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ABSTRACT
Sensor array-based joint radar-communication (JRC) sys-
tems exploit adaptive beamforming to transmit radar and
communication signals in their respective directions. Op-
timal sensor selection is anticipated as an attractive means
to achieve superior performance with a low hardware cost
because of the ever-decreasing cost of the sensor deployment
compared to the radio frequency (RF) chains and processors.
In this paper, we address optimal sensor selection for adaptive
beamforming-based JRC systems by exploiting a constrained
re-weighted `1-norm minimization with low computational
complexity. We argue that, compared to the individual ap-
proaches, the grouped counterpart eases the hardware imple-
mentation by mollifying the unnecessary sensor switching
and enables effective utilization of up-conversion chains.
Simulation results clearly demonstrate the superior perfor-
mance of the proposed strategies.

Index Terms— Adaptive beamforming, joint radar-
communication, sensor selection, constrained optimization,
spectrum sharing.

1. INTRODUCTION
Spectrum sharing is enjoying a momentous research attention
due to the rapidly increasing demand of spectrum resources
[1–4]. In this context, great research efforts have been made
to enable the co-existence of multiple platforms within the
same spectral bands [5–22]. In order to successfully deploy
the co-existing radar and communication systems, it is im-
portant that both systems cooperate with each other and col-
laboratively achieve their objectives. This challenge can be
significantly simplified if both systems are controlled by a
joint control entity. Joint radar-communication (JRC) system
is such an example where the radar and communication sys-
tem objectives are achieved by the same physical platform
[4, 6, 8, 9, 12–18].

There are several popular operating configurations of JRC
systems. Single transmitter-based JRC systems exploit dual-
purpose radar waveforms such that the communication infor-
mation can be transmitted by waveform selection [1, 2, 17].
Phased array-based JRC systems exhibit an additional feature
of spatial multiplexing by utilizing sensor array beamforming
to steer dual-purpose waveforms in different directions [4, 6–
9, 13–16]. The communication function can be realized either
by spatially changing the gain and/or phase of the transmitted
waveforms or by employing waveform diversity [4, 9, 12–16].

On the other hand, distributed JRC systems consist of dual-
purpose distributed multiple-input multiple-output (MIMO)
transducers, which exploit waveform and spatial diversity to
carry out both radar and communication operations simulta-
neously [19].

The focus of this paper is on JRC systems which exploit
adaptive beamforming to perform both radar and communica-
tion tasks. An example of such a system is shown in Fig. 1. In
order to improve the system performance with a low complex-
ity, there is a trend to use a high number of sensors, whereas
keeping a very low number of hardware up-conversion chains
and processors. Great research efforts have been invested in
the direction of antenna selection and combining for various
communications and radar applications [19, 23–28]. For JRC
systems, these efforts focus on the optimal sensor selection in
distributed [19] as well as colocated sensor array-based sys-
tems [26, 28].

In this paper, we present a novel sensor selection strategy
for sensor array-based JRC system. The objective is to select
the minimum number of sensors while ensuring the desired
radar and communications operation requirements. We for-
mulate a convex optimization problem which addresses this
objective in two different ways. In the first approach, we op-
timize the array geometry for each beamformer to satisfy a
certain set of joint radar and communication objectives. To
avoid frequent sensor switching in slow time required by this
approach, our second approach optimizes the array geome-
try by jointly considering all beamformers and subsequently
mollifies the complexity of hardware implementation.

Notations: Lower-case (upper-case) bold characters are
used to denote vectors (matrices). (·)∗, (·)T and (·)H rep-
resent the conjugate, transpose and the Hermitian transpose
operators, respectively. | · |, ‖·‖0, ‖·‖1, and ‖·‖2 respec-
tively denote the absolute value, `0-, `1- and `2-norms. More-
over, 1M×1 denotes the M -length column vector of all ones
whereas � represents the element-wise product operation.

2. SIGNAL MODEL OF JRC SYSTEM
Consider a JRC system consisting of an M -element transmit
linear array. The JRC system exploits different beamforming
weight vectors over time to transmit communication informa-
tion towards the communication receivers such that all beam-
forming vectors offer similar radar mainlobe profile. The vec-
tor a(θ) = [ej2πd1 sin(θ)/λ, . . . , ej2πdM sin(θ)/λ]T represents
the array manifold where dm is the location of themth sensor
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Fig. 1. Joint radar-communication system.

(1 ≤ m ≤ M ) and λ is the signal wavelength. The radar
surveillance region, sidelobe region, and the transition region
are respectively denoted by Θrad, Θsl, and Θtrans. We con-
sider C communication users located within the sidelobe re-
gion of the radar, and the angular direction of the cth user
(1 ≤ c ≤ C) is θc, where θc ∈ Θcom ⊂ Θsl. The JRC system
exploits N beamforming weight vectors where the vector un
(1 ≤ n ≤ N ) satisfying the radar and communication objec-
tives can be obtained from the following optimization [16]:

min
un

max
θr

∣∣∣Grade
jϕ(θr) − uH

na(θr)
∣∣∣ , θr ∈ Θrad,

subject to
∣∣uH
na(θε)

∣∣ ≤ εsl, θε ∈ Θsl,

uH
na(θc) = ejφn,c∆n,c, 1 ≤ c ≤ C,

(1)

where Grad is the desired array gain in the mainlobe region,
ϕ(·) denotes the desired phase profile, and εsl is the maximum
allowable sidelobe amplitude level. The distinct gain and
phase associated with the direction of communication user c,
respectively denoted as ∆n,c and ejφn,c , represent the trans-
mitted communication information towards that user. Note
that this scheme enables multiple access by using distinct am-
plitudes and phases, as embedded in a QAM symbol, towards
different communication receivers [16]. Note that, in order
to use L amplitudes and Q phases towards each communica-
tion receiver, the JRC system requires N = (LQ)C unique
beamforming weight vectors.

The JRC system exploits K dual-purpose waveforms
which are utilized for both radar and communication opera-
tions. These waveforms ψ1(t), ψ2(t), . . . , ψK(t) satisfy the
following orthogonality property:

1

T

∫ T

0

ψk1 (t)ψ∗
k2 (τ)dt = δ (k1 − k2) δ (t− τ) , (2)

where 1 ≤ k1, k2 ≤ K are positive integers, t is the fast
time, T denotes the time duration of each radar pulse, ψk2(τ)
represents the time-delayed version of ψk2(t) delayed by time
τ − t (< T ), and δ(·) is the Kronecker delta function.

For the nth beamforming vector, the transmit signal from
the JRC sensor array takes the following form:

x(t) = unψk(t), (3)

where the beamforming vector un satisfies the radar mainlobe
gain objective and projects the QAM symbols with amplitude
∆n,c and phase ejφn,c towards the cth communication user
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Fig. 2. Sensor selection for JRC system (‘x’ denotes unse-
lected sensor positions).

exploiting waveform ψk(t). The JRC system can vary the
transmitted communication information by exploiting differ-
ent beamforming weight vectors and the corresponding wave-
forms over the course of slow time [16].

3. SENSOR SELECTION STRATEGIES

We propose two sensor selection strategies for transmit beam-
forming-based JRC system. In both cases, the JRC system
optimizes the beamforming weight vectors such that the num-
ber of selected sensors and the transmit power is minimized.
Since these two objectives may be conflicting, more empha-
sis is given to the sensor selection objective. The main idea
of JRC system with sensor selection is illustrated in Fig. 2.

In the first scheme, the sensors are separately selected
for each individual beamforming weight vector. Although
this scheme works well in theory, it renders frequent sensor
switching when different beamforming weight vectors are as-
sociated with different sensor selection patterns, resulting in
unnecessary implementation complexity for such a system. In
addition, this generally requires more sensors, as the union of
the selected sensor patterns for all beamformers, to be acti-
vated. In the second scheme, we present a joint sensor selec-
tion strategy while extracting multiple beamforming weight
vectors concurrently. As such, the latter approach avoids sen-
sor switching, leading to a simpler and more practical hard-
ware implementation. Since all beamformers exploit the same
set of selected sensors in this strategy, it results in effective
sensor utilization compared to the first strategy. The details
of these two approaches are respectively discussed in the fol-
lowing two subsections.

3.1. Sensor Selection for Individual Beamformers
We minimize the total number of active sensors as well as the
total transmit power of the JRC system through the following
multi-objective optimization:

min
un

‖un‖22 + η ‖un‖0

s.t. |Grade
jϕ(θr) − uH

na(θr)| ≤ γtol, θr ∈ Θrad,

|uH
na(θε)| ≤ εsl, θsl ∈ Θsl,

uH
na(θc) = ∆n,ce

jφn,c , c = 1, · · · , C.
(4)



Here, η is the tuning parameter which trades off between the
two objectives, and γtol is the maximum bearable tolerance
for the radar mainlobe. The `0-norm-based non-convex ob-
jective tries to minimize the number of selected sensors and
`2-norm-based objective tends to minimize the total transmit
power. The `0-norm in (4) can be relaxed by exploiting the `1-
norm, albeit a weaker and indirect measure of sparsity [29],
resulting in the following optimization:

min
un

‖un‖22 + η ‖un‖1

s.t. |Grade
jϕ(θr) − uH

na(θr)| ≤ γtol, θr ∈ Θrad,

|uH
na(θε)| ≤ εsl, θsl ∈ Θsl,

uH
na(θc) = ∆n,ce

jφn,c , c = 1, · · · , C.
(5)

While Eq. (5) enforces sparsity in the beamforming weight
vector un by exploiting the `1-norm, the sensors with a higher
beamforming gain are penalized more compared to those with
a lower beamforming gain, thus yielding a suboptimal spar-
sity solution. This issue can be mitigated by introducing a re-
weighting function in the `1-norm-based objective function
(5) to enforce the sparsity in a democratic way as follows:

min
un

‖un‖22 + η
∥∥∥w(i)

n � un

∥∥∥
1

s.t. |Grade
jϕ(θr) − uH

na(θr)| ≤ γtol, θr ∈ Θrad,

|uH
na(θε)| ≤ εsl, θsl ∈ Θsl,

uH
na(θc) = ∆n,ce

jφn,c , c = 1, · · · , C,
(6)

where superscript (i) denotes the ith iteration. The mth ele-
ment of the weighting function wn is expressed as [29]:

wn,m =


1

|un,m|
, if |un,m| > 0,

1/ζ, if |un,m| = 0,
(7)

where un,m is the mth element of un, and ζ should be set
slightly smaller than the expected nonzero magnitudes of un.
The optimization (6) is executed in an iterative manner such
that the coefficients w(i+1)

n are updated using the beamform-
ing weights un after the ith iteration. For the first iteration,
w

(1)
n = 1M×1. The solution of such iterative `1-norm-

based optimization is closer to the `0-norm-based counterpart
within few (e.g., 2 to 15) iterations [29].

3.2. Group Sparsity-based Joint Sensor Selection for
Multiple Beamformers
As we discussed above, the optimization (6) for different in-
dividual beamforming weight vectors may result in differ-
ent sets of selected sensors. This is highly undesirable be-
cause the required frequent sensor switching introduces un-
necessary complexity in hardware implementation. More-
over, all the beamforming weight vectors collectively use a
higher number of sensors even though each individual beam-
forming weight vector exploits very few sensors.

We propose a joint optimal sensor selection strategy
which minimizes the total number of sensors used by all
the beamformers for the JRC operation. For this purpose,
we exploit the mixed `1,2-norm-based group-sparsity concept
[30]. The mixed `1,2-norm is defined as:

‖u‖1,2 =

M∑
m=1

(
N∑
n=1

|un,m|2
)1/2

. (8)

The proposed multi-objective optimization for sensor selec-
tion exploits group-sparsity to extract all beamforming weight
vectors and takes the following form:

min
un

N∑
n=1

‖un‖22 + η ‖u‖1,2

s.t. |Grade
jϕ(θr) − uH

na(θr)| ≤ γtol, θr ∈ Θrad,

|uH
na(θε)| ≤ εsl, θsl ∈ Θsl,

uH
na(θc) = ∆n,ce

jφn,c , c = 1, · · · , C.
(9)

Note that, contrary to the optimization (6) which is exploited
for each beamforming weight vector separately, the optimiza-
tion (9) jointly solves all N beamforming vectors simulta-
neously. The mixed `1,2-norm enforces the group sparsity,
resulting in the selection of exactly the same sensors for all
the beamforming weight vectors. However, each beamform-
ing weight vector will have unique weights depending on its
radar and communication requirements.

Similar to the weighting function in Eq. (7), the group
sparsity in optimization (9) can also be enhanced democrat-
ically by exploiting a similar weighting function as follows:

vm =



(
N∑
n=1

|un,m|2
)−1/2

, if
N∑
n=1

|un,m|2 > 0,

1/ζ, if
N∑
n=1

|un,m|2 = 0,

(10)

where vm denotes the weight for the mth sensor. The result-
ing group sparsity-based optimization jointly produces all N
beamforming weight vectors as:

min
un

N∑
n=1

‖un‖22 + η
∥∥∥v(i) � u

∥∥∥
1,2

s.t. |Grade
jϕ(θr) − uH

na(θr)| ≤ γtol, θr ∈ Θrad,

|uH
na(θε)| ≤ εsl, θsl ∈ Θsl,

uH
na(θc) = ∆n,ce

jφn,c , c = 1, · · · , C,
(11)

where v(i) denotes the weighting function obtained in the ith
iteration and

‖v�u‖1,2 =

M∑
m=1

(
N∑
n=1

|vmun,m|2
)1/2

=

M∑
m=1

vm

(
N∑
n=1

|un,m|2
)1/2
.

(12)
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Fig. 3. Sensor selection for the first strategy: (a) Trans-
mit power pattern, (b) Final sensor selection profile for each
beampattern, (c) Overall sensor selection profile containing
sensors selected by all beamforming weight vectors.

Eq. (11) is solved in an iterative fashion until the convergence
is achieved. This multi-objective optimization tends to select
the array sensors that are shared by all beamforming weight
vectors and minimizes the total transmit power.

4. SIMULATION RESULTS

In all simulations, we consider a uniform linear array (ULA)
consisting of M = 30 transmit sensors separated by 0.5λ. In
addition to the radar with a mainbeam of 0 dB gain between
−7o and 7o, the array serves for two (C = 2) communication
users located in the sidelobe region at angles 30o and 60o, re-
spectively. The maximum allowable sidelobe level εsl is set
to −20 dB. For the convenience of illustrating the transmit
beampatterns, we consider BPSK signaling where the JRC
transmit array has an objective to transmit two different am-
plitude levels of −20 dB and −25 dB towards both com-
munication receivers, resulting in four distinct beamforming
weight vectors. The tuning coefficient η is set to unity for all
multi-objective optimization problems.

For the first strategy, we individually synthesized the
four beamforming weight vectors through (6), and the beam-
patterns are illustrated in Fig. 3(a). The final sensor selection
profile for these respective beamformers is shown in Fig.
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Fig. 4. Group sparsity-based joint sensor selection for all
beamforming weight vectors: (a) Transmit power pattern, (b)
Spatial sensor selection profile with respect to iteration count.

3(b). It is observed that these beamforming weight vectors
respectively use 14, 14, 13, and 14 sensors. As a result, over-
all 16 sensors are needed, as depicted in Fig. 3(c). For large
number of beamforming vectors, such difference in the se-
lected sensors corresponding to each beamforming vector will
require a high number of sensors, thus inviting frequent sen-
sor switching, a high hardware complexity, and suboptimal
sensor utilization.

For the second strategy, the group sparsity-based sensor
selection for all the beamforming weight vectors is achieved
through (11). The same parameters are used. Fig. 4(a) shows
that the radar and communication performance remains the
same as compared to the first strategy as shown in Fig. 3(a).
However, Fig. 4(b) shows that only 14 sensors are used by this
approach, which is less than the total number of 16 sensors
used in Fig. 3(c). Moreover, it is noted that the re-weighted
iterative algorithm converges very fast (2 to 10 iterations for
all the simulations).

5. CONCLUSION

We presented two novel sensor selection strategies for the
JRC system based on the extraction of individual and grouped
beamforming weight vectors, respectively. The proposed
strategies rely on multi-objective optimization which aims to
select the lowest number of sensors and minimize the over-
all power consumption. The group sparsity-based strategy
is more useful and effective as it renders less total number
of sensors and avoids frequent sensor switching, thus en-
abling effective utilization of RF chains and easing hardware
implementations.
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