode wave. The results
for the X-mode wave can be derived in a similar manner. For
the convenience of computing the slant ranges, we convert
the multipath signal model for the O-mode wave in Fig. 1 to
an equivalent model depicted in Fig. 2 [17, 21], where the
target and the propagation paths below the ionosphere layer
physically exist, whereas those above the ionosphere layer are
their mirrored images due to the reflections at the ionosphere
and the earth surface.

The one-way slant ranges of paths I and II for the O-mode
wave, respectively denoted as lo,1 and lo,2, can be expressed
in terms of the ground range R, the virtual ionosphere height
H , and the target altitude h, as follows:

lo,1=
(
R2 + (2H − h)2

)1/2
, lo,2=

(
R2 + (2H + h)2

)1/2
.

(1)
Due to the non-zero horizontal target velocity, its ground range
R varies with time. This means that the slant ranges lo,1 and
lo,2 are both time-varying. Note that the explicit notation of
(t) is omitted for rotational brevity.

In practical OTHR operations, h � H � R holds. In
this case, we can expand Eq. (1) by employing the Taylor
approximation as:

lo,1 ≈ R+
2H2 − 2Hh

R
, lo,2 ≈ R+

2H2 + 2Hh

R
. (2)

As a result, the slant range of the three round-trip paths can
be respectively expressed as:

Lo,1 = 2lo,1, Lo,2 = 2lo,2, Lo,3 = lo,1 + lo,2. (3)

Fig. 2: Equivalent local multipath propagation model for the
O-mode wave.

For the case of X-mode signals, we can derive similar slant
range equations by substituting H with H −ΔH in Eq. (2).

III. DOPPLER SIGNATURE ANALYSIS

The Doppler signatures due to the O-mode signal prop-
agation through the three round-trip paths in Eq. (3) can be
expressed as fo,i = −(fc/c)dLo,i/dt for i = 1, 2, 3, where c
is the velocity of the electromagnetic wave, fc is the carrier
frequency, and i denotes the path index. By exploiting Eq. (2),
we obtain:

dlo,1
dt

≈ Ṙ− 2
HṘ

R2
(H − h),

dlo,2
dt

≈ Ṙ− 2
HṘ

R2
(H + h),

(4)
where Ṙ = dR/dt denotes the target horizontal velocity. The
target velocity is considered positive when the target is moving
away from the radar. Denote the average Doppler frequency
and intra-mode Doppler difference for O-mode signals as f̄o
and Δfo, respectively, given by:

f̄o = −fc
c

d(lo,1 + lo,2)

dt
≈ −2fc

c
Ṙ+

4fcH
2Ṙ

cR2
,

Δfo = −fc
c

d(lmo,1 − lo,2)

dt
≈ −4fcHhṘ

cR2
.

(5)

Then, the Doppler frequencies corresponding to the three dif-
ferent round-trip paths of the O-mode wave take the following
simplified form:

fo,1 = f̄o +Δfo, fo,2 = f̄o −Δfo, fo,3 = f̄o, (6)

From Eqs. (5)–(6), we notice that the Doppler signatures
of the round-trip paths 1 and 2 are symmetric around the
round-trip path 3. The average Doppler component for the O-
mode wave, f̄o, is shared by all three round-trip paths, whereas
the intra-mode Doppler difference for the O-mode wave Δfo
denotes the frequency difference between any two adjacent O-
mode Doppler components. It is clear that both f̄o and Δfo
are proportional to Ṙ.

Similarly, we can formulate the Doppler components asso-
ciated with the X-mode wave as:

fx,1 = f̄x +Δfx, fx,2 = f̄x −Δfx, fx,3 = f̄x, (7)



where the average Doppler component of the X-mode signals
f̄x and the corresponding intra-mode Doppler difference Δfx
are obtained by replacing H with H −ΔH in Eq. (5) as:

f̄x ≈ −2fc
c

Ṙ+
4fc(H −ΔH)2Ṙ

cR2

= f̄o − 4fcṘ

cR2
(2HΔH −ΔH2),

Δfx ≈ −4fc(H −ΔH)hṘ

cR2
= Δfo + 4

fchṘ

cR2
ΔH.

(8)

Considering a typical scenario with h� R and ΔH � R,
we observe the following relationship:

f̄x ≈ f̄o − fδ, Δfx ≈ Δfo, (9)

where fδ ≈ (4fcṘ/(cR2))(2HΔH − ΔH2) is an unknown
inter-mode Doppler difference depicting the spectral distance
between the average Doppler components of the signals asso-
ciated with the two propagation modes.

From Eqs. (5)–(9), we observe that the inter-mode Doppler
difference fδ is shared for all the local multipath pairs of
corresponding O/X-mode signals, i.e.,

fδ = fo,i − fx,i, i = 1, 2, 3. (10)

This shows that the three Doppler components respectively
generated by O- and X-mode waves are displaced in the
spectral domain by a common shift fδ .

IV. GROUP SPARSITY-BASED DOPPLER SEPARATION

A. Signal Formulation
At the OTHR receiver, we express the overall noise-free

signal following the O/X-mode propagation as follows:

y(t)=

3∑
i=1

(
Ao,ie

j(2π
∫ T
0

fo,idt+φo,i)+Ax,ie
j(2π

∫ T
0

fx,idt+φx,i)
)
,

(11)
where Ao,i and Ax,i respectively denote the signal magnitudes
for the signals following the O and X modes, φo,i and φx,i are
the corresponding initial phases, and T is the CPI duration.
Note that fo,i and fx,i are time-varying. Substituting Eq. (10)
in Eq. (11), we reformulate y(t) as:

y(t) =
3∑

i=1

(
Ao,ie

j(2π
∫ T
0

fo,idt+φo,i)

+ Ax,ie
j(2π

∫ T
0

(fo,i+fδ)dt+φx,i)
)
.

(12)

If the inter-mode Doppler difference fδ is very small, the
O- and X-mode Doppler components merge together in the
spectral domain. The Doppler frequency resolution for this
case was discussed in [29]. On the other hand, if fδ is large
(fδ � 3Δfo), the resulting Doppler signatures of the two
modes are distantly separated in the spectral domain, thus
facilitating the Doppler signature separation. The Doppler sig-
nature separation is more challenging if the Doppler frequency
profiles of the two propagation modes are either very close to
each other or interlaced in the spectral domain. Such situations
usually arise when fδ ≤ 3Δfo.

Let us examine the Doppler frequency components gener-
ated from the O- and X-mode waves for the parameters listed

TABLE I: Simulation Parameters

Parameter Notation Value
Initial range R(0) 2,500 km
O-mode ionosphere height H 350 km
X-mode ionosphere height H −ΔH 335 km
Target altitude h 20 km

Target horizontal velocity Ṙ 400 m/s
Carrier frequency fc 16 MHz
Pulse repetition frequency fs 100 Hz
Coherent integration time T 80 s
Signal-to-noise ratio (SNR) η 0 dB

in Table I, given that ΔH = 15 km. The corresponding spec-
trally interlaced Doppler profile for both propagation modes
is illustrated in Fig. 3(a) whereas the spectrogram and the
fractional Fourier transform (FrFT) magnitude are respectively
shown in Figs. 3(b) and 3(c). It is observed that the six Doppler
components are interlaced and difficult to separate. From Fig.
3(d), we find the peak value for the rotation angle and the six
frequency peaks corresponding to the six Doppler components.
However, the frequency resolution is rather poor. The example
in Fig. 3 clearly shows the challenges in identifying the
average Doppler and the difference Doppler using the existing
techniques when the Doppler signatures corresponding to the
mixed O/X-mode signals interlace.

B. Sparsity-based Doppler Signature Separation
We devise sparsity-based Doppler signature separation by

exploiting the de-chirped version of the received signal y(t)
to achieve improved resolution. As discussed in Section III
and observed in Fig. 3, all six Doppler components share the
same chirp rate which can be estimated by exploiting the peak
rotation angle αopt from the FrFT as [33, 34]:

γ̂ = − cot
(
αopt

π

2

) f2
s

N
, (13)

where fs is the pulse repetition frequency and N is the number
of samples used in the FrFT computation. Subsequently, the
received signal y(t) in Eq. (11) is de-chirped as:

ȳ(t) = y(t)e−j2πγ̂t2/2,

≈
3∑

i=1

(
Ao,ie

j(2πfs
o,it+φo,i) +Ax,ie

j(2πfs
x,it+φx,i)

)
,

(14)
where f s

o,i and f s
x,i represent the start frequencies, respectively

for the two modes after de-chirpping. In order to determine
these start frequencies, we first construct an N -length data
vector ȳ from the sampled de-chirped signal ȳ(t) as ȳ =
[ȳ(t), ȳ(t−1), · · · , ȳ(t−N)]T. Subsequently, sparse frequency
estimation over the grid F of R frequencies are achieved using
the Lasso as [30]:

r̂ = arg min
r

|ȳ − Fr|22 + ζ|r|1, (15)

where F is the N×R Fourier transform dictionary matrix with
each of its columns corresponding to a frequency in F , r is
the sparse column vector of length R, and ζ > 0 is a regular-
ization parameter. The positions of the non-zero elements of
the obtained solution r̂ correspond to the estimated Doppler
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Fig. 3: Doppler frequency estimation using conventional time-
frequency methods (for ΔH = 15 km).

frequencies in the search grid which are present in the de-
chirped signal vector ȳ. Fig. 4(a) shows the estimated Doppler
signatures using Lasso for the six Doppler components shown
in Fig. 3(a). It is clear that, unlike the spectrogram shown in
Fig. 3(b) and FrFT shown in Figs. 3(c) and 3(d), the Lasso
optimization (15) provides high-resolution estimates of all six
Doppler components. However, it remains unclear in Fig. 4(a)
whether a specific Doppler component belongs to the O or the
X mode. This issue is discussed in the subsequent subsection.

C. Group Sparsity-based Doppler Signature Separation
It is observed in Fig. 3(d) and 4(a) that, when the frequency

profiles of the mixed O/X-mode signals interlace, automatic
separation of the two modes of spectral components becomes
difficult. In order to address this problem, we propose a group
sparsity-based approach to utilize the spectral structure of the
Doppler signatures. Using Eqs. (9) and (14), we obtain:

ȳ(t) ≈
3∑

i=1

(
Ao,ie

j(2πfs
o,it+φo,i)+Ax,ie

j(2π(fs
o,i+fδ)t+φx,i)

)
.

(16)

Eq. (16) shows that the Doppler components corresponding to
the two modes form two separate groups, each containing three
components. The two groups of the Doppler components are
separated by fδ but otherwise have nearly identical structures.

Denote r1 and r2 as two unknown sparse vectors that
are defined on their respective search grids F and F + fδ ,
and let F1 and F2 be their respective Fourier transform
dictionary matrices. Note that the spectral distance between
the corresponding columns of F1 and F2 is equal to fδ .
The resulting group of the sparse vectors can be written in
a matrix form as R = [r1, r2]. We devise the sparse-group
Lasso formulation as [31]:

r̂1 = arg min
r1,r2

[|ȳ − F1r1 − F2r2|22
+ ζ (κ|R|1,2 + (1− κ)|R|1)],

(17)

(a) Using Lasso (b) Using sparse-group Lasso

Fig. 4: Sparsity-based Doppler frequency estimation.

where

|R|1,2 = 1T
N

√
(r1 ◦ r∗1 + r2 ◦ r∗2) (18)

is the mixed l1,2-norm of matrix R and

|R|1 = max
k=1,2

(
N∑
i=1

|R(i, k)|
)

(19)

is the l1-norm of matrix R defined as its maximum of absolute
column sum, with R(i, k) denoting the (i, k)th element of R.
The optimization problem (17) groups the sparse vectors r1
and r2 by exploiting the mixed l1,2-norm of sparse matrix
R and also encourages intra-group sparsity by employing the
matrix l1-norm. The selection of parameter κ ∈ [0, 1] in (17)
provides a convex combination of Lasso [30] and group Lasso
[32] penalties (κ = 0 gives Lasso fit, κ = 1 gives group
Lasso fit). Thus, κ trades off between the inter- and the intra-
group sparsity in optimization (17) [31]. Intra-group sparsity is
specifically important to keep the non-zero components within
each group (mode) to be a minimum value of 3.

Note that the parameter fδ required in (17) is unknown.
Given the six component sparse spectrum obtained in Fig.
4(a), there are only three possible values that fδ can take. We
repeat the optimization in (17) for all three possible values
of fδ and the correct value renders three distinct peaks for
each of the sparse vectors r1 and r2. Fig. 4(b) shows the
estimates of the start Doppler frequencies for O- and X-mode
signals which correspond to the sparse vectors r1 and r2. The
well-separated clean results in Fig. 4(b) show three respective
peaks for each mode illustrating that the inter- and intra-
mode Doppler frequency difference and the average Doppler
frequencies are adequately separated, thereby enabling target
parameter estimation.

V. CONCLUSION

In this paper, we have investigated mixed O/X-mode OTHR
signals when the virtual ionospheric heights for both modes
exhibit a small height difference. When the Doppler frequency
components of the two modes are interlaced or closely sep-
arated, it is challenging to separate their respective Doppler
frequency profiles. We proposed a sparsity-based frequency
estimation approach to resolve the six Doppler components
with high resolution. Moreover, we further developed a group
sparsity-based methods to separate the respective Doppler
signatures of the O- and X-mode signals, thereby enabling
the estimation of target motion parameters.
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