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Abstract—Spatial time–frequency distributions (STFDs) have
been recently introduced as the natural means to deal with source
signals that are localizable in the time–frequency domain. Previous
work in the area has not provided the eigenanalysis of STFD ma-
trices, which is key to understanding their role in solving direc-
tion finding and blind source separation problems in multisensor
array receivers. The aim of this paper is to examine the eigenstruc-
ture of the STFDs matrices. We develop the analysis and statistical
properties of the subspace estimates based on STFDs for frequency
modulated (FM) sources. It is shown that improved estimates are
achieved by constructing the subspaces from the time–frequency
signatures of the signal arrivals rather than from the data covari-
ance matrices, which are commonly used in conventional subspace
estimation methods. This improvement is evident in a low signal-to-
noise ratio (SNR) environment and in the cases of closely spaced
sources. The paper considers the MUSIC technique to demonstrate
the advantages of STFDs and uses it as grounds for comparison be-
tween time–frequency and conventional subspace estimates.

Index Terms—Array signal processing, spatial time–frequency
distribution, subspace analysis, time–frequency distribution,
time–frequency MUSIC.

I. INTRODUCTION

WHILE time–frequency distributions (TFDs) [1]–[4]
have been sought out and successfully used in the areas

of speech, biomedicine, the automotive industry, and machine
monitoring, their use in sensor and spatial signal processing
has not been properly investigated. The evaluation of quadratic
TFDs of the data snapshots across the array yields the “spatial
time-frequency distributions” (STFDs) [5], [6]. These spatial
distributions permit the application of eigenstructure subspace
techniques to the solution of a large class of channel estimation
and equalization, blind source separation, and high-resolution
direction-of-arrival (DOA) estimation problems. In the area
of blind source separation, the STFDs allow the separation
of Gaussian sources with identical spectral shape but with
different time–frequency localization properties, i.e., different
signatures in the time–frequency domain. For DOA estimation
problems, the construction of the signal and noise subspaces
using the source time–frequency signatures improves angular
resolution performance.

Although the applications of the spatial time–frequency dis-
tributions to blind source separation and DOA estimation prob-
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lems using multiple antenna arrays in nonstationary environ-
ments have been introduced in [5], [7], and [8], thus far, there has
been no sufficient analysis that explains their offerings and jus-
tifies their performance. The aim of this paper is to examine the
eigenstructure of the STFD matrices and provide statistical anal-
ysis of their respective signal and noise subspaces. The paper
focuses on the class of frequency modulated (FM) signals as
they represent a clear case of nonstationary signals that are lo-
calizable in the time–frequency domain. It shows that the sub-
spaces obtained from the STFDs are robust to both noise and
angular separation of the FM waveforms incident on the array.
This robustness is primarily due to spreading the noise power
while localizing the source energy in the time–frequency do-
main. By forming the STFD matrices from the points residing on
the source time–frequency signatures, we increase, in essence,
the input signal-to-noise ratio (SNR) and, hence, improve the
accuracy of the subspace estimates.

This paper is organized as follows. Section II presents the
signal model and considers nonstationary environments defined
by FM source signals. The statistical properties of signal and
noise subspace estimates for uncorrelated FM signals over the
observation period are delineated. In Section III, we give a brief
review of the definition and basic properties of the STFDs and
derive the signal and noise subspaces using STFD matrices for
the general class of FM signals. We demonstrate the robust-
ness of the STFD-based subspace estimates to both noise and
angular source separation, as compared with those obtained in
Section II, using covariance matrices. The analytical results of
Sections II and III are used in Section IV to examine the perfor-
mance of the direction-finding MUSIC technique based on the
covariance matrix and STFD noise subspace estimates. Numer-
ical simulations are given in Section V.

II. SUBSPACEANALYSIS FOR FM SIGNALS

A. Signal Model

In narrowband array processing, whensignals arrive at an
-element array, the linear data model

(1)

is commonly assumed, where the spatial matrix
represents the mixing matrix or the steering

matrix. In direction-finding problems, we require to have a
known structure, and each column ofcorresponds to a single
arrival and carries a clear bearing. On the other hand, when we
consider blind source separation problems,is a mixture of
several steering vectors, due to multipaths, and its columns may
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assume any structure. The analytical treatment in this paper
does not depend on any special structure of matrix.

Due to the mixture of the signals at each sensor, the ele-
ments of the data vector are multicomponent sig-
nals, whereas each source signal of the signal vector

is often a monocomponent signal. is an additive noise
vector whose elements are modeled as stationary, spatially and
temporally white, zero-mean complex random processes that
are independent of the source signals. That is

and

for any (2)

where is the delta function, denotes the identity matrix,
is the noise power at each sensor, superscriptsand , re-

spectively, denote conjugate transpose and transpose, and
is the statistical expectation operator.

In (1), it is assumed that the number of sensors is larger
than the number of sources, i.e., . Further, matrix
is full column rank, which implies that the steering vectors
corresponding to different angles of arrival are linearly
independent. We further assume that the correlation matrix

(3)

is nonsingular and that the observation period consists of
snapshots with .

Under the above assumptions, the correlation matrix is given
by

(4)

where is the source correlation matrix.
Let

denote the eigenvalues of . It is assumed that
, are distinct. The unit-norm eigenvectors as-

sociated with constitute the columns of matrix
, and those corresponding to make

up matrix . Since the columns of and
span the same subspace, then .
In practice, is unknown and, therefore, should be esti-

mated from the available data samples (snapshots),
. The estimated correlation matrix is given by

(5)

Let denote the unit-norm eigen-
vectors of that are arranged in the descending order of the
associated eigenvalues, and letand denote the matrices de-
fined by the set of vectors and , respectively. The sta-
tistical properties of the eigenvectors of the sample covariance
matrix for signals modeled as independent processes with
additive white noise are given in [9].

B. Subspace Analysis for FM Signals

In this paper, we focus on analytic frequency modulation
(FM) signals, which are modeled as

(6)
where and are the fixed amplitude and time-varying
phase of theth source signal. For each sampling time,
has an instantaneous frequency .

FM signals are often encountered in applications such as
radar and sonar [2]. The consideration of FM signals in this
paper is motivated by the fact that these signals are uniquely
characterized by their instantaneous frequencies, and therefore,
they have clear time–frequency signatures that can be utilized
by the STFD approach. In addition, FM signals have constant
amplitudes. To simplify the analysis, we assume that the
transmitted signals propagate in a stationary environment and
are mutually uncorrelated over the observation period .
Subsequently, the corresponding covariance matrices are time
independent. Under these assumptions, we have

for

(7)
In this case, the signal correlation matrix in (4) is

diag

where diag is the diagonal matrix formed with the elements
of its vector valued arguments. From the above assumptions, we
have the following Lemma.

Lemma 1: For uncorrelated FM signals with additive white
Gaussian noise, we have the following.

a) The estimation errors are asymptotically (for
large ) jointly Gaussian distributed with zero means and
covariance matrices given by

(8)

(9)

b) The orthogonal projections of onto the column space
of are asymptotically (for large ) jointly Gaussian dis-
tributed with zero means and covariance matrices given by

(10)

for all (11)
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The proof of part a) is given in Appendix A. The proof of part
b) follows the same exact steps of the respective results derived
in [9] and is not given here. Equations (8) and (9) hold strong
similarity to those of [9]. The only difference is that the term

in [9, (3.8a) and (3.8b)] is replaced by in
(8) and (9), due to the uncorrelation property (7). Accordingly,
for high input SNR , the estimation
error of can be greatly reduced. From (8) and (9),
each column of the signal subspace will be perfectly estimated
when . This is in contrast with the estimation error that
would result under the same noise-free condition if we use the
temporally independent signal characteristics considered in [9].

Equations (10) and (11) are identical to [9, (3.9) and (3.10)].
The reason of such identity is that despite the difference in the
signal eigenvectors in the two different scenarios, which are dis-
cussed in this paper and in [9], the signal subspaces in both cases
are identical and are spanned by the columns of matrix. Ac-
cordingly, the projection of the estimated noise eigenvectors on
the true signal subspace for either FM signals or white random
processes yield equal results.

III. SUBSPACEANALYSIS FOR STFD MATRICES

The purpose of this section is to show that the signal and noise
subspaces based on TFDs for nonstationary signals are more ro-
bust to noise than those obtained from conventional array pro-
cessing.

A. Spatial Time–Frequency Distributions

We first review the definition and basic properties of the
STFDs. STFDs based on Cohen’s class of TFD were introduced
in [5], and its applications to direction finding and blind source
separation have been discussed in [5], [7], and [8]. In this
paper, we consider the simplest member of Cohen’s class,
namely, the pseudo Wigner–Ville distribution (PWVD) [1] and
its respective spatial distribution. Only the time-frequency (t-f)
points in the autoterm regions of PWVD are considered for
STFD matrix construction. The autoterm region refers to the
t-f points along the true instantaneous frequency (IF) of each
signal. The crossterms may intrude on the autoterms through
the power in their mainlobes or/and sidelobes. This intrusion
depends on the signal temporal structures and the window
size. In this paper, however, we assume that the crossterms are
negligible over the autoterm regions.

The discrete form of pseudo Wigner–Ville distribution of a
signal , using a rectangular window of odd length, is given
by

(12)

where denotes complex conjugate. It should be noted that in-
corporating multiple t-f points, via t-f averaging, over the au-
toterm region causes the crossterm components present at the
signal IF to cancel each other, rendering their overall effect neg-
ligible.

The spatial pseudo Wigner–Ville distribution (SPWVD) ma-
trix is obtained by replacing by the data snapshot vector

(13)

Substituting (1) into (13), we obtain

(14)
We note that , , , , and

are matrices of dimension . Under the uncor-
related signal and noise assumption and the zero-mean noise
property, the expectation of the crossterm STFD matrices be-
tween the signal and noise vectors is zero, i.e.,

, and it follows that

(15)

where the source TFD matrix

(16)

is of dimension . For narrowband array signal processing
applications, the mixing matrix holds the spatial information
and maps the auto- and cross-TFDs of the source signals into
auto- and cross-TFDs of the data.

Equation (15) is similar to the formula that has been com-
monly used in DOA estimation and blind source separation
problems, relating the signal correlation matrix to the data
spatial correlation matrix. In the above formulation, however,
the correlation matrices are replaced by the STFD matrices. The
well-established results in conventional array signal processing
could, therefore, be utilized, and key problems in various
applications of array processing, specifically those dealing with
nonstationary signal environments, can be approached using
bilinear transformations.

It is noted that (15) holds true for every point. In order
to reduce the effect of noise and ensure the full column rank
property of the STFD matrix, we consider multiple t-f points,
instead of a single one. That is, the signal and noise subspaces
are constructed using as many points in the source au-
toterm regions as possible. This allows more information of the
source signal t–f signatures to be included into their respective
subspace formulation and, as such, enhances direction finding
and source separation performance. Joint-diagonalization [10]
and t-f averaging are the two main approaches that have been
used for this purpose [5], [7], [11]. In this paper, however, we
only consider averaging over multiple t–f points.

B. SNR Enhancement

The TFD maps one-dimensional (1-D) signals in the time do-
main into two-dimensional (2-D) signals in the t–f domain. The
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TFD property of concentrating the input signal around its in-
stantaneous frequency while spreading the noise over the entire
t–f domain increases the effective SNR and proves valuable in
the underlying problem.

The th diagonal element of the TFD matrix is
given by

(17)
Assume that the third-order derivative of the phase is negligible
over the window length , then along the true t–f points of the
th signal, , and

. Accordingly, for

(18)

Similarly, the noise STFD matrix is

(19)

Under the spatially and temporally white assumptions, the sta-
tistical expectation of is given by

(20)

Therefore, when we select the t–f points along the t–f signature
or the IF of the th FM signal, the SNR in model (15) is ,
which has an improved factor over the one associated with
model (4). The IF of the FM signals can be estimated from the
employed TFD, which in this case is the PWVD. It may also be
given separately using any appropriate IF estimator. It is noted
that the STFD equation (15) provides a natural platform for the
direct incorporation of anya priori information or estimates of
the IF into DOA estimation.

The pseudo Wigner–Ville distribution of each FM source has
a constant value over the observation period, providing that we
leave out the rising and falling power distributions at both ends
of the data record. For convenience of analysis, we select those

t–f points of constant distribution value for each
source signal. In the case where the STFD matrices are averaged
over the t–f signatures of sources, i.e., a total of
t–f points, the result is given by

(21)

where is the instantaneous frequency of theth signal
at the th time sample. is an instantaneous mixture of the

FM signals , and, hence, features the same
IFs. The expectation of the averaged STFD matrix is

(22)

where diag , and
represent the signal correlation matrix and the

mixing matrix formulated by considering signals out of the
total number of signal arrivals, respectively.

It is clear from (22) that the SNR improvement
(we assume throughout this paper) is inversely propor-
tional to the number of sources contributing matrix. There-
fore, from the SNR perspective, it is best to set , i.e., to
select the sets of t–f points that belong to individual
signals one set at a time and then separately evaluate the respec-
tive STFD matrices.

This procedure is made possible by the fact that STFD-based
direction finding is, in essence, a discriminatory technique in
the sense that it does not require simultaneous localization and
extraction of all unknown signals received by the array. With
STFDs, direction finding can be performed using STFDs of a
subclass of the impinging signals with specific t–f signatures.
In this respect, the proposed direction finding technique acts
as a spatial filter, removing all other signals from considera-
tion and, subsequently, saving any downstream processing that
is required to separate interference and signals of interest. It
is also important to note that with the ability to construct the
STFD matrix from one or few signal arrivals, the well-known

condition on source localization using arrays can be
relaxed, i.e., we can perform direction finding or source separa-
tion with the number of array sensors smaller than the number of
impinging signals [6]. From the angular resolution perspective,
closely spaced sources with different t–f signatures can be re-
solved by constructing two separate STFDs, each corresponding
to one source, and then proceeding with subspace decomposi-
tion for each STFD matrix, followed by an appropriate source
localization method (MUSIC, for example). The drawback of
performing direction finding several times using different STFD
matrices is, of course, the need for repeated computations of
eigen-decompositions and source localizations.

C. Signal and Noise Subspaces Using STFDs

The following Lemma provides the relationship between the
eigen-decompositions of the STFD matrices and the data covari-
ance matrices used in conventional array processing.

Lemma 2: Let
denote the eigenvalues of

, which is defined from a data
record of a mixture of the selected FM signals. Denote the
unit-norm eigenvectors associated with by the
columns of and those corresponding to

by the columns of .
We also denote
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as the eigenvalues of de-
fined in (22). The superscript denotes that the associated
term is derived from the STFD matrix . The unit-norm
eigenvectors associated with are represented
by the columns of , and those corre-
sponding to are represented by the columns of

. Then, we have the following.

a) The signal and noise subspaces of and are the
same as and , respectively.

b) The eigenvalues have the following relationship:

(23)

The proof of Lemma 2 is shown in Appendix B.
An important conclusion from Lemma 2 is that the largest

eigenvalues are amplified using STFD analysis. Fig. 1 shows the
two principal (largest) eigenvalues (i.e., ) and (for

and ), where a uniform linear array of eight
sensors ( ) separated by half a wavelength and receiving
signal from two sources is used. The two signals
are of equal power ( ), and their angular sepa-
ration is defined as . We choose , that
is, the two signals are symmetric with respect to the broadside
direction. Denote

as the spatial correlation coefficient between the two directional
vectors and , corresponding to the angles and .
is the 2-norm of a vector. The two largest eigenvalues for the
two uncorrelated signals are given by [12]

(24)

Hence, combining (23) and (24), we obtain

(25)

The amplification of the largest eigenvalues improves de-
tection of the number of the impinging signals on the array as it
widens the separation between dominant and noise-level eigen-
values. Determination of the number of signals is key to estab-
lishing the proper signal and noise subspaces and subsequently
plays a fundamental role in subspace-based applications [13].
When the input SNR is low or the signals are closely spaced, the
number of signals may often be underdetermined. Fig. 2 shows,
for the same signal scenario of Fig. 1, the threshold level of the
input SNR required to determine the correct number of signals

according to the Akaike information criterion (AIC) [14]

(26)

(a)

(b)

Fig. 1. Principal eigenvalues of the correlation and the STFD matrices. (a)
� = �10 , � = 10 . (b) � = �1 , � = 1 .

where

(27)

It is clear from Fig. 2 that when the STFD is applied, the SNR
threshold level that is necessary for the correct determination of
the number of signals is greatly reduced.

Next, we consider the signal and noise subspace estimates
from a finite number of data samples. We form the STFD matrix
based on the true points along the IF of the FM signals.

Lemma 3: If the third-order derivative of the phase of the FM
signals is negligible over the time period ,
then we have the following.
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(a)

(b)

Fig. 2. SNR thresholds to identify two signals (m = 8). (a) SNR threshold
versus angle separation(N = 1024). (b) SNR threshold versus number of
snapshots(�� = 20 ).

a) The estimation errors in the signal vectors are asymptoti-
cally (for ) jointly Gaussian distributed with zero
means and covariance matrices given by

(28)

(29)

b) The orthogonal projections of onto the column
space of are asymptotically (for ) jointly
Gaussian distributed with zero means and covariance
matrices given by

(30)

for all (31)

The proof of (28) and (29) is given in Appendix C, and the proof
of (30) and (31) is given in Appendix D.

To demonstrate the performance advantage of using STFDs,
we substitute (23) into (28)–(30)

(32)

(33)

and

(34)

From (32)–(34), two important observations are in order.
First, if the signals are both localizable and separable in the t–f
domain, then the reduction of the number of signals fromto

greatly reduces the estimation error, specifically when the
signals are closely spaced. The examples, which are given in
the following section, show the advantages of using t-f MUSIC
with partially selected signals. The second observation relates
to SNR enhancements. The above equations show that error
reductions using STFDs are more pronounced for the cases
of low SNR and/or closely spaced signals. It is clear from
(32)–(34) that when for all , the
results are almost independent of(suppose so that

), and therefore, there would be no obvious
improvement in using the STFD over conventional array
processing. On the other hand, when some of the eigenvalues
are close to ( for some ), which
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is the case of weak or closely spaced signals, all the results
of above three equations are reduced by a factor of up to

, respectively. This factor represents, in essence, the
gain achieved from using STFD processing.

IV. TIME–FREQUENCYMUSIC

To demonstrate the robustness of the eigen-decomposition of
the STFDs when used in practical applications, we consider in
this section the recently proposed time-frequency MUSIC (t-f
MUSIC) algorithm [7]. The DOA estimation based on time-fre-
quency maximum likelihood (t-f ML) is investigated in [8].

We first recall that the DOAs are estimated in the MUSIC
technique by determining the values of for which the fol-
lowing spatial spectrum is maximized [15]:

(35)
where is the steering vector corresponding to. The vari-
ance of those estimates in the conventional MUSIC technique,
assuming white noise processes, is given by [9]

(36)

where is the spatial frequency associated with DOA, and
is its estimate obtained by the conventional MUSIC. In the

above equation

(37)

From the results of Lemma 1, part b), , which implies
that (36) also holds true when the conventional MUSIC algo-
rithm is applied to FM signals in white noise.

Similarly, for t-f MUSIC with signals selected, the DOAs
are determined by locating the peaks of the spatial spectrum
defined from the signals’ t-f regions.

(38)

Following the same procedure in [9] and using the results of
Lemmas 2 and 3, we obtain the variance of the DOA estimates
based on t-f MUSIC

(39)

where is the estimate of obtained by the t-f MUSIC,
is defined in (30), and

(40)

which is equal to , if .

V. SIMULATION RESULTS

Consider a uniform linear array of eight sensors spaced by
half a wavelength and an observation period of 1024 samples.
Two chirp signals emitted from two sources positioned at angle

and . The start and end frequencies of the signal source at

Fig. 3. Pseudo Wigner–Ville distribution of the mixture of the two signals.

Fig. 4. Variance of DOA estimation versus SNR.

are and , whereas the corresponding two
frequencies for the other source atare and ,
respectively. The noise used in this simulation is zero-mean,
Gaussian distributed, and temporally white. The SNR of theth
FM signal is defined as SNR . Fig. 3 shows
the PWVD of the mixed noise-free signals for .

Fig. 4 displays the variance of the estimated DOAversus
SNR for the case . The curves in this
figure show the theoretical and experimental results of the con-
ventional MUSIC and t-f MUSIC (for and 129). The
Cramér–Rao bound (CRB) is also shown in Fig. 4 for compar-
ison. Both signals were selected when performing t-f MUSIC
( ). We assume that the number of signals is cor-
rectly estimated for each case. Simulation results were averaged
over 100 independent trials of Monte Carlo experiments. The
advantages of t-f MUSIC in low SNR cases are evident from
this figure. The experiment results deviate from the theoretical
results for low SNR since we only considered the lowest order of
the coefficients of the perturbation expansion ofin deriving



754 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 4, APRIL 2001

Fig. 5. Estimated spatial spectra (m = 8, N = 1024, SNR = �20 dB,
L = 129 for t-f MUSIC).

Fig. 6. Estimated spatial spectra for closely spaced signals (m = 8,N=1024,
SNR= �5 dB,L = 129 for t-f MUSIC).

the theoretical results (see Appendix A). Fig. 5 shows estimated
spatial spectra at SNR dB based on t-f MUSIC (

) and the conventional MUSIC. The t-f MUSIC spectral
peaks are clearly resolved.

Fig. 6 shows examples of the estimated spatial spectrum
based on t-f MUSIC ( ) and the conventional MUSIC
where the angle separation is small ( , ).
The input SNR is dB. Two t-f MUSIC algorithms are
performed using two sets of t-f points, where each set belongs
to the t-f signature of one source ( ). It is evident that
the two signals cannot be resolved when MUSIC is applied,
whereas by applying t-f MUSIC separately for each signal,
the two signals become clearly separated, and reasonable
DOA estimation is achieved. This is attributed to the signal’s
distinct t-f signatures. It is noted that there is a small bias in the
estimates of t-f MUSIC due to the imperfect separation of the
two signals in the t-f domain.

It should be noted that the computation cost used to imple-
ment the t-f MUSIC is higher than the conventional MUSIC
because it involves the additional processing based on bilinear
t-f distributions. Nevertheless, the pseudo Wigner–Ville distri-
bution considered in this paper is relatively simple and only
requires a bilinear product and one FFT operation. Moreover,
there now exist several computationally efficient t-f kernels that
allow TFDs to be provided via spectrogram-based implemen-
tations, recursive, and multiplication-free processing. On the
issue of practical implementation, many procedures have been
devised so that any distribution can be calculated quickly with
minimum computer resources [16]. Recently, kernels have been
devised, specifically tailored to very fast computation, with the
binomial kernel devised by Jeong and Williams being the prime
example [17]. Methods for decomposition of kernels, leading to
fast computation and increased understanding, have also been
carried out by White [18], Amin [19], [20], Venkatesan and
Amin [21], and Cunningham and Williams [22].

VI. CONCLUSIONS

Subspace analyzes of spatial time-frequency distribution
(STFD) matrices have been presented. It has been shown
that for signals with clearly defined t-f signatures, such as
FM signals, smaller estimation errors in the signal and noise
subspaces can be achieved using STFD matrices over the
subspace estimates obtained from the data covariance matrix
approach. This performance improvement is the result of
incorporating the t-f points along the instantaneous frequencies
of the impinging signals on the array into the subspace estima-
tion procedure. Under the assumption that the instantaneous
frequencies are ideally located, these points belong to autoterm
regions of high power concentrations, and as such, when used
in constructing STFDs, they provide high SNR matrices with
improved eigendecompositions.

The advantages of STFD-based direction finding over tradi-
tional direction finding methods using data covariance matrices
were demonstrated using the MUSIC algorithm. It was shown
that the t-f MUSIC outperforms conventional MUSIC in the two
situations of low SNR and closely spaced sources.

Unlike conventional array processing techniques, which are
nondiscriminatory, and must therefore spatially localize all sig-
nals incident on the array, the STFD-based array processing pro-
vides the flexibility of dealing with all signal arrivals or only a
subset of them. In this respect, it does not suffer from the draw-
back of requiring a higher number of sensors than sources. The
ability to select fewer sources depends on the differences of their
t-f signatures from those of other source signals. The eigenstruc-
ture of the STFD matrix constructed from the t-f points that be-
long to the autoterm regions of a number of sources will only
yield the signal subspace of these sources. It was shown that
the maximum improvement offered using STFD over data co-
variance matrices is obtained when constructing the STFD from
only one source signal.

APPENDIX A

For notational simplicity, we denote ,
as the eigenvectors of the correlation matrix , where the
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first vectors form the signal subspace (, ),
and the last vectors form the noise subspace (,

).
To derive the covariance matrices, we follow the same proce-

dure in [9] and [23] but note the fact that the underlying signals
are deterministic rather than white random processes, which are
considered in [9] and [23]. We define in terms of a random
perturbation to with a perturbation factor, .
Thus

(A.1)

When the source signals are FM and the noise vector forms
a multivariate white Gaussian process, thenis a Hermitian,
zero-mean random matrix whose elements are asymptotically
jointly Gaussian. Let denote the unnormalized perturbed ver-
sion of the eigenvector . According to [24]

(A.2)

where , are the coefficients of the perturbation
expansion of along . By keeping the term with the lowest
order of , then [23]

(A.3)

The mean square value of is given by

(A.4)

To evaluate the numerator in the above equation, we consider
the following general case:

(A.5)

It can be easily realized that the expected value in (A.5) is taken
from a product of four nonzero mean Gaussian random vari-
ables. It is well known that for Gaussian random variable,

, , with nonzero means

(A.6)

Using the properties of the zero-mean circular complex
Gaussian noise vector and the deterministic source signal
vector

Accordingly, (A.5) can be written as

(A.7)

By using the uncorrelation assumption (7)

(A.8)

(A.7) simplifies to

(A.9)
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Therefore

(A.10)

and

(A.11)

It is shown in [13] that

cov cov

By ignoring the terms of , then

cov cov

(A.12)

Replacing by or leads to (8). Similarly

cov cov

(A.13)

From (A.9), it is clear that the above equation has nonzero value
only when and . Noting the fact that and

, (A.13) becomes

cov

(A.14)

For the signal subspace, is , , and (A.14)
yields (9), and this concludes the proof for part a) of Lemma
1.

APPENDIX B

Using eigendecomposition theory, we have

(B.1)

where diag is a diagonal matrix
whose elements are the eigenvalues of , and
is the corresponding eigenvector matrix. Clearly, ,

, and .
From the definition of and , it is evident that

(B.2)

Therefore, and share the same set of eigenvectors,
which proves part a) of Lemma 2. Theth eigenvalue of is

for and is for
, subsequently leading to part b).

APPENDIX C

Similar to Appendix A, we let , represent
the whole eigenvectors of the STFD matrix, where the first

vectors form the signal subspace (, ),
whereas the last vectors form the noise subspace (,

). As discussed in Section III, we assume
that the selected t-f points belong to regions where no crossterm
components are present.

For an array mixture of FM signals, we select points from
signals at the t-f domain, where the pseudo Wigner–Ville

distribution matrix is defined in (13). We define in terms of
a random perturbation to with a perturbation factor ,

. Thus

(C.1)

Matrix is a Hermitian, zero-mean random matrix whose el-
ements are asymptotically jointly Gaussian [8]. Similar to Ap-
pendix A, we derive

(C.2)
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Substituting (21) and (A.7) into (C.2), we obtain

(C.3)

Under the assumption of no crossterms,should be equiva-
lent to to have nonzero values, and in this case,
. Note that within the t-f region of theth signal,

. When the third-order derivative of the phase
is negligible over for any signal and any
, we have

(C.4)

Let denote the unnormalized eigenvector given in a per-
turbation expansions by

(C.5)

where , are the coefficients of the perturbation
expansion of along , and keeping the term with the lowest
order of , then

(C.6)

Therefore

(C.7)

and

(C.8)

Similar to Appendix A, we follow

cov cov

(C.9)

Equation (28) follows by properly replacing by or .
Similarly

cov

cov

(C.10)
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For the columns of signal subspace,becomes , and (C.10)
becomes (29).

APPENDIX D

This Appendix follows the procedure of [9]. Denote

and the th column of . Using the results of (C.2)–(C.4) and
the fact , we have

(D.1)

Subsequently

(D.2)

where diag . Similarly,

(D.3)

and subsequently

(D.4)

Since has the same limiting distribution as that
of [8], then it follows that

(D.5)

and

for all (D.6)
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