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Array Processing for Nonstationary Interference
Suppression in DS/SS Communications Using
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Abstract—Combined spatial and time–frequency signatures of
signal arrivals at a multisensor array are used for nonstationary
interference suppression in direct-sequence spread-spectrum
(DS/SS) communications. With random PN spreading code
and deterministic nonstationary interferers, the use of antenna
arrays offers increased DS/SS signal dimensionality relative to
the interferers. Interference mitigation through a spatio-temporal
subspace projection technique leads to reduced DS/SS signal
distortion and improved performance over the case of a single
antenna receiver. The angular separation between the interference
and desired signals is shown to play a fundamental role in trading
off the contribution of the spatial and time–frequency signatures
to the interference mitigation process. The expressions of the
receiver signal-to-interference-noise ratio (SINR) implementing
subspace projections are derived, and numerical results are
provided.

Index Terms—Array processing, direct-sequence spread-spec-
trum communication, interference suppression, subspace
projection, time–frequency distribution.

I. INTRODUCTION

T HERE are several methods that have been proposed for
interference suppression in direct-sequence spread-spec-

trum (DS/SS) communications. Most have been related to
one domain of operation [1], [2]. These methods include
the narrowband interference waveform estimation [3], [4],
frequency domain interference excision [5], zero-forcing tech-
niques [6], adaptive subspace-based techniques [7], [8], and
minimum-mean-square error (MMSE) interference mitigation
techniques [9].

Nonstationary interferers, which have model parameters that
change with time, are particularly troublesome due to the in-
ability of a single domain mitigation algorithm to adequately
remove their effects. The recent development of the quadratic
time–frequency distributions (TFDs) for improved signal power
localization in the time–frequency plane has motivated several
new approaches for excision of interference with rapidly time-
varying frequency characteristics in the DS/SS communication
systems. Comprehensive summary of TFD-based interference
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excision is given in [10]. The two basic methods for time–fre-
quency excision are based on notch filtering and subspace pro-
jections. Utilization of the interference instantaneous frequency
(IF), as obtained via TFDs, to design an open-loop adaptive
notch filter in the temporal domain, has been thoroughly dis-
cussed in [11] and [12]. Subspace projection methods, which are
commonly used for mitigating narrowband interference [13],
[14], have been recently introduced for suppression of frequency
modulated (FM) interference and shown to properly handle mul-
ticomponent interference, reduce the self-noise, and improve
the receiver performance beyond that offered by other time–fre-
quency based techniques [15]–[17].

The main purpose of this paper is to integrate spatial and tem-
poral processing for suppression of nonstationary interferers in
DS/SS communication systems. Specifically, we extend the pro-
jection-based interference mitigation techniques in [15]–[17]
to multisensor array receivers. The proposed multisensor inter-
ference excision technique builds on the offerings of quadratic
time-frequency distributions for estimation of 1) the time–fre-
quency subspace and time–frequency signature of nonstationary
signals and 2) the spatial signature of nonstationary sources
using direction finding and blind source separations. With the
knowledge of the time–frequency and spatial signatures, the ob-
jective is to effectively suppress strong nonstationary interferers
with few array sensors. The proposed technique does not re-
quire the knowledge of the array response or channel estima-
tion of the DS/SS signal, but it utilizes the distinction in both
of its spatial- and time–frequency signatures from those of the
interferers that impinge on the array. With the combined spa-
tial-time–frequency signatures, the projection of the data vector
onto the subspace orthogonal to that of the interferers leads to
improved receiver performance over that obtained using the sub-
space projection in the single-sensor case.

The rest of the paper is organized as follows. In Section II,
the signal model is described. Section III briefly reviews the
subspace projection technique. We present in Section IV blind
beamforming based on subspace projection and derive the
receiver output signal-to-interference-plus-noise ratio (SINR).
Several numerical results are given in Section V. Section VI
concludes this paper.

II. SIGNAL MODEL

In DS/SS communications, each symbol is spread into
chips, where and are, respectively, the symbol du-

ration and chip duration. We use discrete-time form, where all
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signal arrivals are sampled at the chip-rate of the DS/SS signal.
The symbol-rate source signal is denoted as , and the ape-
riodic binary spreading sequence of theth symbol period is
represented by . The chip-rate
sequence of the DS/SS signal can be expressed as

with (1)

For notational simplicity, we use instead of for the
spreading sequence.

We consider an antenna array ofsensors. The propagation
delay between antenna elements is assumed to be small rela-
tive to the inverse of the transmission bandwidth so that the re-
ceived signal at the sensors are identical to within complex
constants. The received signal vector of the DS/SS signal at the
array is expressed by the product of the chip-rate sequence
and its spatial signature

(2)

The channel is restricted to flat fading and is assumed fixed over
the symbol length, and as such,in the above equation is not a
function of .

The array vector associated with a total ofinterference sig-
nals is given by

(3)

where is the array response to theth interferer . Without
loss of generality, we set and

, where is the Frobenius norm of a vector. The
input data vector is the sum of three components

(4)

where is the additive noise vector. With regard to the above
equation, we make the following assumptions.

A1) The information symbols is a wide-sense sta-
tionary process with , where
is the statistical expectation operator, and the super-
script denotes complex conjugation. The spreading
sequence is a binary random sequence with

, where is the delta
function.1

A2) The noise vector is zero-mean, temporally and
spatially white with

for all

and

1This assumption is most suitable for military applications and P-code GPS.

Fig. 1. Jammer suppression by subspace projection.

Fig. 2. Block diagram of single-sensor subspace projection.

where is the noise power, the superscriptsand
denote transpose and conjugate transpose, respec-

tively, and is the identity matrix.
A3) The signal and noise are statistically uncorrelated.

III. SUBSPACEPROJECTION

The aim of subspace projection techniques is to remove the
interference components before despreading by projecting the
input data on the subspace orthogonal to the interference sub-
space, as illustrated in Fig. 1. The receiver block diagram is
shown in Fig. 2.

A nonstationary interference, such as an FM signal, often
shares the same bandwidth with the DS/SS signal and noise.
As such, for a chirp signal or a signal with high-order frequency
laws, the signal spectrum may span the entire frequency band,
and the sample data matrix loses its complex exponential struc-
ture responsible for its singularity. Therefore, the interference
subspace can no longer be obtained from the eigendecompo-
sition of the sample data matrix [13], [15] or the data covari-
ance matrix [14], as it is typically the case in stationary environ-
ments. The nonstationary interference subspace, however, may
be constructed using the interference time-frequency signature.
Methods for estimating the instantaneous frequency, instanta-
neous bandwidth, and, more generally, a time–frequency sub-
space, based on the signal time–frequency localization proper-
ties are, respectively, discussed in [15], [18], and [19].

For the general class of FM signals, and providing that inter-
ference suppression is performed separately over the different
data symbols, the interference subspace is one-dimensional
(1-D) in an -dimensional space. We note that since an FM
interference has a constant amplitude, its respective data vector
can be determined from the IF up to a complex multiplication
factor. The unit norm normalization of this vector represents
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the 1-D interference subspace basis vector. Among candidate
methods of IF estimation is the one based on the time–fre-
quency distributions. For example, the discrete form of Cohen’s
class of TFD of a signal is given by [20]

(5)

where is a time–frequency kernel that could be
signal-dependent. The TFD concentrates the interference signal
power around the IF and makes it visible in the noise and
pseudo-random (PN) sequence background [18], [21]. It has
been shown that, for linear FM signals, the Radon–Wigner
transform provides improved IF estimates over the TFD [22].
Parametric methods using autoregressive model have also been
proposed [23].

Other nonstationary interference with instantaneous band-
width or spread in the time–frequency domain are captured
in a higher dimension subspace. In this case, the interference
subspace can be constructed from the interference localization
region in the time–frequency domain (see, for example,
[15]). The subspace of interest becomes that which fills out
the interference time–frequency regionenergetically but has
little or no energy outside .

Interference-free DS/SS signals are obtained by projecting
the received data vector (in the temporal domain processing,
the vector consists of data samples at different snapshots) on
the subspace orthogonal to the interference subspace.

A. Temporal Processing

In the single-sensor receiver, the input data is expressed as

(6)

Using sequential chip-rate samples of one symbol of the re-
ceived signals at time index, we obtain the following input
vector:

(7)

or simply

(8)

We drop the variable for simplicity, with the understanding
that processing is performed over theth symbol that starts at
the th chip. Then, (8) becomes

(9)

Later, we relax the FM condition used in [13], [16] that trans-
lates to a single dimension interference. The general case of an
interference occupying higher dimension subspace is consid-
ered. We assume that theth interferer spans -dimensional

subspace, which is defined by the orthonormal basis vectors
, and the different interference subspaces

are disjoint. Define

(10)

and let be the number of total dimensions of the
interferers. With , the matrix

for (11)

is full rank, and its columns span the combined interference sub-
space . The respective projection matrix is

(12)

The projection matrix associated with the interference orthog-
onal subspace is then given by

(13)

When applied to , matrix projects the input data vector onto
and results in

(14)

which no longer includes any interference component.
The single-sensor receiver implementing subspace projection

for excision of a single instantaneously narrowband FM inter-
ferer (i.e., ) in DS/SS communications is de-
rived in [24]. The receiver SINR is shown to be

SINR

(15)

For typical values of , and (15) can be
simplified as

SINR (16)

Compared with the interference-free environment, where the re-
ceiver SINR is , nonstationary interference suppression in
(16) is achieved by reducing the processing gain by 1 and in-
creasing the noise power by the self-noise factor of.

IV. SUBSPACEPROJECTION INMULTISENSORRECEIVER

In this section, we consider nonstationary interference exci-
sion in multisensor receivers using subspace projections. We
note that if the subspace projection method discussed in Sec-
tion III is extended to an -element array by suppressing the
interference independently in each sensor data and then com-
bining the results by maximum ratio combining (see Fig. 3),
then it is straightforward to show that the receiver SINR is given
by

SINR (17)

The above extension, although clearly improved over (16), does
not utilize the potential difference in the spatial signatures of
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Fig. 3. Block diagram of independent multisensor subspace projection.

signal arrivals and, therefore, is inferior to the receiver proposed
in this section.

A. Spatio-Temporal Signal Subspace Estimation

To construct the spatio-temporal signal subspace of the in-
terference signals, it is important to estimate both the time–fre-
quency signature (or subspace) and the spatial signature of each
interferer. The IF estimation of an FM interference signal based
on time–frequency distribution is addressed in Section III. It is
noteworthy that when multiple antennas are available, the TFD
may be computed at each sensor data separately and then aver-
aged over the array. This method has been shown in [25] to im-
prove the IF estimation, as it reduces noise and crossterms that
often obscure the source true power localization in the time–fre-
quency domain.

On the other hand, the estimation of source spatial signa-
ture can be achieved, for example, by using direction-finding
and source-separation techniques. When the interference sig-
nals have clear bearings, methods like MUSIC [26] and max-
imum likelihood (ML) [27] can be used to estimate the steering
matrix of the interference signals. These methods can be re-
vised to incorporate the TFD of the signal arrivals for improved
performance [28]–[30]. On the other hand, in fading channels
where the steering vector loses its known structure due to multi-
path, blind source separation methods should be used [31]–[33].
Since the interferers in DS/SS communications often have rela-
tively high power, good spatial signature estimation is expected.

More conveniently, the spatial signatures can be simply esti-
mated by using matched filtering once the time–frequency sig-
natures are provided. The maximum likelihood estimator for the
vector is obtained as

(18)

where is the estimated waveform of theth interferer. It
is noted that the possible phase ambiguity in the waveform es-
timation of does not affect the estimation of the spatial
signature. For slowly varying channels, the above average can
also be performed over multiple symbols to improve the estima-
tion accuracy.

In the analysis presented herein, we assume knowledge of
the interference subspace and its spatial signature to derive the
receiver SINR.

B. Proposed Technique

The subspace projection problem for nonstationary interfer-
ence suppression in DS/SS communications is now considered
within the context of multisensor array usingarray elements.
We use one symbol DS/SS signal duration (i.e.,chip-rate tem-
poral snapshots) and stackdiscrete observations to construct
an vector of the received signal sequence in the joint
spatio-temporal domain. In this case, the received signal vector
in (4) becomes

(19)

or simply

(20)

where again, the variableis dropped for simplicity.
In (19), the interference vector in the single-sensor problem,

which is given by (7), is extended to a higher dimension. With
the inclusion of both temporal and spatial samples, theth basis
of the th interference becomes

(21)

and

(22)

where denotes the Kronecker product. The columns of the
matrix

(23)

spans the overall interference signal subspace.
For independent spatial signatures, the matrix rank is. The

orthogonal projection matrix is given by

(24)

The projection of the signal vector on the orthogonal subspace
of the interferers’ yields

(25)

The block diagram of the proposed method is presented in
Fig. 4. As shown in the next section, effective interference sup-
pression can be achieved solely based on the spatial signatures
or the time-frequency signatures, or it may require both.

C. Performance Analysis

Later, we consider the performance of the multisensor re-
ceiver system implementing subspace projections. Recall that

for any (26)

and

(27)
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Fig. 4. Block diagram of proposed multisensor subspace projection.

and the projection matrix becomes

(28)

The signal vector can be rewritten as

(29)

where the vector

(30)

defines the spatio-temporal signature of the desired DS/SS
signal. is the extension of the DS/SS code by replicating it
with weights defined by the signal spatial signature.

By performing despreading and beamforming, the
symbol-rate decision variable is given by

(31)

where is the contribution of the desired DS/SS signal to
the decision variable, and is the respective contribution
from the noise.

The SINR of the array output becomes (32), shown at the
bottom of the page (see also Appendix A), whereis defined
in (A.9), and is the spatial correlation coefficient between the
spatial signatures and and is given by

(33)

Note that when the noise power is small, i.e., , the vari-
ance of becomes dominant, and the output SINR reaches the
following upper bound:

SINR (34)

This result is affected by the factors , and
. On the other hand, when the noise level is very high,

i.e., , the noise variance plays a key role in determining
, and the output SINR becomes

SINR

(35)

Unlike the high input SNR case, the output SINR in (35) also
depends on both and . Comparing (34) and (35), it is clear
that the improvement in the receiver SINR becomes more sig-
nificant when the spatial signatures produce small spatial corre-
lation coefficients and under high SNR.

Next, we consider some specific important cases. When
, the receiver SINR in (32) be-

comes SINR . This is to say, the output SINR is im-
proved by a factor of over the input signal-to-noise ratio
(SNR) (not the input SINR). This implies that the interferers are
suppressed by spatial selectivity of the array, and their suppres-
sion does not cause any distortion of the temporal characteristics
of the DS/SS signal. The DS/SS signal, in this case, enjoys the
array gain that contributes the factorto the SINR.

For a single FM interferer , (32) becomes

SINR (36)

It is easy to show that SINR in (36) monotonously decreases as
increases, and the lower bound of the SINR is reached for

, which is the case of the desired DS/SS signal and the
interference signal arriving from the same direction. With a unit
value of

SINR (37)

This result is the same as that of the single-sensor case de-
veloped in [16], except for the appearance of the array gain

for the desired DS/SS signal over the noise. This equation
also coincides with (17). That is, the independent multisensor
subspace projection illustrated in Fig. 3 results in the same

SINR (32)
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Fig. 5. Output SINR versusj� j (input SNR= 0 dB,L = 64; U = 1;M =
7).

output SINR with the proposed multisensor subspace projection
method when .

On the other hand, the maximum value in (36) corresponds
to and is equal to SINR , as discussed above.
For the illustration of the SINR behavior, we plot in Fig. 5 the
SINR in (36) versus for a two-sensor array, where ,
and one FM jammer is considered with . The input SNR
is 0 dB.

Given the temporal and spatial signatures, the proposed tech-
nique simplifies to two consecutive tasks. The first is to estimate
the spatio-temporal signature. When using multiple antenna re-
ceivers, a basis vector of the orthogonal projection matrix is ob-
tained by the Kronecker product of a jammer’s temporal signa-
ture and its spatial signature, which results in the
orthogonal project matrix instead of in the single antenna
case. The second task is jammer suppression via subspace pro-
jection. This involves the multiplication of an matrix
and an vector.

Note that such an increase in computations is natural due to an
increase of dimensionality. It is noteworthy that array processing
expands overall space dimensionality but maintains the jammer
subspace dimension. As a result, it yields improved SINR per-
formance over temporal processing or spatial processing only
methods.

V. NUMERICAL RESULTS

A two-element array is considered with half-wavelength
spacing. The DS/SS signal uses random spreading sequence
with . The AOA of the DS/SS signal is 0from
broadside .

We consider two interference signals. Each interference
signal is assumed to be made up of uncorrelated FM com-
ponent with . The overall interference
subspace is . The AOAs of the two interferers are

. The respective spatial correlations in this
example are and . Note that in the
subspace projection method, the output SINR is independent
of the input jammer-to-signal ratio (JSR) since the interferers
are entirely suppressed, regardless of their input power. Fig. 6

Fig. 6. Output SINR versus input SNR(L = 64; U = 2;M = M =
7; � = 0 ; � = [40 ; 60 ]).

Fig. 7. Output SINR versus the number of chips per symbol(L) (input SNR=
0 dB,U = 2;M = M = 7; � = 0 ; � = [40 ; 60 ]).

shows the receiver SINR versus the input SNR. The upper
bounds correspond to interference-free data. For high input
SNR, the receiver SINR is decided by the induced signal
distortion described by the variance given in (A.10). It is
evident from Fig. 6 that the two-antenna receiver outperforms
the single-antenna receiver case by a factor much larger than
the array gain. Since the output SINR in the two-antenna
receiver highly depends on the spatial correlation coefficients,
the curves corresponding to a two-sensor array in Fig. 6 will
assume different values upon changing, and/or . The best
performance is achieved at .

Fig. 7 shows the receiver SINR versus the number of chips
per symbol . We let vary from 8 to 4096, whereas the input
SNR is fixed at 0 dB. The two interference signals are incident
on the array with angles . They are assumed to
maintain their time–frequency spread with increased value of

. As such, the respective dimensions of their subspaces grow
proportionally with the number of chips per symbol. In this ex-
ample, the dimension of each interference signal is assumed to
be 10% of (round to the nearest integer). The output SINR im-
provement by performing array processing at differentis evi-
dent from this figure. It is seen that unlike the case of the instan-
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Fig. 8. Output SINR versus the number of array sensors (input SNR= 0 dB,
L = 64; U = 2;M = M = 7).

taneously narrowband FM interference, where the output SINR
increases rapidly as increases, the output SINR in the under-
lying scenario ceases to increase asassumes large values. This
is because the rank of the interference signal subspace increases
with .

In Fig. 8, we investigate the receiver SINR performance
versus the number of array sensors. In this figure,is set
at 64, and the input SNR is 0 dB. Two interference signals
composed of uncorrelated FM components are considered,
and are assumed. Two examples are used
to examine the effect of different AOAs. In the first example,

. The output SINR improves sharply as the
number of array sensors increases from one to three, beyond
which the improvement becomes insignificant. The differences
in the above AOAs of the desired DS/SS signal and the inter-
ference signals are relatively large, and a small number of array
sensors leads to negligible spatial correlation coefficients. We
also show a case with closely spaced interference signals where

. In this case, the output SINR slowly improves
as the number of array sensors increases.

It is noted that when we consider a specific case, the output
SINR does not increase monotonously with the number of array
sensors. This is because the relationship between the spatial cor-
relation coefficient and the AOAs is by itself not monotonous.
Nevertheless, when we consider the general case with different
AOA combinations, a high number of array sensors often reduce
the spatial correlation coefficients.

VI. CONCLUSION

In this paper, subspace projection techniques were em-
ployed to suppress nonstationary interferers in direct-sequence
spread-spectrum (DS/SS) communication systems. Inter-
ference suppression is based on the knowledge of both the
interference time–frequency and spatial signatures. While the
former is based on instantaneous frequency information that
can be gained using several methods, including time–frequency
distributions, the later can be provided from applying higher
resolution methods or blind source separation techniques to the
signal arrivals.

The differences between the DS/SS signal and interference
signatures both in the time–frequency and spatial domains equip
the projection techniques with the ability to remove the interfer-
ence with a minimum distortion of the desired signal.

The receiver performance based on subspace projections was
analyzed. It was shown that the lower performance bound is ob-
tained when the sources have the same angular position. In this
case, the problem becomes equivalent to a single-antenna re-
ceiver with only the presence of the array gain. On the other
hand, the upper bound on performance is reached in the inter-
ference-free environment and corresponds to the case in which
the spatial signatures of the interference signals are orthogonal
to that of the DS/SS signal.

Numerical results were presented to illustrate the receiver
SINR dependency on spatial correlation coefficient, input SNR,
and the PN sequence length.

APPENDIX A

To derive the output SINR expression, we use
(the output SINR is independent of and same result follows
when ). Then

(A.1)

It is straightforward to show that [the definition of is given in
(33)]

(A.2)

Using the orthogonal property of the spreading sequence A1),
(A.1) becomes

(A.3)



3012 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 12, DECEMBER 2001

Due to the zero-mean property of noise (assumption A2),
. Accordingly

(A.4)

It is clear from (A.4) that the increase in the space dimen-
sionality from to does not simply translate into a
corresponding increase in the desired mean value or, subse-
quently, in the processing gain. In addition, from assumption
A3), the cross-correlation between and is zero, i.e.,

(A.5)

Therefore, the mean square value of the decision variable is
made up of only two terms

(A.6)

The first term is the mean square value of . From (26), we
have

(A.7)

where

(A.8)

and

(A.9)

In practice, takes negligible values, and (A.7) can be simpli-
fied to

(A.10)

The value of depends on the type of interference signals.
Specifically, when theth interference signal is made up of a
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single FM or a number of uncorrelated FM signal components,
then the basis vectors are of constant modulus, and

(A.11)

The second term of (A.6) is the mean-square value of

(A.12)

The variance of is given by

(A.13)

Equation (32) follows by using the results of (A.4) and (A.13).
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