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Abstract—In this paper, we consider a challenging problem
of accurate instantaneous frequency (IF) estimation of multi-
component non-linear frequency modulated (FM) signals, which
may have distinct amplitude levels, in the presence of burst
missing data samples. We propose a technique, in which the
signal components are sequentially estimated from the strongest
component to the weaker ones. First, the time-frequency (TF)
representation of the received signal is obtained after applying
a signal-adaptive TF kernel. Then, the IF of the strongest signal
component is estimated to reconstruct its waveform, and its
contribution is removed from the signal through orthogonal
projection. The procedure is successively implemented for weaker
signal components until the residual becomes negligible. The
refined estimation of the signal components is independent of
the missing data positions. The proposed technique successfully
resolves signal components with distinct amplitude levels and
achieves concentrated TF representations by mitigating the
undesired effects of cross-terms and artifacts due to the burst
missing data samples. Simulation results confirm the effectiveness
of the proposed approach.

Index Terms—Burst missing samples, FM signals, sequential
estimation, time-frequency representation, compressive sensing.

I. INTRODUCTION

Non-stationary frequency modulated (FM) signals are com-
monly observed in the fields of radar, sonar, radio astronomy,
biomedical applications, wireless communications, and au-
dio/video processing [1]. Time-frequency (TF) analyses have
been widely used as a powerful means to accurately represent,
analyze, and process such FM signals [2], [3]. In practice,
noise removal, line-of-sight obstruction, and multipath fading
may cause missing data in the received signals. The scenarios
of burst missing samples exist as a result of impulsive noise,
outlier removal, interference suppression, and obstruction or
fading that lasts for multiple sampling intervals. Burst missing
samples cause sinc-like artifact patterns around the true instan-
taneous frequencies (IFs) in the TF domain, thus obstructing
the detection of true TF signatures of the sources or targets
[4]. On the other hand, in radar target detection and tracking,
target returns are often modeled as multi-component non-
linear FM signals, and their magnitude may significantly differ
due to, e.g., different target ranges. Weaker signals are more
vulnerable to artifacts and noise and thus are more difficult to
be detected.
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The Wigner-Ville distribution (WVD) is often regarded as
the prototype bi-linear TF representation (TFR) and is known
to provide the best resolution for mono-component linear
FM signals [3]. However, it generates excessive cross-terms
in the case of multi-component or non-linear FM signals.
TFR reconstruction in the presence of missing samples has
been considered in several studies by exploiting TF kernels
and compressive sensing-based techniques [4]–[11]. Gener-
ally, data-dependent TF kernels, such as the adaptive optimal
kernel (AOK) [12] and the adaptive directional TF distribu-
tion (ADTFD) [13], are found more effective in cross-term
suppression and artifact mitigation. The recently developed
missing data iterative sparse reconstruction (MI-SR) approach
[4] provides reliable TFR recovery by combining the cross-
term suppression capabilities of the signal-adaptive TF kernels
and the missing data recovery obtained by iteratively utilizing
the orthogonal matching pursuit (OMP) [14].

However, in the case of multi-component non-linear FM
signals with distinct amplitude levels and in the presence of
burst missing data samples, the aforementioned approaches
may fail to estimate the IF signatures for the weak signals.
Recently, the adaptive local filtering-based directional time-
frequency distribution (ALF-DTFD) [15] was introduced to
provide high-resolution IF estimation for both strong and weak
signals by adapting the threshold, based on the local maximum
values of the signal captured within a window of a specified
length at each time instant. However, the success of the
ALF-DTFD heavily depends on the quality of the underlying
TFR, which is the major drawback of this approach. On the
other hand, the generalized stepwise demodulation transform
technique [16], developed based on the synchro-squeezing
transform, sequentially estimates each signal component using
the demodulation operation. However, it requires an accurate
estimation of the phase law of each signal component as a
demodulating operator, which is often difficult to obtain in
the case of multi-component non-linear FM signals.

Various techniques based on signal subtraction, subspace
projection, and signal stationarization have been proposed for
non-stationary FM interference suppression in communication
signals [17]–[20]. Because methods based on direct signal sub-
traction are sensitive to the accuracy of the estimated phases,
subspace projection-based techniques are often used, provided
that the signal IF is accurately estimated. In the presence of
missing samples, a similar approach that stationarizes (de-
modulate) the strong FM signal into a direct current (DC)



component based on the estimated IF. This procedure was
introduced in [20] to successfully remove a single FM jammer
in anti-jamming GPS receiver.

In this paper, we extend this method to consider the chal-
lenging problem of accurate IF estimation of multi-component
non-linear FM signals with distinct signal strengths and in the
presence of burst missing data samples. Compared with the
work presented in [20] which mainly focused on the excision
of a single strong FM signal, the problem considered in this
study is more challenging because we consider multiple FM
signal components, and some of them are weak. Note that
directly applying the sparse reconstruction methods, such as
the orthogonal matching pursuit (OMP), would fail in the
underlying scenario to provide accurate IF estimation for the
weak signal components [15].

To solve this issue, we propose a sequential estimation-
based approach, referred to as Sequential Missing data
Estimation-based Time-Frequency Representation (SME-
TFR). First, we obtain the TFR of the received signal with
burst missing samples. While a number of methods can be used
to obtain the required TFR, we consider signal-adaptive TF
kernel-based approaches, and the AOK is used as an example
to demonstrate its capability of effectively mitigating cross-
terms and artifacts. The obtained IF of the strongest signal
component is estimated using a peak detection technique. We
then construct the time-domain signal waveform using the es-
timated IFs, which is used to remove the strongest component
from the received signal through orthogonal projection. The
weaker signals are successively detected and suppressed. As
the refined estimation of the weaker components is indepen-
dent of the missing data positions, the effects of the artifacts
due to the burst missing samples are suppressed in the resulting
TFRs, and energy concentration of the TFRs is preserved.

Notations. A lower (upper) case bold letter denotes a vector
(matrix). (·)T, and (·)H, respectively, represent transpose and
Hermitian. Fx(·) defines the discrete Fourier transform (DFT)
with respect to x. Notation ∗

t
indicates convolution with respect

to t.

II. SIGNAL MODEL AND REDUCED-INTERFERENCE
DISTRIBUTIONS

A. Signal Model

Consider a discrete-time multi-component analytic FM sig-
nal, expressed as

s[t] =

K∑
k=1

sk[t], t = 1, ..., T, (1)

where

sk[t] = ak exp(jφk[t]), t = 1, ..., T, (2)

is the kth signal component, k = 1, ...,K. In the above
expression, ak and φk[t] are, respectively, the amplitude and
time-varying phase of the kth signal component. We label
the signal components according to their amplitude levels,
from the highest to the lowest, i.e., a1 ≥ a2 ≥ ... ≥ aK .
Assume that there are B mutually non-overlapping missing
data bursts, and denote Nb as the number of missing samples

in the bth burst, b = 1, ..., B. The positions of the missing
data bursts are assumed to be randomly distributed over
time. The total number of the burst missing data samples is
N =

∑B
b=1Nb, 0 ≤ N < T .

Let S ⊂ {1, ..., T} be the set of observed time instants with
a cardinality of |S| = T − N . As such, the observed signal,
r[t], can be expressed as the product of s[t] and an observation
mask, R[t], i.e.,

r[t] = s[t] ·R[t], (3)

where

R[t] =

{
1, if t ∈ S,
0, if t /∈ S.

(4)

B. Reduced-Interference Distributions

The utilization of TF kernels renders effective reduced-
interference TF distributions to effectively suppress undesired
effects of cross-terms and artifacts due to the missing samples.
The kernel operation in the IAF domain can be represented as
a mixed multiplication/convolution operation. Denote Css[t, τ ]
as the IAF of s[t], which is defined in the time-lag (t-τ ) domain
as

Css[t, τ ] = s [t+ τ ] s∗ [t− τ ] . (5)

Then, a general form of the reduced-interference TF distribu-
tion, DRID[t, f ], is given by

DRID[t, f ] = Fτ
[
Φ[t, τ ] ∗

t
Css[t, τ ]

]
,

= Fτ
[∑

u

Φ[t− u, τ ]Css[u, τ ]
]
,

=
∑
τ

∑
u

Φ[t− u, τ ]Css[u, τ ]e−4πfτ ,

(6)

where Φ[t, τ ] is the TF kernel function. Note that, in (6), 4π
is used instead of 2π, because the lag in (5) is 2τ .

III. PROPOSED SEQUENTIAL ESTIMATION TECHNIQUE

Multi-component non-linear FM signals exhibit severe
cross-terms between components. Additionally, burst missing
samples introduce sinc-like artifact patterns in the TFR of
these signals, which are concentrated around the true IFs of
the signal components. Such cross-terms and the artifacts,
particularly those due to the strong signal components, make
the identification of signal IFs, notably those of the weaker
signal components, challenging. In this section, we describe
the proposed Sequential Missing data Estimation-based Time-
Frequency Representation (SME-TFR) approach, with the aim
to provide an accurate IF and magnitude estimation of all
signal components, while mitigating the undesired effects of
cross-terms and artifacts from the underlying TFRs.

Without loss of generality, we refer to the strongest signal
component as the first component, and the weakest signal
component is referred to as the last component. The signal
components are iteratively reconstructed in the order, from the
first component to the last component, as follows:

(i) The iteration counter, i, is initialized as 1. Denote the re-
ceived multi-component FM signal as the initial residual
signal, r(0) = r = [r1, ..., rT ]T.



(ii) Compute the reduced-interference TFR, D̄
(i−1)
RID [t, f ]

from r(i−1) using (5) and (6). The AOK is used as
the kernel in this paper. From D̄

(i−1)
RID [t, f ], we obtain

the estimated IF vector of the ith signal component,
f̂i = [f̂i1, ..., f̂iT ]T, through peak detection in the TFR.
That is, at each time instant t, the frequency that corre-
sponds to the maximum valued peak along the frequency
axis is identified as the IF estimate f̂it of the ith signal
component at that time. The collection of all (t, f̂it) pairs
forms the sparse TFR basis S̄(i)

RID[t, f ] of the ith signal
component.

(iii) Using estimated IFs, the phase information at each time
instant is obtained as φi(t) = 2π

∑
t f̂it. Based on this

result, we estimate the signal basis as ŝi = [ŝi1, ..., ŝiT ]T

with ŝit = exp(jφi[t]). The complex amplitude of the ith
component is estimated through the following projection:

α̂i =
1

T −N
ŝHi r

(i−1),

=
1

T −N
∑
t∈S

ai[t] +

K∑
q=i+1

aq[t]e
j(φq [t]−φi[t])

 ,

≈ 1

T −N
∑
t∈S

ai[t],

(7)

which yields the average of ai[t]. As such, the estimated
ith component becomes r̂i = α̂iŝi = [r̂i1, ..., r̂iT ]T.

(iv) The signal component r̂i is subtracted from r(i−1) to
obtain the residual signal

r(i) = r(i−1) − r̂i = r(i−1) − α̂iŝi. (8)

(v) The iteration counter is increased by 1 and the steps (ii)–
(iv) are repeated until the residual becomes negligible.
Thus, all the signal components are successively esti-
mated and compensated for. The final value of i provides
the total number of components K.

(vi) The refined estimated signal is obtained as ŝ =∑K
i=1 r̂i =

∑K
i=1 α̂iŝi, and the corresponding robust

reduced-interference TFR is achieved as S̄RID[t, f ] =∑K
i=1 |α̂i|2S̄

(i)
RID[t, f ]. The final estimated signal, ŝ, and

the corresponding, S̄RID[t, f ], have achieved effective
suppression of the cross-terms and artifacts.

IV. SIMULATION RESULTS

To clearly demonstrate the effectiveness of the proposed
SME-TFR approach, we consider a two-component FM signal
with different amplitudes, given by

y(t) = exp(jφ1(t)) + 0.4 exp(jφ2(t)), t = 1, ..., T, (9)

where T is chosen to be 128 and the instantaneous phase laws
of these two components are respectively expressed as,

φ1(t)=2π(0.05t+ 0.001t2/T + 0.10t3/T 2),

φ2(t)=2π(0.15t+ 0.003t2/T + 0.08t3/T 2).
(10)

In order to clearly understand the effects of the burst missing
samples on the reconstruction performance, we consider the
noise-free case.
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Fig. 1 Signal waveform and WVD: (a) Real part of the original
signal; (b) WVD of the original signal; (c) Real part of the received
signal with burst missing samples; (d) WVD of the received signal.

Figs. 1(a) and 1(b) respectively show the real part of
the original signal waveform without missing samples and
the corresponding WVD. Due to the bilinear nature of the
underlying multi-component FM signal, the WVD exhibits
excessive cross-terms. The real part of the received signal
waveform, which contains a total of 48 (i.e., 37.5%) burst
missing samples, and the corresponding WVD are respectively
depicted in Figs. 1(c) and 1(d). The missing data positions are
marked with red dots. These missing samples are clustered
into B = 12 bursts, with each burst containing 4 missing
samples. The burst missing samples generate convolutive sinc-
function-like artifact patterns in the resulting TFR, as clearly
shown in Fig. 1(d). Note that, unlike the random missing data
case, where the artifacts are uniformly distributed in the entire
TF region [5], the artifacts due to the burst missing samples
are concentrated around true IFs [4]. This fact makes spectral
estimation and analysis much more challenging. The effects
of these artifacts are difficult to be mitigated with a TF kernel
alone.

Fig. 2(a) displays the TFR of the original received signal
with burst missing samples. As seen in the TFR of Fig. 2(a),
the cross-terms, artifacts, and aliasing signatures around the
weaker signal component, make the detection of the weak
signal component challenging. Figs. 2(c) and 2(d) respectively
present the estimated TFRs of the first and the second signal
components, whereas Fig. 2(b) shows the combined TFR
of both signal components. As seen in these Figures, the
undesired effects of cross-terms and artifacts are mitigated, the
energy concentration of the TFRs is improved, and an accurate
estimation of the signal components is achieved. In all the
above TFRs, the AOK is applied for fine TFR estimation, and
the value of the kernel volume is chosen as 2.

Figs. 2(e) and 2(f), respectively, provide the estimated IFs
of the two signals, overlaid with their respective true IFs. The
IFs of both signal components are precisely estimated with an
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Fig. 2 Estimated results: (a) TFR of the original received signal;
(b) TFR of the refined estimated signal; (c) TFR of the estimated
stronger component; (d) TFR of the estimated weaker component;
(g) Estimated IF of the stronger component; (h) Estimated IF of the
weaker component.

average error of 0.0035 and 0.0039, respectively, measured in
terms of the normalized frequency. Note that the information
regarding the amplitude level is also preserved. The average
amplitudes obtained for the two signal components are 1.0000
and 0.4025, respectively, which are very close to the actual
amplitudes of 1.0000 and 0.4000.

Figs. 3(a) and 3(b), respectively, show the estimated real-
part waveform and phase of the first (stronger) signal compo-
nent, overlaid with those of the original signal, and Fig. 3(c)
shows the unwrapped phase estimation error. All the phase
values are shown in radians. As seen in Fig. 3, this signal
component is estimated accurately, except for the deviation at
few places.

Similarly, the comparison of the estimated real-part wave-
form and phase of the second (weaker) signal component, with
respect to their original signal counterparts, are respectively
provided in Figs. 4(a) and 4(b). As seen in these plots, the
weaker signal component is accurately estimated except for
the deviation at a few places. The unwrapped phase estimation
error is displayed in Fig. 4(c). The estimation accuracy of the
weaker signal component is sensitive to the IF estimation and
the frequency quantization errors of the stronger signal compo-
nent. Therefore, in Fig. 4(c), the overall error in the estimated
phase is slightly higher for the weaker signal component than
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Fig. 3 Reconstructed results of the stronger signal component: (a)
Real-part waveform; (b) Phase; (c) Unwrapped phase estimation error.

that of the stronger signal component shown in Fig. 3(c).

V. CONCLUSIONS

In this paper, we present a new technique to accurately
reconstruct non-linear, multi-component FM signals with dis-
tinct amplitude levels, in the presence of burst missing data
samples. While conventional approaches fail to recover weak
signal components in such scenarios due to the undesired
effects of the cross-terms and artifacts, the proposed SME-TFR
approach successfully resolves all signal components with
high IF accuracy through effective mitigation of cross-terms
and artifacts, while maintaining the energy concentration of
desired signal components. The effectiveness of the proposed
method is examined through experimental results.
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