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Abstract—In this paper, we propose a robust adaptive beam-
forming algorithm, where the interference-plus-noise covariance
matrix is estimated by identifying and removing the desired signal
component from the sample covariance matrix. For this purpose,
we construct a desired signal subspace and its orthogonal
subspace to identify the eigenvector of the sample covariance
matrix corresponding to the desired signal. The adaptive beam-
former is then designed using the estimated interference-plus-
noise covariance matrix and the identified signal eigenvector.
Because both are independent of the knowledge of the array
geometry, the proposed adaptive beamformer is robust to array
model mismatch. Simulation results demonstrate the effectiveness
of the proposed robust adaptive beamforming algorithm.

Index Terms—Adaptive beamforming, interference-plus-noise
covariance matrix estimation, robust beamforming, signal iden-
tification.

I. INTRODUCTION

Due to the superior capability of interference suppression,
adaptive beamformers have been widely applied in radar,
sonar, radio astronomy, wireless communications, seismology,
microphone array, and medical imaging [1]. However, it is well
known that, compared with data-independent beamformers
(e.g., delay-and-sum beamformer), adaptive beamformers are
very sensitive to model mismatches, such as look direction
error and imperfect array calibration. The performance degra-
dation is particularly severe when the desired signal is strong.
Hence, achieving robustness of adaptive beamformers has been
an enduring research topic in the past decades [2, 3].

Among various robust adaptive beamforming techniques,
diagonal loading (DL) [4] is the most popular one, and many
different loading factor selection criteria have been developed
[5–9]. However, the performance of such beamformers deteri-
orates as the power of the desired signal increases. In practical
applications, there is always some level of signal self-nulling
as long as the desired signal component is included in the
loaded sample covariance matrix. To address this issue, an
interference covariance matrix reconstruction method was pro-
posed by integrating the Capon spectral estimator over a region
which is separated from the desired signal direction [10]. Such
technique leads to a near-optimal beamformer performance
regardless of the power of the desired signal. More recently,
a sparse reconstruction method was proposed to obtain an
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improved estimation of the interference-plus-noise covariance
matrix with a much lower computational complexity [11–13].
Considering the inaccurate prior information about the array
structure, the interference covariance matrix is reconstructed
by integrating the Capon spectrum over the surface of the
annulus uncertainty set [14]. By sampling the spatial power
spectrum, an efficient beamforming algorithm was proposed
in [15] to reduce the computational complexity of recon-
structing the interference covariance matrix. Unfortunately, all
these beamformers require the knowledge of the interference
steering vectors in the construction of the interference-plus-
noise covariance matrix and, therefore, their performance
degrades when the array is not well calibrated and/or when the
interference spatial signatures deviate from the array manifold
due to, e.g., the multipath propagation.

Another important factor that affects the performance of
adaptive beamformers is the accuracy of the adopted desired
signal steering vector. Beamforming algorithms based on
worst-case performance optimization are popular when the
nominal steering vector of the desired signal is known and the
norm of the steering vector mismatch is bounded [5, 6, 16].
The steering vector of the desired signal can also be estimated
by maximizing the beamformer output under the constraint
that the estimated signal steering vector does not converge to
that of the interference [10, 17, 18]. While these beamformers
yield improved estimation of the steering vector of the desired
signal, their performance still degrades at a high signal power
due to the limited estimation accuracy of the interference-plus-
noise covariance matrix.

In this paper, we propose a novel adaptive beamforming
algorithm which is robust to array model mismatch and
coherent multipath interference. With the a priori knowledge
of an angular sector covering the desired signal only, we
construct a signal subspace and its orthogonal subspace to
identify the eigenvector of the sample covariance matrix cor-
responding to the desired signal. The interference-plus-noise
covariance matrix is then estimated by removing the identified
signal component from the sample covariance matrix. Using
the identified signal eigenvector as the steering vector, the
proposed adaptive beamformer achieves robust beamforming
performance as it depends only on the received array data, and
not on the knowledge of the array geometry. Simulation results
verify the performance advantage of the proposed adaptive
beamforming algorithm.



II. THE SIGNAL MODEL

Assume multiple narrowband signals impinging on an array
of M sensors. The array observation data vector x(k) ∈ CM
at the k-th snapshot can be modeled as

x(k) = xs(k) + xi(k) + xn(k), (1)

where xs(k), xi(k) and xn(k) are statistically independent
components corresponding to the desired signal, interference,
and noise, respectively. The desired signal component can
be written as xs(k) = ass(k), where as ∈ CM is the
steering vector associated with the signal waveform s(k).
Similarly, the interference component can be written as
xi(k) =

∑L
`=1 a`s`(k), where a` ∈ CM is the steering vector

corresponding to the `-th interference waveform s`(k) for
` = 1, · · · , L.

An adaptive beamformer determines the weight vector w =
[w1, · · · , wM ]T ∈ CM such that the beamformer output,

y(k) = wHx(k), (2)

leads to an accurate estimate of the desired signal waveform
s(k), where ( · )T and ( · )H denote the transpose and Hermi-
tian transpose, respectively. As an effective performance eval-
uation metric, the beamformer output signal-to-interference-
plus-noise ratio (SINR) is defined as

SINR =
wHRsw

wHRi+nw
=
σ2
s

∣∣wHas
∣∣2

wHRi+nw
, (3)

where Ri+n = E
{

[xi(k) + xn(k)][xi(k) + xn(k)]H
}

=∑L
`=1 σ

2
`a`aH

` +σ2
nI and Rs = E{xs(k)xH

s (k)} = σ2
sasaH

s are
the interference-plus-noise covariance matrix and the desired
signal covariance matrix, respectively. Here, E{ · } denotes the
statistical expectation operator, I is the identity matrix, and
σ2
s = E

{
s(k)sH(k)

}
, σ2

` = E
{
s`(k)sH

` (k)
}

and σ2
n are the

power of the desired signal, the `-th interference and noise,
respectively.

The weight vector maximizing the output SINR (3) leads
to the minimum variance distortionless response (MVDR)
beamformer

wMVDR =
R−1
i+nas

aH
s R−1

i+nas
, (4)

which, also known as the Capon beamformer, requires the
exact interference-plus-noise covariance matrix Ri+n and the
actual signal steering vector as.

In practice, Ri+n is not readily available, and it is usually
replaced by the sample covariance matrix

R̂ =
1

K

K∑
k=1

x(k)xH(k), (5)

where K is the number of snapshots. The corresponding
adaptive beamformer,

wSMI =
R̂
−1

a(θs)

aH(θs)R̂
−1

a(θs)
, (6)

is referred to as the sample matrix inversion (SMI) beam-
former, where a(θs) is the signal steering vector with the
assumed DOA θs.

By using the matrix inversion lemma, it can be shown
[1] that the SMI beamformer is equivalent to the MVDR
beamformer when the following two conditions are satisfied:
1) no mismatch between the presumed steering vector a(θs)
and the actual one as of the desired signal, and 2) infinite
number of snapshots such that R̂ equals to the theoretical data
covariance matrix R = E

{
x(k)xH(k)

}
. Otherwise, the SMI

beamformer performs worse than the optimal MVDR beam-
former, especially when the training data are contaminated by
the strong desired signal.

In practice, it is considered possible to distinguish the
signal-plus-interference subspace from the noise subspace by
eigen-decomposing the sample covariance matrix, where the
information theoretic criteria [19] (e.g., minimum description
length (MDL) criterion, Akaike information criterion (AIC)
and Bayesian information criterion (BIC)) can be adopted.
Correspondingly, the eigenspace-based beamformer is robust
against arbitrary steering vector mismatch [20]. However,
it is not straightforward to further separate the interference
subspace from the signal subspace, making it challenging
to perform robust beamforming, especially when the desired
signal is stronger than the interference.

III. THE PROPOSED ALGORITHM

In this section, we describe the proposed robust adaptive
beamforming algorithm. In this approach, with the a priori
information that the impinging angle of the desired signal is
limited within a known angular sector, the interference-plus-
noise covariance matrix is estimated by removing the identified
signal component from the sample covariance matrix, whereas
the identified signal eigenvector is used as the signal steering
vector.

The eigen-decomposition of the theoretical data covariance
matrix R = Rs + Ri+n yields

R = VΛVH =

M∑
m=1

λmvmvH
m, (7)

where the unitary matrix V = [v1, v2, · · · , vM ] con-
tains the eigenvectors, and the diagonal matrix Λ =
diag

[
λ1, λ2, · · · , λM

]
contains the corresponding eigenvalues.

The eigen-decomposition (7) has the similar form as the
expanded form of the covariance matrix R = σ2

sasaH
s +∑L

`=1 σ
2
`a`aH

` +σ2
nI. Hence, the interference-plus-noise covari-

ance matrix Ri+n can be estimated by removing the desired
signal component from the sample covariance matrix as

R̂i+n = R̂− λ̂sv̂sv̂H
s , (8)

where λ̂s and v̂s are, respectively, the eigenvalue and eigen-
vector of the sample covariance matrix R̂ corresponding to the
desired signal waveform s(k) impinging from a specific angu-
lar sector. Hence, the rest work is to identify the eigenvector
corresponding to the desired signal.



In order to identify the desired signal eigenvector, we
reconstruct a signal covariance matrix as

R̃s =

∫
Θ

p̂(θ)d(θ)dH(θ)dθ, (9)

where p̂(θ) = 1/[dH(θ)R̂
−1

d(θ)] is the Capon spatial spec-
trum estimator, and the angular sector Θ covers the desired
signal direction θs only (i.e., θs ∈ Θ, while the DOAs of
the interferers satisfy θ` /∈ Θ). Here, d(θ) is the steering
vector associated with a hypothetical direction θ based on
the assumed array geometry. In so doing, R̃s collects the
information of the desired signal and noise in the angular
sector Θ and, hence, the effect of the interference is excluded.

The signal subspace of the reconstructed signal covariance
matrix R̃s is spanned by the columns of the column orthogonal
matrix Us = P{R̃s}, where P{·} stands for the principal
eigenvectors of a matrix. The number of columns of Us equals
to the number of dominant eigenvalues of R̃s. As such, the
actual steering vector of the desired signal belongs to the signal
subspace of R̃s spanned by Us.

Considering that the signal steering vector belongs to the
signal subspace Ps = UsUH

s and is orthogonal to the projec-
tion subspace P⊥s = I−UsUH

s , the eigenvector associated with
the desired signal can be identified according to

v̂s = arg max
v̂∈V̂

‖Psv̂‖∥∥P⊥s v̂
∥∥ = arg max

v̂∈V̂

∥∥UsUH
s v̂
∥∥∥∥(I− UsUH
s )v̂
∥∥ , (10)

where V̂ = [v̂1, v̂2, · · · , v̂M ] is the matrix that contains all
eigenvectors of the sample covariance matrix R̂. Substituting
the identified signal eigenvector v̂s and the corresponding
eigenvalue λ̂s into (8) yields an estimate of the interference-
plus-noise covariance matrix. In such a way, the desired signal
component is effectively removed from the sample covariance
matrix. In order to avoid the rank deficiency, we add an identity
matrix scaled by λmin, the minimum eigenvalue of R̂, to the
estimated interference-plus-noise covariance matrix R̂i+n.

Substituting the estimated interference-plus-noise covari-
ance matrix R̃i+n = R̂i+n+λminI into the MVDR beamformer
(4), we have the proposed adaptive beamformer

w =
R̃
−1

i+nv̂s
v̂H
s R̃
−1

i+nv̂s
, (11)

where the signal steering vector as is replaced by the identified
signal eigenvector v̂s. Hence, the resulting adaptive beam-
former depends only on the signal eigenvector via the array
observation data and does not rely on the signal steering vector
via the inaccurate knowledge of the array geometry.

Nevertheless, there is one exception that the signal eigen-
vector cannot be effectively identified when the signal power
is close to the interference power or the noise power. In
such a case, we prefer to directly use the sample covariance
matrix to design the adaptive beamformer, such as the worst-
case beamformer, to avoid the identification ambiguity. The

Algorithm 1 : Proposed Adaptive Beamforming Algorithm
1: Input: Array received data vector {x(k)}Kk=1 and signal

angular sector Θ;
2: Initialize: Compute the sample covariance matrix R̂ =

1
K

∑K
k=1 x(k)xH(k);

3: Estimate signal covariance matrix R̃s using (9);
4: Estimate signal subspace Ps = UsUH

s and orthogonal
subspace P⊥s = I− UsUH

s where Us = P{R̃};
5: Perform eigen-decomposition R̂ =

∑M
m=1 λ̂mv̂mv̂H

m;
6: Identify signal eigenvector v̂s from (10) and the corre-

sponding eigenvalue λ̂s;
7: if ∃λ̂m 6=λ̂s

λ̂m ∈
[

1
δ λ̂s, δλ̂s

]
, then

8: Design worst-case beamformer using (12);
9: else

10: Estimate the interference-plus-noise covariance matrix
as R̂i+n = R̂− λ̂sv̂sv̂H

s + λ̂minI;
11: Design proposed beamformer using (11);
12: end if
13: Output: Proposed beamforming weight vector w

weight vector of the worse-case beamformer is solved from
the following constrained optimization problem [16],

min
w

wHR̂w (12)

subject to wHa ≤ ε |w|+ 1, ={wHa} = 0,

where ={·} denotes the imaginary part, and ε denotes the
upper bound of the norm of the steering vector mismatch.

The selection between the proposed beamformer based on
the robust interference-plus-noise covariance matrix estimation
and the worse-case beamformer is determined by whether
the identified signal eigenvalue clearly differs from the other
eigenvalues. Specifically, the former is chosen when no other
eigenvalue falls into the range between (1/δ)λ̂s and δλ̂s,
where δ > 1 is a constant. δ = 1.25 is used in this paper.
The proposed adaptive beamforming algorithm is summarized
in Algorithm 1.

Considering that the signal angular sector Θ is typically
much smaller than its complement sector Θ̄, the computational
complexity for the reconstruction of the signal covariance ma-
trix (9) is in the same order as that for the eigen-decomposition
and matrix inversion. Meanwhile, the computational com-
plexity of the worst-case beamforming algorithm is in the
same order as that of the SMI beamforming algorithm [16].
Hence, the overall computational complexity of the proposed
beamforming algorithm is a little higher than that of the SMI
beamforming algorithm, but with the same order of O(M3).

IV. SIMULATION RESULTS

We consider a uniform linear array (ULA) with M =
10 omnidirectional sensors and half-wavelength inter-element
spacing. The DOA of the desired signal is assumed to be
θs = 5◦, while those of the two interferers are −50◦ and
−20◦, respectively.
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Fig. 1. Comparison of the output SINR in the presence of array mismatch. (a) Output SINR versus input SNR; (b) Output SINR versus the number of
snapshots; (c) Output SINR versus input INR.

The proposed beamformer is compared to the SMI beam-
former (6), the DL-SMI beamformer [4], the eigenspace-
based beamformer [20], the worst-case beamformer [16],
the shrinkage-based beamformer [7], the iterative adaptive
approach (IAA) beamformer [21], and the reconstruction-
based beamformer [10]. In the DL-SMI beamformer, the
loading factor is taken to be ten times the noise power. In
the eigenspace-based beamformer, the number of sources is
assumed to be known. In the worst-case beamformer, the upper
bound of the norm of the steering vector mismatch is set to
ε = 0.3M . In the reconstruction-based beamformer and the
proposed beamformer, the desired signal is assumed to be
from an angular sector Θ = [θs − 5◦, θs + 5◦] = [0◦, 10◦].
The optimal output SINR is also plotted for reference. The
CVX toolbox [22] is used to solve all convex optimization
problems. In the comparison of the output SINR performance
of different beamforming algorithms, 1,000 Monte-Carlo trials
are performed for each data point (i.e., an input signal-to-noise
ratio (SNR) value or each snapshot).

In the first example, model mismatches due to random sen-
sor position errors and look direction mismatch are considered.
More specifically, each sensor is assumed to be randomly
displaced from its original location and the displacement is
drawn uniformly from [−0.05, 0.05] wavelength. The look
direction mismatch is assumed to be uniformly distributed in
[−4◦, 4◦] for the desired signal and the two interferers. The
actual sensor positions and DOAs of the sources vary from
run to run but remain fixed from snapshot to snapshot. The
input interference-to-noise ratio (INR) is assumed to be the
same 40 dB for both interferers (except in Fig. 1(c) where the
input INR varies).

In Fig. 1(a), we compare the output SINR of the tested
beamformers versus the input SNR, where the number of
snapshots is set to K = 100. It is observed that, because of
random sensor position errors, there is a constant performance
loss for the reconstruction-based beamformer regardless of the
input SNR. At a higher SNR, the IAA beamformer has an
extra performance loss because of the look direction mismatch.
The eigenspace-based beamformer has severe performance
degradation when the power of the desired signal is higher
than that of the interference. On the other hand, the pro-
posed beamformer performs better than the others, especially

when there is no identification ambiguity, e.g., input SNR
∈ [0, 30] dB. As we mentioned before, there is a high swap
probability between the signal subspace and the noise (or
interference) subspace when the power of the desired signal
is comparable to that of the noise or the interference. In
Fig. 1(b), we compare the output SINR versus the number
of snapshots at input SNR of 15 dB. It is evident that the
proposed beamformer and the eigenspace-based beamformer
benefit more from the increased number of snapshots, because
the eigen-decomposition becomes more accurate when it is
computed using more snapshots. In Fig. 1(c), we compare the
output SINR versus the input INR by fixing the SNR at 15 dB.
It is clear that the proposed beamformer guarantees an output
SINR of about 15 dB regardless of the interference power.
However, both the IAA beamformer and the reconstruction-
based beamformer degrade as the interference power increases
because of the array mismatch.

In the second example, we consider the effect of coherent
multipath interference. The array is assumed to be perfectly
calibrated, and the same random look direction mismatch as in
the first example is assumed. Here, each interferer arrives with
a direct path and four coherent multipaths. In this case, the
spatial signature of the `-th interference is expressed as a` =
ā`+

∑4
p=1 e

jψ`,pd(θ`,p), where ā` and d(θ`,p) are the steering
vectors of the direct path and the `-th multipath, respectively,
and ψ`,p is uniformly distributed within [0, 2π). The DOA of
the direct path of the first interference is −50◦, and those for
the multipaths are [−45◦,−40◦,−35◦,−32◦]. For the second
interferer, the DOAs of the direct path and multipaths are −20◦

and [−15◦,−10◦,−5◦,−2◦], respectively.
In Fig. 2, we compare the output SINR of the tested

beamformers versus the input SNR and versus the input INR,
where the input INR is fixed to 30 dB and the input SNR is
fixed to 20 dB respectively in Fig. 2(a) and Fig. 2(b). It is
clear that, even without array mismatch, coherent multipath
interference distorts the reconstruction of the interference-
plus-noise covariance matrix in [10], thereby degrading the
beamformer performance when the input interference power is
high. From this point of view, beamformers that depend only
on the array received data, including the proposed beamformer,
are more robust than structure-dependent beamformers in the
scenario of coherent multipath interference.
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Fig. 2. Comparison of the output SINR in the presence of coherent multipath interference. (a) Output SINR versus input SNR; (b) Output SINR versus input
INR.

V. CONCLUSION

In this paper, we proposed a novel adaptive beamforming
algorithm by desired signal identification, that is, the desired
signal is identified by comparing the projection ratios of
the eigenvectors of the sample covariance matrix onto the
constructed signal subspace and its orthogonal subspace. The
interference-plus-noise covariance matrix is then estimated
by removing the identified signal component from the sam-
ple covariance matrix. The proposed adaptive beamformer
is designed based on the estimated interference-plus-noise
covariance matrix and the identified signal eigenvector, both
of which rely on the knowledge of the array observation
data rather than the array geometry. Simulation results clearly
demonstrated the superiority of the proposed beamformer over
existing beamformers when the array is not perfectly calibrated
and/or there is coherent multipath interference.
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