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Abstract—In this paper, we consider the problem of tracking
multiple targets in a passive multi-static radar system using
Doppler-only measurements. The number of targets is assumed
unknown and time-varying. The Doppler measurements are
subject to additive noise, clutter, and missed detections. Doppler-
only measurements from a single sensor provide incomplete infor-
mation about the target state, commonly referred to as single-
sensor unobservability. In a passive multi-static radar system,
the availability of multiple bistatic links naturally lends itself to
the fusion of measurements from spatially distributed sensors.
However, data fusion emerges as a computationally intensive
problem in multi-sensor multi-target tracking algorithms. We
propose a two-step sequential approach to solve the underlying
problem. We first cast the underlying problem as a group sparse
problem in a discretized position-velocity space. A group sparsity
based algorithm is applied to simultaneously exploit the multi-
static Doppler frequency measurements to directly obtain the
instantaneous target state estimates in the Cartesian coordinate
system. These estimates are then fed as inputs to the linear
Gaussian mixture probability hypothesis density (GMPHD) filter,
which removes the false measurements, compensates for missed
detections, and reduces the localization error. The optimal sub-
pattern assignment metric, which jointly comprises a weighted
contribution of cardinality error and localization error, is used
to evaluate the performance of the proposed method. Simulation
results show that the proposed method successfully handles
the multi-target tracking problem and outperforms the existing
random receiver selection based multi-sensor implementation of
the GMPHD filter.

Index Terms—Passive multi-static radar, multi-target tracking,
Doppler-only measurements, group sparsity, GMPHD filter.

I. INTRODUCTION

THE problem of multi-target tracking (MTT) using
Doppler-only measurements has emerged as an area of

interest, especially in the context of passive multi-static radar

Copyright (c) 2016 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

The work of S. Subedi, Y. D. Zhang, and M. G. Amin was supported
in part by a subcontract with Defense Engineering Corporation for research
sponsored by the Air Force Research Laboratory under Contract FA8650-12-
D-1376. Part of the work was presented at the 2015 IEEE International Radar
Conference [1].

S. Subedi and M. G. Amin are with the Center for Advanced Com-
munications, Villanova University, Villanova, PA 19085 USA (email:
ssubedi1@villanova.edu).

Y. D. Zhang is with the Department of Electrical and Computer Engineer-
ing, College of Engineering, Temple University, Philadelphia, PA 19122, USA
(email: ydzhang@temple.edu).

B. Himed is with the RF Technology Branch, Air Force Research Labora-
tory, AFRL/RYMD, Dayton, OH 45433, USA.

(PMR) systems (e.g., [2–5]). This is motivated by the fact
that Doppler sensors have become increasingly accurate and
inexpensive. A Doppler-only tracking passive radar system
comprises an illuminator of opportunity (e.g., DAB/DVB
broadcast station, FM radio transmitter, and cellular mobile
transmitter), a distributed network of Doppler sensors, and an
information fusion center. Alternatively, a network comprising
multiple spatially separated transmitters and a single Doppler
sensor can be deployed. The former configuration with multi-
ple sensors is more expensive; nonetheless, it is more flexible
in configuring a favorable multi-static geometry by placing the
sensors at appropriate positions around the available transmit-
ter of opportunity [6]. Doppler-only tracking offers two key ad-
vantages in terms of ease-of-implementation and cost, namely,
(a) compared to other forms of measurements exploited for
high-accuracy tracking in passive radar systems, e.g., time-
difference-of-arrival (TDOA) measurements [7], the required
accuracy of synchronization among the Doppler sensors is sig-
nificantly relaxed, and (b) the volume of information exchange,
or the bandwidth requirement, for communication among the
sensors and/or between each sensor and the information fusion
center is significantly reduced. However, from a signal pro-
cessing perspective, accurate estimation of multi-target states
exploiting Doppler frequency measurements subject to additive
noise, clutter, and missed detections is a challenging problem.
Furthermore, since the Doppler frequency measurement from
each sensor provides incomplete information about the target
state, commonly known as single-sensor unobservability [8],
target state estimation requires a fusion of measurements
from multiple spatially distributed sensors. In PMR systems,
the availability of multiple bistatic links can be utilized to
ensure the required observability through a multi-sensor data
fusion, improve overall signal quality, and achieve multi-static
diversity gain (e.g., [9–15]). As such, the underlying problem
can be concisely cast as a typical multi-sensor MTT problem
exploiting Doppler frequency measurements corrupted by ad-
ditive noise, missed detections, and clutter. The term clutter
has been used in the radar signal processing literature in
different contexts. In this paper, we refer to clutter as randomly
moving objects, other than the actual targets, within the region
of surveillance.

Multi-target tracking is a well investigated problem (e.g.,
[16–19]) relevant to diverse application areas, including air
traffic control, intelligence, surveillance, and reconnaissance
(ISR), space applications, remote sensing, biomedicine, and
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robotics. MTT refers to a problem of jointly estimating the
number of targets and their states (positions, velocity, etc.),
at successive time intervals, from a noisy and cluttered set
of observations. The challenges commonly associated with
MTT are the time-varying number of targets, false measure-
ments, measurement origin uncertainties, track initiation and
management, data association, clutter, and detection loss [17].
There are several algorithms available in the literature that
address the problem of multi-target tracking through explicit
data association, such as multiple hypothesis tracking (MHT)
[18], multi-target particle filter [19], and probabilistic data as-
sociation (PDA) [20]. These data association based algorithms
are combinatorial in nature and suffer from exponentially
increasing computational complexity as the number of targets
increases. Symmetric measurement equations (SME) [21] and
random finite sets (RFS) [22] are two computationally efficient
alternatives that avoid explicit data association. The underlying
idea of the SME algorithm is to create a ‘pseudo-measurement’
vector consisting of symmetric functions (e.g., sum of products
and sum of powers) of the original measurements, which
effectively turns the data association problem into an analytic
non-linearity [23]. Such non-linearities are handled using the
extended Kalman filter [21] or the unscented Kalman filter
[23]. In recent years, the probability hypothesis density (PHD)
filter, based on the RFS framework and Bayesian analysis, has
gained significant interest in MTT, particularly for problems
involving a large number of targets. There are two algorithms
available for the implementation of the PHD filter: the se-
quential Monte Carlo PHD (SMCPHD) [24] and the Gaussian
mixture PHD (GMPHD) [25]. The SMCPHD algorithm is
more suited to the non-linear target state dynamics, while the
GMPHD algorithm provides a closed-form solution and is thus
computationally efficient in linear dynamic systems. Multi-
Bernoulli filter [26, 27] is another commonly used imple-
mentation for RFS based MTT. Unlike the PHD filter, which
propagates the first-order moment density, multi-Bernoulli fil-
ter propagates the parameters of a multi-Bernoulli distribution
that approximates the posterior multi-target density.

Over the years, many approaches have been developed for
extending MTT algorithms in a multi-sensor paradigm. Multi-
sensor MTT does not lend itself to a simple extension from
the single-sensor case owing to the added uncertainties in
track formation, track maintenance, and track-to-track asso-
ciation and fusion [28]. The mathematical structure of the
optimal solution for multi-sensor MTT has been well analyzed
[20, 29]. However, optimal solution to multi-sensor MTT
problem using recursive Bayes filter is computationally in-
tractable [30, 31]. As such, multi-sensor MTT remains an open
problem from an implementation perspective [32]. It is well
established that the explicit data association based algorithms
(e.g., MHT, joint probabilistic data association (JPDA) [33])
suffer from a prohibitive computational complexity in a multi-
sensor context. In particle filter based algorithms, it becomes
necessary to propagate a large number of particles in order
to avoid sample impoverishment, rendering these methods
practically infeasible [8]. Even for the RFS based algorithms,
such as PHD and cardinalized PHD [34], which do not require
explicit data associations, their multi-sensor generalization are

computationally intractable [35].
The availability of multi-static measurements naturally in-

vites the application of multi-sensor data fusion algorithms
in PMR systems. These algorithms, developed in the context
of multi-static Doppler-only MTT systems, can be divided
into four broad categories [5], namely, centralized measure-
ment fusion, parallel update, sequential update, and random
sensor update. It is well known that the centralized mea-
surement fusion mechanism ensures a minimal information
loss (e.g., [36–38]) and may possibly achieve an optimal
tracking solution. However, despite the obvious advantages in
terms of estimation accuracy and robustness, the centralized
measurement fusion approach has been exploited only in
a very few instances (e.g., [4, 8]), due to the prohibitive
associated computational cost. Some of the recent works (e.g.,
[39, 40]) have proposed computationally efficient techniques
to solve the problem of source-measurement association in
the PMR systems, which is another critical computational
challenge in addition to the target-measurement association.
Most of the existing literature in the context of multi-static
Doppler-only MTT systems have focused on exploiting sub-
optimal approaches such as parallel update, sequential update,
or random sensor update to benefit from the availability of
multi-static measurements [3, 5, 41]. It is noted that target
state estimation in the latter three methods is based on partial
information, resulting in a significant information loss. The
authors in [5] report the lack of an analytically tractable and
computationally acceptable unified multi-sensor fusion method
for MTT using Doppler-only measurements. As such, the state
of the art for multi-sensor MTT using Doppler-only measure-
ments still lacks a computationally efficient centralized multi-
sensor measurement fusion scheme.

In this paper, we propose a novel method for a centralized
multi-sensor measurement fusion for MTT using Doppler-
only measurements in an PMR system by exploiting the
group sparsity shared by the multi-static Doppler frequency
measurements in the four-dimensional (4-D) position-velocity
space. Specifically, the key contributions of this paper are
summarized as follows: (a) We develop a method to transform
the scalar Doppler frequency measurements communicated
from each sensor to the fusion center to a corresponding
time-domain ‘pseudo-measurement’ in the form of sum of
sinusoids. This facilitates the exploitation of the group sparse
signal reconstruction in the joint position-velocity domain. It
is worth pointing that such a transformation can be applied
to several other applications where inexpensive sensors report
scalar measurements, such as range-only or bearings-only
measurements, to the fusion center rather than the entire
raw measurement; (b) We exploit these ‘pseudo-measurement’
vectors for a centralized multi-sensor fusion method based on
group sparse reconstruction in the 4-D discretized position-
velocity space. As such, the result of the group sparse re-
construction is obtained directly in the form of the instan-
taneous multi-target state estimates; and (c) We feed these
instantaneous multi-target state estimates as inputs to the
GMPHD filter, which handles the missed detections and false
measurements, and reduces the overall position estimation
error with a low complexity. We evaluate the performance
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of the proposed method by comparing the optimal sub-
pattern assignment (OSPA) metric [42, 43], which comprises
the localization and cardinality errors. Simulation results are
provided to validate the capability of the proposed method
to successfully handle the multi-target tracking problem in a
challenging environment characterized by missed detections
and false measurements. Simulation results also show that the
proposed method outperforms the random receiver selection
based multi-sensor GMPHD filter implementation.

The remainder of the paper is organized as follows. Section
II describes the multi-static configuration and develops a
Doppler frequency measurement model that assumes missed
detections and false measurements. Section III presents a high-
level overview of the existing approaches for multi-sensor in-
formation fusion for MTT using Doppler-only measurements.
Section IV presents the proposed measurement fusion algo-
rithm based on the group-sparsity shared by Doppler frequency
measurements at different sensors. Section V presents the RFS
based filtering and the GMPHD tracking filter. Section VI
analyzes the performance of the proposed method for multi-
target state estimation and tracking in terms of the OSPA
metric. Section VII provides simulation results and finally
conclusions are drawn in Section VIII.

Notations: A lower (upper) case bold letter denotes a vector
(matrix). Specifically, IN and 0N denote the N ×N identity
and zero matrices, respectively. (.)∗, (.)T , and (.)H , respec-
tively, denote complex conjugation, transpose, and hermitian
operations. Rn×1 and Cn×1, respectively, represent the n-
dimensional real and complex vectors. ‖ · ‖ denotes the l2
norm of a vector, whereas <(.) and =(.), respectively, stand
for the real and imaginary parts of a complex number, and
x ∼ N (a, b) denotes variable x to be Gaussian distributed with
mean a and variance b. We denote Pr(.) to be the probability
density function. In addition, diag(.) and tr(.), respectively,
denote the diagonal and trace operations.

II. SIGNAL MODEL

We consider a challenging problem of tracking multiple
time-varying ground moving targets in an PMR system charac-
terized by uncertain target detection and false measurements.
The PMR network comprises a single broadcast station, trans-
mitting at a known carrier frequency fc, and N spatially
distributed Doppler sensors. The transmitter is assumed to
be located at b, whereas the nth receiver is located at r(n),
n = 1, ..., N . The transmitter and the Doppler sensors are
assumed stationary and their locations are assumed to be
precisely known a priori at the fusion center.

Let T (k) be the number of targets moving within the
surveillance region at the kth observation instant. The number
of targets is assumed time-varying, owing to the possible
spontaneous appearance/disappearance of targets between two
successive measurement instants. The state vector of the ith
target at the kth observation, xk,i, represents a point in the
state space X ∈ R4×1 and comprises its instantaneous position
pk,i , [px,k,i, py,k,i]

T and velocity vi , [vx,i, vy,i]
T in the

2-D Cartesian coordinate system, i.e.,

xk,i = [pTk,i,v
T
i ]T . (1)

As such, at each observation instant, the ground truth state set
is defined as Xk , {xk,1, · · · ,xk,T (k)}. The target dynamics
is modeled as a linear Gaussian nearly constant velocity model
[44], such that

xk,i = Fxk−1,i + Gwk,i, (2)

for i = 1, · · · , T (k), where F is the state transition matrix
defined as

F =

[
I2 ∆I2

02 I2

]
, (3)

where ∆ is the sampling interval, and wk,i ∼ N (0, σ2
wI2) is

the process noise modeled as additive white Gaussian noise.
The state transition matrix F represents the linear dynamics,
whereas the transition matrix

G =

[
∆2

2 I2

∆I2

]
(4)

accounts for the small acceleration that could deviate the target
trajectory from being strictly linear. As such, the process noise
covariance matrix is defined as

Q = σ2
w

[
∆4

4 I2
∆3

2 I2
∆3

2 I2 ∆2I2

]
. (5)

It is important to acknowledge that this model does not
represent a highly maneuvering target.

The actual bistatic Doppler frequency at the nth sensor due
to the motion of the ith target is obtained as [11]

f̆
(n)
k,i = −vTi

λ

[
pk,i − r(n)

‖pk,i − r(n)‖
+

pk,i − b

‖pk,i − b‖

]
, (6)

where λ = c/fc is the wavelength of the transmitted signal,
and c is the velocity of propagation of a radio signal in the free
space. In practice, the Doppler frequency measurements are
subject to additive noise, missed detection and measurement
uncertainties, such that the bistatic Doppler frequency corre-
sponding to the target state xk,i measured at the nth sensor is
modeled as

f
(n)
k,i =

{
f̆

(n)
k,i + ε

(n)
k,i , if ρ(n)

k,i = 1,

∅, if ρ(n)
k,i = 0,

(7)

where ρ
(n)
k,i ∈ {0, 1} is a Bernoulli random variable with

success probability equal to the probability of target detec-
tion pD and ε

(n)
k,i ∼ N (0, σ2

ε ) represents the additive white
Gaussian measurement noise. The symbol ∅ indicates that no
measurement is reported in case of a missed detection. The
Doppler measurement space or the field-of-view is defined
over an interval [−f0, f0] [4], where f0 denotes the maximum
possible Doppler frequency. Let us define a set of actual
target-generated measurements at the kth observation instant
as T (n)

k = {f (n)
k,1 , · · · , f

(n)
k,τ(k)}, where τ(k) ≤ T (k). Incor-

porating Doppler frequency measurements due to the random
movement of clutter into the model, a set of Doppler frequency
measurements at the nth sensor observed at the kth observation
interval can be defined as

D(n)
k = T (n)

k

⋃
K(n)
k , (8)
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where K(n)
k with cardinality K(k) represents the set of

Doppler frequency measurements due to clutter at the nth sen-
sor observed at the kth observation instant. The position and
velocity of such clutter signals are modeled as uniform random
variables within the pre-defined range of position and velocity
surveillance. As such, the overall cardinality of the Doppler
frequency measurement set D(n)

k is D(k) = τ(k) +K(k).
In a multi-sensor network, each sensor measures a different

Doppler frequency for the motion of the same target, depend-
ing on its bistatic configuration. As such, it is not possible to
instantaneously fuse these Doppler frequency measurements
across different bistatic links [12–14]. As discussed in Section
I, due to the prohibitive computational load, most of the
existing approaches settle for sub-optimal methods based on
partial information, such as sequential update, random receiver
selection, and/or parallel update algorithms for exploiting the
multi-static measurements. In the following, we provide a
high-level description of these existing algorithms for multi-
sensor information fusion for MTT using Doppler only mea-
surements.

III. EXISTING APPROACHES FOR MULTI-SENSOR
DOPPLER-ONLY INFORMATION FUSION FOR MTT

Existing approaches for multi-sensor information fusion
for MTT using Doppler-only measurements can be broadly
classified into four categories, namely, parallel update, se-
quential update, random receiver selection, and centralized
measurement fusion. The schematics of each of these scheme
is shown in Fig. 1 and explained briefly in the following.
A. Parallel update [5]

As shown in Fig. 1(a), the parallel update, or the typical
track-before-fuse approach, involves local tracking at each
sensor such that multi-target state is estimated locally based
on the partial information available at each sensor. This is
followed by a state fusion or track-to-track fusion algorithm,
generally in the form of weighted average, at the fusion
center. The notations X̂k−1 and X̂k, respectively, represent
the target state estimates obtained at the (k − 1)th and the
kth observation instants, whereas, D(n)

k and X̂ (n)
k , respectively,

denote the Doppler frequency measurement set and the local
target estimate at the kth observation instant corresponding
to the nth sensor. This scheme suffers because of the single-
sensor unobservability of Doppler measurements. The local
multi-target state estimations include ghost estimates [5], sig-
nificantly degrading the overall tracking performance. Also, a
high computational complexity associated with the track-to-
track fusion is a critical concern in multi-target tracking.
B. Sequential update [8, 41]

The sequential update scheme involves inter-sensor commu-
nication, where a succeeding sensor uses its local measure-
ments and some form of a priori information obtained from
a preceding sensor to generate its own estimation. As shown
in Fig. 1(b), the Doppler observation D(n)

k is used to update
the state estimate X̂ (n−1)

k in each tracker and yields improved
state estimate X̂ (n)

k , where X̂k−1 = X̂ (0)
k and X̂k = X̂ (n)

k

are, respectively, the system input and output at the kth iter-
ation. The process is continued through all available sensors,

Fusion center

Tracker 1

D(1)
k

Tracker n

D(n)
k

...X̂k−1

X̂ (1)
k

X̂ (n)
k

X̂k

(a)

X̂k−1 Tracker 1

D(1)
k

· · · Tracker n

D(n)
k

X̂k
X̂ (1)
k X̂ (n−1)

k

(b)

X̂k−1 Tracker i

D(n)
k

X̂k
(c)

Fusion center
D(1)
k ...
D(n)
k

Tracker

X̂k−1

Zk
X̂k

(d)

Fig. 1. Existing approaches for multi-sensor fusion in MTT using Doppler-
only measurements (a) Parallel update. (b) Sequential update. (c) Random
receiver selection. (d) Centralized measurement fusion.

thereby, reducing the estimation error in each succession. The
performance of this method heavily depends on the choice
of succession among the sensors. Nonetheless, this method
obtains a better solution than the parallel update scheme in
most applications (e.g., [5, 8, 41]).

C. Random receiver selection [3]
In the random receiver selection method, illustrated in Fig.

1(c), multi-target target states are estimated at one of the
sensors randomly selected at each observation instant [3].
The Doppler observation D(n)

k is used to update the prior
state estimate X̂k−1 at a randomly chosen tracker, in order
to obtain the target state estimate X̂k at the kth observation.
The target state remains unobservable until measurements
from at least three spatially distributed sensors are obtained.
Furthermore, at each observation instant, a multi-target state
set is estimated using the measurement from only one receiver,
clearly resulting in a significant loss of information.

D. Centralized measurement fusion [4]
Centralized measurement fusion, or the fuse-before-track,

involves a fusion center collecting raw measurements from
all the sensors and generating a global multi-target state
estimate as shown in Fig. 1(d). The fusion center combines
the Doppler frequency measurements at all the sensors, i.e.,
D(n)
k , n = 1, · · · , N , and generates a ‘super-measurement’
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set Zk, which is fed to the tracking filter as an input. The
tracker updates the state estimate X̂k exploiting the ‘super-
measurement’ Zk. Theoretically, this approach exploits all
available information and may possibly obtain a globally
optimal solution. However, the combinatorial nature of data
association in multi-sensor MTT renders this method unreal-
istic in many practical applications [4].

IV. MULTI-SENSOR MEASUREMENT FUSION EXPLOITING
GROUP SPARSITY

In this section, we propose a computationally tractable
method to simultaneously utilize the Doppler frequency mea-
surements available at all sensors by exploiting the group
sparsity of the measurements in a discretized position-velocity
space. A typical sparse signal reconstruction model is given
as

g = Aθ + η, (9)

where g ∈ RP×1 is a measurement vector, A ∈ RP×Q,
P � Q, is a known dictionary matrix, θ ∈ RQ×1 is the
unknown sparse weight vector to be estimated, and η ∈
RP×1 is the additive white Gaussian noise vector modeled
as η ∼ N (0, σ2I). The fundamental idea behind the sparsity
based signal reconstruction is the fact that the measurement
vector g can be represented as a linear combination of K
basis vectors in its natural basis or some other sparsifying
basis, where K � P [45]. In many practical applications,
there are multiple measurements arising from a common
physical phenomenon. In such cases, for a correctly chosen
sparsifying basis, the sparse weight vectors share a common
sparse support. Mathematically, such problems are modeled as

g(n) = A(n)θ(n) + η(n), n ∈ [1, · · · , N ], (10)

where the sparse weight vectors θ(n) share the same sparsity
support, whereas their values are generally different [46, 47].

In the underlying problem, it is known a priori that the tar-
gets and clutter are sparsely distributed within the surveillance
area for any given observation instant k. As such, the target
state space, which represents the position and velocity of the
targets, is guaranteed to be sparsely populated. This motivates
us to reformulate this problem as a sparse reconstruction prob-
lem. Some recent works have proposed the exploitation of the
prior knowledge about the sparsity of the signal to improve the
tracking performance (e.g., sparsity-aware Kalman tracking
[48], hierarchical Bayesian Kalman filters [49], and sparsity-
aware multi-target tracking [50, 51]). In addition, we know a
priori that the Doppler frequency measurements corresponding
to N different bistatic pairs are generated due to the same set
of targets and clutter moving within the surveillance region.
As such, the Doppler frequency measurements share a com-
mon sparse support in the discretized position-velocity space
inviting the use of group sparse reconstruction for estimating
the instantaneous multi-target state.

On the other hand, it is not possible to directly vectorize
the Doppler frequency measurement set D(n)

k at each sensor
to form an observation vector compatible to the group sparse
reconstruction model in (10). It is important to acknowledge
that, in the underlying problem, the sensors communicate only

the Doppler frequency measurements instead of the entire
raw measurements to the fusion center. This significantly
reduces bandwidth requirement and the volume of information
exchange between the sensors and the fusion centers. In order
to facilitate the group sparsity based measurement fusion,
the Doppler frequency measurement set observed at each
sensor is represented as a sum of impulses in the discrete
Fourier space, which is transformed into the respective time-
domain ‘pseudo-measurement’ through the inverse Fourier
transform. As such, each of these time-domain ‘pseudo-
measurements’ becomes a sum-of-sinusoids with frequencies
corresponding to the Doppler frequency measurements, which
can be used to exploit the group sparsity shared by the
multi-sensor Doppler frequency measurements, or equiva-
lently these ‘pseudo-measurements’, in a discretized position-
velocity space.

A. Conversion of the Doppler frequency measurements into
time-domain ‘pseudo-measurements’

As defined in (8), D(n)
k with D(k) entries represents the set

of Doppler frequency measurements at the nth sensor observed
at the kth observation interval corresponding to the τ(k) target
generated measurements and K(k) false measurements. Each
of these measurements can be represented as an impulse in
a discrete Fourier space and, as such, the entire Doppler
spectrum corresponding to the measurement set D(n)

k can be
expressed as a linear sum of impulses in the frequency domain
as

Y
(n)
k (f) =

D(k)∑
i=1

δ(f − f (n)
k,i ), (11)

where f (n)
k,i ∈ [−f0, f0], as defined in (7). From (11), we obtain

the ‘pseudo-measurement’ in the time-domain as

y
(n)
k (t) =

D(k)∑
i=1

exp(j2πf
(n)
k,i t+ φ0), (12)

where n = 1, · · · , N , t ∈ [−∆y

2 ,
∆y

2 ) is defined over
an observation period ∆y , and φ0 is an arbitrary initial
phase. Sampling the ‘pseudo-measurement’ observation at a
sampling rate Fs yields a total number of Fs∆y samples
within the observation period ∆y . In order to ensure that
all the possible Doppler measurements are unambiguously
accounted for, the sampling frequency should be chosen to
be greater than or equal to the Nyquist rate, i.e., Fs ≥ 2f0.
The ‘pseudo-measurement’ observation interval ∆y should be
chosen such that it is consistent with the resolution of the
Doppler frequency measurements and also, for a given Fs,
satisfies the criteria for the minimum number of observation
samples required for sparse signal reconstruction. Without the
loss of generality, we set φ0 = 0. As such, following (7), the
discrete time measurements in (12) can be expressed as

y
(n)
k (t) =

D(k)∑
i=1

exp(j2πf̆
(n)
k,i t) exp(j2πε

(n)
k,i t). (13)

Applying the following Taylor series expansion,

exp(j2πε
(n)
k,i t) = 1 +

∞∑
q=1

(j2πε
(n)
k,i t)

q

q!
, 1 + ζ(t),
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where q is the order of expansion, we obtain

y
(n)
k (t) =

D(k)∑
i=1

exp(j2πf̆
(n)
k,i t) + ξ

(n)
k,i (t), (14)

where ξ
(n)
k,i (t) = ζ(t) exp(j2πf̆

(n)
k,i t) represents the residual

additive term in (14). In the underlying problem, for the
ith Doppler frequency measurement f (n)

k,i , since we exploit
a single realization of Gaussian random variable ε

(n)
k,i for

all values of t, the distribution of ξ
(n)
k,i (t) is not strictly

Gaussian. Nonetheless, for small values of Doppler frequency
measurement errors, σε < 1/(π∆y), the temporal samples of
ξ

(n)
k,i (t) follow a symmetric distribution centered around zero,

which can be closely approximated by a zero-mean Gaussian
distribution. The Gaussian approximation becomes closer as
the number of Doppler components, D(k), increases. The
Gaussianity can be numerically validated using the common
statistical normality tests (e.g., the Kolmogorov-Smirnov (KS)
test and the Lilliefors test) [52].

In the following, we exploit these time-domain ‘pseudo-
measurements’ to define the observation vectors for group
sparse reconstruction.

B. Instantaneous multi-target state estimation using group
sparsity

In order to estimate the instantaneous multi-target state
by applying group sparsity based signal reconstruction, we
represent the entire target state space by a 4-D discrete space
comprising M = MpxMpyMvxMvy points, where Mpx and
Mpy are the number of points for the position and Mvx

and Mvy are the number of points for the velocity along
the x-axis and y-axis, respectively, each point representing a
possible target state vector. Since there are limited number
of targets and clutter components within the surveillance
region, the target state space is sparsely occupied, inviting
the exploitation of the sparse reconstruction methods. Let an
M×1 vector u

(n)
k be the unknown sparse vector that vectorizes

the discretized 4-D position-velocity space such that each
element in u

(n)
k corresponds to a unique possible target state.

As such, when a target is represented by the target state vector
x̃k,τ = [p̃Tk,τ , ṽ

T
k,τ ]T , where p̃k,τ = [p̃x,k,τ , p̃y,k,τ ]T and

ṽτ = [ṽx,τ , ṽy,τ ]T , it occupies the τ th hypothetical point in
the 4-D discrete target state space. In the sparse representation,
it corresponds to a non-zero entry at the τ th element of u

(n)
k .

The corresponding bistatic Doppler frequency measurement at
the nth sensor can be obtained from (6) as

f̃
(n)
k,τ = −vTτ

λ

[
p̃k,τ − r(n)

‖p̃k,τ − r(n)‖
+

p̃k,τ − b

‖p̃k,τ − b‖

]
, (15)

and the corresponding hypothetical ‘pseudo-measurement’
vector as

ỹ
(n)
k,τ (t) = exp(j2πf̃

(n)
k,τ t), (16)

t = 1, · · · , Ns. Since the multi-static Doppler measurements
share a common ground truth in the position-velocity space,
the unknown sparse vectors representing the target state space,

u
(n)
k , can be obtained as the group sparse solution of the

following linear formula:

y
(n)
k = Ψ

(n)
k u

(n)
k + ξ

(n)
k , n = 1, · · · , N, (17)

where CNs×1 vector y
(n)
k = [y

(n)
k (1), · · · , y(n)

k (Ns)]
T rep-

resents the observation vector for the kth observation in-
stant, Ψ

(n)
k is the dictionary matrix whose τ th column is

defined as ψ(n)
k,τ = [ỹ

(n)
k,τ (1), · · · , ỹ(n)

k,τ (Ns)]
T , and ξ

(n)
k =

[ξ
(n)
k (1), · · · , ξ(n)

k (Ns)]
T represents the residual random error

vector with elements ξ
(n)
k (t) defined in (14). There are a

number of algorithms available to solve the group sparse
problems such as group basis pursuit [53], group LASSO
[54], and block orthogonal matching pursuit [55]. Multi-task
Bayesian compressive sensing algorithm [56, 57] provides an
adaptive learning framework and generally outperforms the
conventional compressive sensing algorithms. In this paper,
we use the complex multi-task Bayesian compressive sensing
(CMT-BCS) algorithm [57], which is based on the Bayesian
framework that exploits the statistical relationship between
multiple measurements or sensing tasks and that between the
real and imaginary parts of the complex-valued sparse entries.
It is noted that the missed detections and/or false alarms
at some of the sensors results in a partial common support
among the groups. As shown in [56], the multi-task Bayesian
compressive sensing algorithm is able to learn the level of
sparsity adaptively from such partial common sparse support
and effectively solve the group sparse reconstruction problem
under the partial common sparse support. Herein, we briefly
describe the application of the CMT-BCS algorithm in the
context of the underlying problem, whereas the comprehensive
analysis of the method is presented in [57].

The CMT-BCS algorithm places a Gaussian distribution on
the elements of the sparse vector u

(n)
k = [u

(n)
1,k , · · · , u

(n)
M,k]T

such that the real and imaginary components follow an in-
dependent Gaussian distribution with zero mean and variance
ατ,k, defined as

<(u
(n)
τ,k)∼N (0, ατ,k),

=(u
(n)
τ,k)∼N (0, ατ,k),

(18)

where τ ∈ [1, · · · ,M ]. The core philosophy behind the CMT-
BCS algorithm is that the parameters αk = {ατ,k}τ=1,··· ,M
are shared across the N bistatic links and also across the real
and imaginary components of the sparse complex coefficients.
Likewise, a Gaussian prior approximation is placed on the
residual additive error term ξ

(n)
k (t), such that

<(ξ
(n)
k (t))∼N (0, β0,k),

=(ξ
(n)
k (t))∼N (0, β0,k),

(19)

where t = 1, · · · , Ns and β0,k is the error variance. The
CMT-BCS exploits the Bayesian inference to evaluate the
posterior density function for the sparse vector ū

(n)
k =

[<(u
(n)
k )T ,=(u

(n)
k )T ]T , such that

Pr(ū
(n)
k |ȳ

(n)
k ,Ψ

(n)
k ,αk, β0,k) = N (µ

(n)
k ,Σ

(n)
k ), (20)

where
µ

(n)
k = β−1

0,kΣ
(n)Ψ̄

(n)T
k ȳ

(n)
k , (21)
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Σ
(n)
k =

[
β−1

0,kΨ̄
(n)T
k Ψ̄

(n)
k + A−1

]−1

, (22)

Ψ̄
(n)
k =

[
<(Ψ

(n)
k ) −=(Ψ

(n)
k )

=(Ψ
(n)
k ) <(Ψ

(n)
k )

]
, (23)

Ak= diag
([
α1,k, · · · , αM,k, α1,k, · · · , αM,k

]T )
, (24)

and ȳ
(n)
k = [<(y

(n)
k )T ,=(y

(n)
k )T ]T . The expectation maxi-

mization (EM) estimate for the ατ,k and β0,k are given as
[57]

ατ,k =
1

N

N∑
n=1

(
µ

(n)2
k,τ + µ

(n)2
k,M+τ + Σ

(n)
k,ττ + Σ

(n)
k,(M+τ)(M+τ)

)
,

(25)
where µ(n)

k,τ and Σ
(n)
k,ττ , respectively, represent the τ th element

of the mean vector µ(n)
k and τ th diagonal element of the

covariance matrix Σ
(n)
k , where as

β0,k=
1

2MN

{
N∑
n=1

tr
(
Σ

(n)
k Ψ̄

(n)
k Ψ̄

(n)T
k

)
+‖ȳ(n)

k −Ψ̄
(n)
k µ

(n)
k ‖

2

}
.

(26)
As such, from (21) and (22), we can respectively obtain the
mean and the variance of the elements of the sparse vector
u

(n)
k once we know the parameters αk and β0,k, and these

parameters are recursively updated using equations (21), (22),
(25), and (26) until a convergence criterion is satisfied. Thus,
the CMT-BCS algorithm effectively exploits the group sparsity
between the real and the imaginary parts of the sparse entries,
<(u

(n)
k ) and =(u

(n)
k ), and for every observation interval k,

the solution u
(n)
k = <(u

(n)
k ) + j=(u

(n)
k ) converges to a T̂ (k)-

sparse solution. The index of each element in the support
of the estimated sparse vector corresponds to a point in the
discrete target state space. As such, the T̂ (k)-sparse solu-
tion corresponds to T̂ (k) instantaneous target state estimates,
zk,i = [p̂x,k,i, p̂y,k,i, v̂x,k,i, v̂y,k,i]

T , where i = 1, · · · , T̂ (k).
Also, since the CMT-BCS algorithm is known to be less
sensitive to the dictionary coherence, it is a good choice for
the underlying problem where it is desirable to have a high
resolution measurement matrix. As such, at every k, we obtain
instantaneous multi-target state estimates, i.e.,

Zk = {zk,1, · · · , zk,T̂ (k)}. (27)

Once we obtain the instantaneous target state estimates by
fusing the multi-sensor Doppler-only measurements through
the exploitation of group sparse reconstruction based central-
ized multi-sensor measurement fusion, there are three specific
tasks remaining from a tracking perspective: (a) improving the
cardinality estimation by removing the clutter and the false
estimates that occur in the group sparse reconstruction, and
compensating for the missed detection, and (b) improving the
localization accuracy by gradually learning from the instan-
taneous target state estimates Zk and the pre-defined target
dynamic model. As discussed in Section I, through the group
sparsity based centralized measurement fusion scheme, we ef-
fectively transform the multi-sensor MTT problem, exploiting
non-linear Doppler-only measurements, into a single-sensor
MTT problem using linear measurements in the form of target-
state estimates. This allows us to apply the computationally

efficient linear Kalman filter based GMPHD filter to handle
the aforementioned two specific tracking tasks.

C. Compliance to the assumptions of the GMPHD filter
The PHD filter is a principled solution developed on the

foundation of RFS approach to MTT, which is valid under the
following specific assumptions [22, 25, 26].
A.1 Each target evolves and generates observations indepen-

dent of one another.
A.2 Clutter is Poisson distributed and independent of target-

originated measurements.
These two assumptions are common to all variants of the

PHD filter. The Gaussian mixture implementation of the PHD
filter requires the following three additional assumptions to
hold [25].
A.3 Each target follows a linear Gaussian dynamical model

and the measurement model is also linear Gaussian.
A.4 The survival and detection probabilities are state indepen-

dent.
A.5 The intensities of the birth RFSs can be represented as

Gaussian mixtures.
In this paper, as we implement the GMPHD filter for MTT

exploiting the output from the CMT-BCS algorithm as the
measurements to the GMPHD filter, herein we present a point-
wise analysis of the compliance of the statistical characteristics
of these measurements to the aforementioned assumptions.
C.1 In order to apply the group sparse reconstruction algo-

rithm, we discretize the entire 4-D target state space such
that each element of the sparse vector represents a unique
point in the target space. The dictionary matrix is con-
structed such that its columns are linearly independent.
As such, the unique representation property condition
is satisfied to guarantee the sparse signal recovery with
a high probability [57]. Therefore, for each target, the
CMT-BCS generates an instantaneous target state estimate
(referred to as observations in A.1.), independent of other
targets.

C.2 The signal model inherently embeds the fact that each
target evolves independently.

C.3 As discussed earlier, the output of the CMT-BCS algo-
rithm comprises estimates corresponding to three different
classes of objects/events; (a) true targets; (b) clutter
described as the randomly moving objects, other than
the actual targets, within the region of surveillance; and
(c) a small number of spurious estimates that may occur
occasionally during the group sparse reconstruction due
to the additive noise as defined in (17). Since the clutter
is assumed to be Poisson distributed and the spurious
estimates occur in small numbers and occasionally, it
is justified to approximately group these two classes of
objects/events together as a Poisson distributed variable
with a mean value equal to the number of clutters. Also, it
is important to note that all these objects/events generate
outputs in the CMT-BCS algorithm independently of one
another.

C.4 The dynamics of each target is assumed to be linear Gaus-
sian as defined in (2), and the corresponding measurement
model is also Gaussian as the CMT-BCS algorithm places
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a Gaussian distribution on the elements of the sparse
vector as discussed in (18).

C.5 The assumption that the survival and detection probabili-
ties are state independent is inherent to the signal model.

C.6 The intensities of the birth RFSs are represented as
Gaussian mixtures.

V. GAUSSIAN MIXTURE PHD FILTER

In this section, we apply the GMPHD filter proposed in [25]
to solve the underlying problem. The GMPHD filter provides
a closed-form solution to the computationally efficient multi-
target PHD filter under linear Gaussian multi-target models. It
is noted that, unlike the existing works (e.g., [3, 4]) that require
an EKF based adaptation of the GMPHD filter in order to
handle non-linear Doppler frequency measurements, we can
implement linear Gaussian multi-target models discussed in
[25], since the output of the CMT-BCS algorithm is directly
obtained in the form of target state estimates. Also, this avoids
the need to adopt other non-linear filtering approaches for RFS
filtering such as SMCPHD or particle filter implementation,
which are commonly used in tracking problems using Doppler-
only measurements (e.g. [4, 5, 8]). The details of the GMPHD
filter implementation for the underlying problem is as follows.

An RFS model for the time evolution of a multi-target state
Xk at time k from Xk−1 is defined as

Xk =

 ⋃
ζ∈Xk−1

Sk|k−1(ζ)

⋃Γk, (28)

where Sk|k−1(ζ) represents the RFS of the surviving tar-
gets from the preceding state ζ, and Γk is the RFS of the
spontaneous target births at time k. The corresponding RFS
measurement model observed at the kth observation can be
expressed as

Zk = Υk

⋃[ ⋃
x∈Xk

Θk(x)

]
, (29)

where Υk is the RFS of the clutter measurements and the false
estimates that occur during the group sparse reconstruction,
and Θk(x) is the RFS of the actual target-generated measure-
ments.

The GMPHD filter propagates the Gaussian mixture poste-
rior intensity in time to significantly reduce the computational
complexity in the multi-target Bayes filter. The latter is a
consequence of the combinatorial nature of the multi-target
densities and multiple integrations on the multi-target state
space [25]. It is assumed that the posterior intensity at time
k − 1 can be written as a sum of Jk−1 Gaussian components
with different weights w(i)

k−1, mean vectors m
(i)
k−1 and covari-

ance matrices P
(i)
k−1 as

νk−1(x) =

Jk−1∑
i=1

w
(i)
k−1N (x; m

(i)
k−1,P

(i)
k−1), (30)

where the Gaussian mixture {(w(i)
k−1,m

(i)
k−1,P

(i)
k−1)}Jk−1

i=1 is a
union of two Gaussian mixture components corresponding to
the persistent target and new born targets.

Likewise, the predicted intensity can also be formulated as
a sum of the predicted intensities of the persistent and the new
born targets, such that

νk|k−1(x) = νk|k−1,p(x) + γk(x), (31)

where the predicted intensity of the persistent targets is as-
sumed to be a Gaussian mixture and is defined as

νk|k−1,p(x) =

Jk−1,p∑
i=1

w
(i)
k|k−1,pN (x; m

(i)
k|k−1,p,P

(i)
k|k−1,p),

(32)
where w

(i)
k|k−1,p = psw

(i)
k−1, m

(i)
k|k−1,p = Fm

(i)
k−1, and

P
(i)
k|k−1,p = Q + FP

(i)
k−1F

T . Likewise, the intensity of the
new born targets is also assumed to be a Gaussian mixture
defined as

γk(x) =

Jk,b∑
i=1

w
(i)
k,bN (x; m

(i)
k,b,P

(i)
k,b), (33)

where w
(i)
k,b, m

(i)
k,b, and P

(i)
k,b, respectively, represent the

weight, mean vector and covariance matrix of the birth in-
tensity.

The standard formulation of the PHD filter assumes that the
target birth intensity is known a priori [24, 25, 58]. Typically,
the birth components are defined as intensities whose mass
is concentrated over small specific areas or hotspots in the
state space. In the event when a target appears in a region
that is not covered by the predefined birth intensity, the PHD
filter will be completely blind to its existence. In order to
avoid such situation, the generally adopted approach is to
define rather diffused birth intensities such that they cover the
entire state space of interest. However, that results in a higher
incidence of short-lived false tracks and longer confirmation
times [58]. In that context, instead of randomly initializing
diffused target birth intensities [3], we use the instantaneous
target state estimates obtained from the CMT-BCS algorithm at
each observation instant to initialize the target birth intensities.
The corresponding values of the non-zero elements are used
as the weights of the Gaussian components. It is important
to note that we initialize the birth components in the vicinity
of the instantaneous target state estimates obtained from the
CMT-BCS algorithm, but with much larger variances and
weights that are equal to the corresponding non-zero elements
in the estimated sparse vector. This creates a few large
hotspots within the target state space with different weights.
In this respect, it is different from the vanilla measurement-
driven birth component described in [58], where in the SMC
implementation of the PHD/CPHD filters, the authors model
the birth intensity by an equally weighted mixture of birth
densities. The latter comprise particles drawn directly from
the measured subspace of the target state space. The authors
introduce an additional variable to distinguish between the
persistent target and a new-born target, and accordingly deploy
a modified prediction and update procedure to correct the bias
due to measurement-driven initialization.
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Following the preceding analysis, the posterior intensity for
time k is also a Gaussian mixture given as

νk(x) = (1− pD)νk|k−1(x)

+
∑
z∈Zk

Jk|k−1∑
i=1

w
(i)
k (z)N (x; m

(i)
k|k(z),P

(i)
k|k),

(34)

where

w
(i)
k (z) =

pDw
(i)
k|k−1q

(i)
k (z)

υk(z) + pD

Jk|k−1∑
j=1

w
(j)
k|k−1q

(j)
k (z)

, (35)

q
(i)
k (z) = N (z; Hkm

(i)
k|k−1,Rk + HkP

(i)
k|k−1H

T
k ), (36)

m
(i)
k|k(z) = m

(i)
k|k−1 + K

(i)
k (z−Hkm

(i)
k|k−1), (37)

P
(i)
k|k =

[
I−K

(i)
k Hk

]
P

(i)
k|k−1, (38)

K
(i)
k = P

(i)
k|k−1H

T
k (HkP

(i)
k|k−1H

T
k + Rk)−1, (39)

where υk(z) is the intensity of the RFS Υk which represents
the clutter measurements and the false estimates that occur
during the group sparse reconstruction at time k. Since the
group sparsity based measurement fusion yields the target state
estimates, which are directly fed as instantaneous observations
to the GMPHD filter, the observation matrix is a 4×4 identity
matrix, such that Hk = I4, and the Rk is the observation noise
covariance matrix.

From an implementation perspective, the computational load
increases with the increasing number of Gaussian components
with time. It is analytically shown in [25] that the number of
components in the posterior intensities increases without any
bound. As such, pruning and merging are commonly adopted
to ensure a limit on the number of Gaussian components
propagated in each succession. Pruning refers to a process
of propagating a fixed number of targets with the strongest
weights in each succession or discarding the targets that
have weights below some pre-determined threshold. Merging,
on the other hand, involves approximating closely-located
multiple Gaussian components by a single Gaussian. The
process of pruning and merging is explained in detail in
[25]. Once the posterior intensity is computed, followed by
pruning and merging, the multi-target state estimates X̃k =
{x̃k,1, · · · , x̃k,T̃ (k)} is extracted by selecting the means of
the Gaussian components that have weights greater than some
threshold.

The schematics in Fig. 2 summarizes the proposed algorithm
comprising the following three key steps: (a) conversion of
a set of scalar Doppler observations D(n)

k into time-domain
‘pseudo-measurement’ vectors y

(n)
k corresponding to each

of the N bistatic links, (b) application of the CMT-BCS
algorithm to fuse the multi-sensor information by exploiting
the group sparsity shared by the Doppler measurements in
the discretized position-velocity space to obtain the sparse
solution that converges to a single set of instantaneous tar-
get state estimates Zk that represents all the bistatic links,
and (c) application of GMPHD filtering to remove the false

CMT-BCS

IFFT

IFFT

...

D(1)
k

D(N)
k

y
(1)
k

y
(N)
k

GMPHD

X̃k−1

Zk

X̃k

Fig. 2. Schematics of the proposed algorithm.

measurements, compensate for missed detections, and reduce
the localization error from Zk, leading to an improved target
state estimate set X̃k.

It is noteworthy that, with the increase in the cardinality of
the Doppler measurement set and/or the number of sensors,
the increment in the computational cost associated with the
proposed method for multi-sensor information fusion is signifi-
cantly lower compared to the optimal centralized measurement
fusion process. Specifically, the computational cost associated
with the optimal centralized measurement fusion for multi-
sensor multi-target tracking algorithm is combinatorial, i.e.,
for the underlying problem, with N Doppler sensors and
D(k) Doppler measurements per sensor at the kth observa-
tion, the computational complexity of the optimal centralized
measurement fusion is of the order O((D(k)!)N ) [59]. On
the other hand, the computational cost associated with the
proposed method for centralized measurement which exploits
the group sparse reconstruction in the position-velocity domain
is of the order O(D(k)NsMN) [60], where Ns is the number
of samples in the pseudo-measurement vectors y

(n)
k , and M

is the number of discrete points each representing a possible
target state in the discretized target state space. As such, the
proposed method is better poised to handle a situation with
a larger number of sensors and/or larger number of Doppler
measurements per sensor.

In the following, we analyze the performance of the pro-
posed method in terms of the OSPA error in the estimation
of the instantaneous multi-target state using group sparse
reconstruction and after the application of the tracking filter.

VI. PERFORMANCE ANALYSIS

The performance of multi-target estimation and tracking
algorithms is commonly evaluated in terms of the OSPA
metric (e.g. [42], [43]). The OSPA metric jointly evaluates
the performance of the estimation algorithm as a weighted
contribution of both cardinality error and localization error. We
calculate the OSPA metric at the end of each step to isolate
the causes of error and also to demonstrate the improvement
in performance after the application of the GMPHD filter.

It is noted that, since the actual number of targets at each
observation instant is unknown a priori, we use a relaxed
sparsity constraint in the CMT-BCS algorithm to ensure that
all detected targets, including the weak ones, are accounted
for. As such, due to the use of such relaxed sparsity constraint
in addition to the presence of clutter measurements, the
cardinality of the estimated target state set Zk is generally
larger than the cardinality of the ground truth state Xk, i.e.,
T̂ (k) ≥ T (k), resulting in a cardinality error. On the other
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hand, due to the Doppler frequency measurement error, the
target state estimates may deviate from the ground truth state,
causing the localization error. The cardinality error between
the ground truth state and estimated instantaneous target state
at the kth observation instant is given by

ecard
p,c (k) =

[
(T̂ (k)− T (k))cp

T̂ (k)

] 1
p

, (40)

where 1 ≤ p <∞ is the order of the OSPA distance, and c >
0 represents the cut-off parameter. Similarly, the localization
error is defined as

eloc
p,c(k) =

 1

T̂ (k)
. min
π∈ΠT̂ (k)

T (k)∑
i=1

(dc(xk,i, zπ,k,i))
p

 1
p

, (41)

where ΠT̂ (k) represents the set of permutations of length
T (k) with elements taken from {1, 2, · · · , T̂ (k)}, and
dc(xk,i, zπ,k,i) = min (c, d(xk,i, zπ,k,i)), with d(xk,i, zπ,k,i)
being the base distance between the two tracks at k. The
cut-off parameter c is used to assign a relative weight to the
cardinality error against the localization error. A higher value
of c corresponds to a higher weight assigned to the cardinality
error and vice versa. The order parameter, p, determines the
penalty assigned for the ‘outlier’ estimates that significantly
deviate from any of the ground truth tracks. A higher p
results in a higher sensitivity to such outliers. For cases where
T̂ (k) < T (k), however rare, the cardinality error and local-
ization error are, respectively, defined as ecard

p,c (k)(Xk,Zk) =
ecard
p,c (k)(Zk,Xk) and eloc

p,c(k)(Xk,Zk) = eloc
p,c(k)(Zk,Xk). As

such, the overall OSPA error in multi-target state estimation,
comprising cardinality and localization error, is calculated as

eGS
p,c(k) =

[
1

T̂ (k)
. min
π∈ΠT̂ (k)

T (k)∑
i=1

(dc(xk,i, zπ,k,i))
p

+
(T̂ (k)− T (k))cp

T̂ (k)

] 1
p

.

(42)

The GMPHD filter removes the clutter and the false esti-
mates that occur during the group sparse reconstruction and
compensates for the missed detections resulting in a significant
reduction in the cardinality error. Also, the tracking filter
reduces the localization error by intelligently learning from the
instantaneous target state estimates and the pre-defined target
dynamics. As such, following (40)–(42) and the associated
definitions, the overall OSPA error between the ground truth
multi-target state Xk and the estimated multi-target state X̃k
is defined as

ẽGMPHD
p,c (k) =

[
1

T̃ (k)
. min
π∈ΠT̃ (k)

T (k)∑
i=1

(dc(xk,i, x̃π,k,i))
p

+
(T̃ (k)− T (k))cp

T̃ (k)

] 1
p

.

(43)

In the following, we present numerical examples to validate
the performance of the proposed method for different target
trajectories and to compare the performance of the proposed
method against the existing random receiver selection based

x-direction (m)
-3000 -2000 -1000 0 1000 2000 3000

y-
di

re
ct

io
n 

(m
)

-3000

-2000

-1000

0

1000

2000

3000
Tx
Rx

Fig. 3. Passive multi-static radar network configuration using multiple
Doppler sensors.

multi-sensor implementation of the GMPHD filter for MTT
using Doppler-only measurements.

VII. SIMULATION RESULTS

In the simulations, we consider a PMR network configu-
ration as illustrated in Fig. 3, where a broadcast station is
located at the origin and transmitting at 950 MHz, and 5
Doppler frequency measurement sensors are distributed along
a circle of radius 2.5 km from the transmitter. The transmitter
and the sensors are assumed stationary and their positions
precisely known a priori at the fusion center. The region of
surveillance is assumed to be a rectangular area bounded by
[−2500, 2500]T m along both the x- and y-axes.

We consider four simulation examples with different multi-
target trajectories to test the performance of the proposed
method in different complexities: (a) non-crossing trajectories
with linear constant velocity, (b) intersecting trajectories with
linear constant velocity, (c) trajectories with nearly-constant
velocity, (d) and time-varying number of targets.

We use the simulation parameters shown in Table I for
all four cases. The false measurement is modeled as a

TABLE I
SIMULATION PARAMETERS.

Parameter Value
Sampling interval (∆) 0.5 s
Observation period of the ‘pseudo-measurement’ (∆y) 1 s
Maximum possible Doppler frequency measurement (f0) 250 Hz
Sampling rate of the ‘pseudo-measurement’(Fs) 512 Hz
Standard deviation of process noise (σw) 1 m/s2

Frequency of operation 950 MHz
Standard deviation of measurement noise (σε) 0.3 Hz
Probability of target detection (pD) 0.98
Probability of target survival (pS ) 0.99

Poisson RFS with an average number of 5 false measure-
ments generated due to the random movement of different
objects other than the actual targets within the region of
surveillance. For pruning, we consider the truncation level
to be 10−5 and the maximum number of Gaussian com-
ponents is considered to be Jmax = 50. Likewise, we
merge the Gaussian components with Mahalanobis distance
of less than 4. We use the birth covariance matrix P

(i)
k,b =

diag([400, 400, 100, 100]T) and the observation noise covari-
ance matrix Rk = diag([100, 100, 25, 25]T). For calculating
the OSPA error metric, we consider the cut-off parameter
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Fig. 4. Non-crossing target trajectories with linear constant velocity.
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Fig. 5. Instantaneous target state estimation using group sparse reconstruction
(a) Entire surveillance area. (b) Enlarged view around the trajectory of the
first target.

c = 1000 and order of the OSPA distance p = 1. Note
that for a sampling frequency of 512 Hz and an observation
interval of 1 s, we obtain a sufficient number of samples of
‘pseudo-measurements’ for sparse signal reconstruction. Also,
for an observation interval of 1 s and standard deviation of
the Doppler frequency measurement noise equal to 0.3 Hz,
the residual additive term in (14) can be approximated as
a Gaussian random variable. We verified this using the KS
normality test at 2% level of significance.

A. Non-crossing target trajectories with linear constant veloc-
ity

We consider two targets initially located at [−1000, 0]T m
and [1000, 0]T m and travelling along linear trajectories with
velocities [30, 30]T m/s and [−30,−30]T m/s, respectively,
as shown in Fig. 4. The corresponding target state estimates
obtained using the group sparsity based approach are shown
in Fig. 5. We observe that, by exploiting the group sparsity
of the multi-static Doppler frequency measurements in the
discretized position-velocity space, the CMT-BCS algorithm
yields the estimated target positions closely grouped around
the actual target trajectories throughout the observation period.
However, the instantaneous target state estimation algorithm
based on group sparse reconstruction cannot discern between
the true target generated measurements and the clutter gen-
erated measurements. Also, since the number of targets is
unknown, a safe threshold is chosen to relax the sparsity
constraint in the CMT-BCS algorithm. As a result, we observe
false measurements distributed over the observation scene.
Also, we notice uncertain target detection artifacts in the
form of some missing points along the target trajectories. The
estimated trajectories of the targets after GMPHD filtering are
shown in Fig. 6. It is evident that, at the steady state, the
tracking filter reduces the overall cardinality and localization
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Fig. 6. Results of the GMPHD filter. (a) Entire surveillance area. (b) Enlarged
view around the trajectory of the first target.
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Fig. 7. Performance of the proposed method and the random receiver selection
based method for non-crossing target trajectories with linear constant velocity.

errors by removing the false measurements, compensating for
the missed detections, and smoothing the true target state
estimates.

The performance of the proposed method in terms of the
OSPA metric for multi-target tracking is shown in Fig. 7.
We can observe that the overall OSPA error remains close
to 725 m due to a dominant cardinality error in multitarget
state estimation using the CMT-BCS algorithm. As discussed
earlier, this is because the group sparse reconstruction based
instantaneous target estimation technique cannot discern be-
tween the false measurements and the true targets and a relaxed
sparsity constraint is used to ensure that the weaker targets
are also accounted for. Also, it cannot compensate for the
missed detections. On the other hand, the overall OSPA error
is significantly reduced after GMPHD filtering, as the tracking
filter successfully removes the false measurements, compen-
sates for the missed detection, and successively reduces the
localization error. On the other hand, the random receiver
selection based approach initially takes more observations to
converge to the error floor and, even upon convergence, the
OSPA error remains higher than the proposed method.

B. Intersecting target trajectories with linear constant velocity
As a second example, we consider two targets initially

located at [−1000, 0]T m and [1000, 0]T m and travelling along
linear trajectories with velocities [30, 30]T m/s and [−30, 30]T

m/s respectively, as shown in Fig. 8. From a multi-target track-
ing perspective, this represents a more challenging problem, as
the tracking filter is faced with a more complicated scenario
at the intersection. The corresponding target state estimates
obtained using the group sparsity based approach is shown in
Fig. 9. Similar to the first example, the estimated target posi-
tions are closely grouped around the actual target trajectories
throughout the observation period. However, the instantaneous
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Fig. 8. Intersecting target trajectories with linear constant velocity.
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Fig. 9. Instantaneous target state estimation using group sparse reconstruc-
tion (a) Entire surveillance area. (b) Enlarged view around the true target
trajectories.
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Fig. 10. Results of the GMPHD filter. (a) Entire surveillance area. (b)
Enlarged view around the true target trajectories.

target state estimates are subject to missed detections and
clutter. It can be observed in Fig. 10 that the filter successfully
removes the false measurements, compensates for the missed
detections, and reduces the localization error at the steady
state. As illustrated in Fig. 11, the proposed method clearly
outperforms the random receiver selection based approach in
terms of the OSPA error metric. We observe that the proposed
method holds a distinct advantage over the random receiver
selection based approach for intersecting target trajectories.
Around the intersection point at k = 67, the proposed method
quickly recovers from a small increase in the OSPA error,
whereas the performance of the random receiver selection
based approach degrades significantly due to the ambiguity
in cardinality and also takes a longer recovery period. The
proposed method benefits from the accurate instantaneous
target state estimates obtained using the CMT-BCS algorithm,
which effectively exploits the separation of the targets in a
joint position-velocity space.

C. Intersecting target trajectories with nearly-constant velocity
This example represents a scenario with two targets with

intersecting trajectories and one of the targets changes its
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Fig. 11. Performance of the proposed method and the random receiver
selection based method for intersecting target trajectories with linear constant
velocity.
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Fig. 12. Intersecting target trajectories with linear nearly-constant velocity.

velocity at some instant during the observation period. We
consider two targets initially located at [−1000, 0]T m and
[1000, 0]T m and travelling along linear trajectories with
velocities [30, 30]T m/s and [−30, 30]T m/s, respectively, as
shown in Fig. 12. The trajectories of the two targets intersect at
k = 67, and at k = 81, the second target changes its trajectory
and follows a velocity of [−30, 15]T m/s. The result of the
GMPHD filter corresponding to these instantaneous target
state estimates is shown in Fig. 14. Similar to the previous
example, the performance of the proposed method degrades
momentarily around the intersection point, whereas there is a
significant increase in the OSPA error of the random receiver
selection based approach, as illustrated in Fig. 15. Likewise,
the performance of the proposed method remains robust when
the second target changes its trajectory at k = 81. The
CMT-BCS algorithm yields accurate instantaneous target state
estimates irrespective of the change in target trajectory. As
such, the nearly-constant velocity model adopted in (2) allows
for the slowly changing trajectory, such that the tracking
filter accurately follows the gradual change in the true target
trajectory, without any significant increase in the OSPA error.
However, in the random receiver selection based method, the
tracking filter cannot immediately learn about the change in
target trajectory from the Doppler frequency measurements,
resulting in an increase in the OSPA error.

D. Time-varying number of targets
We consider a scenario with a third target born at k = 31

at [−1200, 1000]T m and travelling along a linear trajectory
with a velocity [20, 20]T m/s in addition to the two targets
two targets initially located at [−1000, 0]T m and [1000, 0]T m
and travelling along linear trajectories with velocities [30, 30]T

m/s and [−30, 30]T m/s, respectively, as shown in Fig. 16.
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Fig. 13. Instantaneous target state estimation using group sparse reconstruc-
tion (a) Entire surveillance area. (b) Enlarged view around the true target
trajectories.
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Fig. 14. Results of the GMPHD filter. (a) Entire surveillance area. (b)
Enlarged view around the true target trajectories.
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Fig. 15. Performance of the proposed method and the random receiver
selection based method for intersecting target trajectories with nearly-constant
velocity.
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Fig. 16. Intersecting target trajectories with linear nearly-constant velocity.

The trajectories of the two targets intersect at k = 67, and at
k = 81, the second target changes its trajectory and follows
a velocity of [−30, 15]T m/s. The results of the group sparse
reconstruction and GMPHD filter corresponding to these tra-
jectories are illustrated in Figs. 17 and 18, respectively. It is
evident that the performance of the proposed method degrades
for a short period of time when the third target is born at
k = 31. Nonetheless, it quickly recovers from the change in
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Fig. 17. Instantaneous target state estimation using group sparse reconstruc-
tion (a) Entire surveillance area. (b) Enlarged view around the true target
trajectories.
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Fig. 18. Results of the GMPHD filter. (a) Entire surveillance area. (b)
Enlarged view around the true target trajectories.
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Fig. 19. Performance of the proposed method and the random receiver
selection based method for time-varying number of targets.

cardinality and converges to the correct estimation, whereas
similar to the previous cases of changes in the trajectories the
random receiver selection based approach takes more time to
converge, as illustrated in Fig. 19.

VIII. CONCLUSIONS

In this paper, we have developed a multi-sensor measure-
ment fusion scheme based on the signal group sparsity shared
by all the bistatic links in a discretized position-velocity space
for MTT in a PMR system, using Doppler-only measurements.
These measurements suffer from single-sensor unobservability,
mandating a fusion of measurements from multiple spatially
distributed sensors for target state estimation. PMR systems
naturally offer measurements from spatially distributed sensors
to ensure the required observability. However, data fusion is a
computationally intensive problem in multi-sensor multi-target
tracking algorithms. In this paper, the instantaneous multi-
target state estimates are obtained from group sparse signal
reconstruction, which is shown to be an efficient alternative to
the existing multi-sensor fusion schemes for MTT algorithms
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using Doppler-only measurements. The instantaneous multi-
target state estimates are directly fed to the linear Kalman
filter-based implementation of the GMPHD filter. Simulation
results verified a successful implementation of a multi-target
tracking problem in a challenging scenario characterized by
noise, false measurements, and uncertain target detections.
The performance of the proposed method was validated in
different target trajectories using the OSPA error metric and
was shown to offer improved performance over the existing
random receiver selection based multi-sensor implementation
of the GMPHD filter.
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