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Spatial Averaging of Time–Frequency Distributions
for Signal Recovery in Uniform Linear Arrays
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Abstract—This paper presents a new approach based on
spatial time–frequency averaging for separating signals received
by a uniform linear antenna array. In this approach, spatial
averaging of the time–frequency distributions (TFDs) of the
sensor data is performed at multiple time–frequency points.
This averaging restores the diagonal structure of the source TFD
matrix necessary for source separation. With spatial averaging,
crossterms move from their off-diagonal positions in the source
TFD matrix to become part of the matrix diagonal entries. It is
shown that the proposed approach yields improved performance
over the case when no spatial averaging is performed. Further, we
demonstrate that in the context of source separation, the spatially
averaged Wigner–Ville distribution outperforms the combined
spatial–time–frequency averaged distributions, such as the one
obtained by using the Choi–Williams distribution. Simulation
examples involving the separation of two sources with close AM
and FM modulations are presented.

Index Terms—Array signal processing, spatial time–frequency
distribution, subspace analysis, time–frequency distribution, time–
frequency MUSIC.

I. INTRODUCTION

RECENTLY, time–frequency distributions (TFDs) have
been employed for direction finding and blind source

separation problems in sensor array processing [1]–[5]. The
spatial time–frequency distributions (STFDs) were introduced
in [1] and represented by a spatial matrix whose elements are
the auto- and cross-time–frequency distributions of the data
received at the different array sensors. STFD techniques are
most appropriate to handle sources of nonstationary waveforms
that are localized in the time–frequency domain. The robustness
of the subspace estimates using STFD matrices is analyzed in
[17] and shown to have an advantage over those obtained from
the covariance matrices.

The application of STFDs to separating sources with distinct
time–frequency signatures is presented in [2]. In this reference,
it is shown that the source TFD matrix, whose elements are
the auto- and cross-TFD of the source signals, and the sensor
data STFD have the same relationship as the one between the
source and the data correlation matrices. This relationship is de-
fined by the mixing or the array manifold matrix. The steps ap-
plied in blind source separation based on second-order statistics
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(the SOBI technique) outlined in [9] could therefore be used
in the time–frequency formulation of the problem. The gen-
eral theory of solving blind source separation problems using
spatial arbitrary joint-variable distributions, including those of
time and frequency, is given in [3]. In [4], the two arbitrary
variables are chosen as the time-lag and frequency-lag, and the
source separation was performed using spatial ambiguity func-
tions. The use of STFDs for direction finding is discussed in [5]
and [18], where the time–frequency MUSIC and the time–fre-
quency maximum likelihood techniques are proposed.

Although blind source separations based on TFD outperform
the SOBI method for nonstationary signals, the fundamental
problem with the bilinear time–frequency approach remains the
need for the incorporation of STFD matrices computed only at
the source autoterm points. Crossterms impede performance, as
they reside on the off-diagonal elements of the source TFD ma-
trix, and as such, violate its diagonal structure necessary for
source separation. Identification of autoterm regions are often
difficult for a large class of multicomponent nonstationary sig-
nals, and even if properly identified, due to the complexity of
the impinging signal time–frequency signatures and the use of
finite data records, autoterm regions cannot be entirely free from
crossterm mainlobe or/and sidelobe contamination.

In this paper, we discuss the role of TFD crossterms and
demonstrate the effect of spatial averaging on STFDs. By uti-
lizing the Vandermonde structure of the array manifold matrix
and performing spatial averaging on the spatial time–frequency
distribution matrices, we set the off-diagonal elements of the
corresponding source TFD matrix to zero. This is achieved by
moving the crossterms from their off-diagonal positions to join
the autoterms as diagonal entries of the source TFD matrix at
one time–frequency point. In this respect, the performance of
the source separation technique becomes much less dependent
on the selection of the time–frequency points at which the STFD
matrices are computed. It is shown that the spatially averaged
STFDs outperform the case where no spatial averaging is per-
formed, even when only autoterm points are involved in both
cases.

Spatial averaging is a simple and well-known technique in
conventional array processing [6]. It employs additional array
sensors to reduce cross-correlation in coherent and correlated
signal environments, thereby permitting proper angle-of-arrival
(AOA) estimations and source separations. In this paper, we
show that spatial averaging plays a key role in the underlying
TFD-based source separation problem, and its application leads
to matrix diagonalization and crossterm mitigation. Spatial av-
eraging gives robustness to time–frequency point selections and
yields improved performance over other TFD-based techniques,
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specifically for sources whose signatures are closely separated
in the time–frequency domain.

The restoration of the diagonal structure of the source TFD
is only part of the problem. Source separation using spatially
averaged TFD evaluated at a single time–frequency point can
still lead to noisy and nonunique results. Since the power
distribution of the signals impinging on the array varies over
the time–frequency plane, then different time–frequency points
may exhibit different SNR’s. The main two advantages of in-
corporating several spatially averaged TFD matrices evaluated
at different time–frequency points into a joint-diagonalization
scheme are to avoid having degenerate eigenvalues and to
reduce the possibility of choosing a point with high noise
contamination.

It is noted that unlike the method in [2], the proposed ap-
proach requires the information on the array manifold and is
sensitive to the calibration error. In this case, conventional AOA
estimation methods, such as the maximum likelihood [11], ma-
trix pencil [12], MUSIC [13], root MUSIC [14], [15], and ES-
PRIT [16] techniques can also be used to estimate the mixing
matrix and further to separate the source signals. The proposed
approach not only requires no angular search but also enjoys the
discriminatory property of TFD-based array processing, where
fewer sources can be considered by only selecting their respec-
tive time–frequency signatures [17]–[19].

This paper is organized as follows. In Section II, the source
separation approach based on spatial time–frequency distribu-
tion is briefly summarized. In Section III, we introduce the spa-
tially averaged time–frequency distributions and discuss the dif-
ference between spatial averaging and kernel methods in han-
dling the crossterm problem. Simulation results demonstrating
the usefulness of the proposed technique are given in Section
IV.

II. SOURCESEPARATIONBASED ONSPATIAL TIME–FREQUENCY

DISTRIBUTIONS

A. Spatial Time–Frequency Distributions

In many practical situations, the data vector for an -ele-
ment array follows an instantaneous mixture model and is given
by

(1)

where is the data snapshot
vector at time , and the superscript denotes transpose. The
vector contains source signals
at the same time, and is the additive noise vector. This
model is commonly used in the field of narrowband array
processing. The vector contains
the noise-free array output. The mixing matrixis the transfer
function between the source signals and the data at the array
sensors. We assume that the mixing matrixis full column
rank.

The source signal vector is assumed to be a deterministic
signal vector with correlation matrix

(2)

where superscript denotes the conjugate transpose of a ma-
trix or a vector. In [2], it is assumed that diag

, where diag is the diagonal matrix formed
with the elements of its vector valued argument, and

denotes the cor-
relation of . This assumption implies that the components

, are mutually uncorrelated. However, in our
proposed method, this assumption is no longer necessary.

The additive noise is modeled as a stationary, temporally
white, zero-mean complex random process independent of the
source signals. For simplicity, we also require to be spa-
tially white, i.e.,

(3)

where is the Kronecker delta, and denotes the identity
matrix. Since the signal power and the signal ordering are inde-
terminable in source separations [3], we simplify the problem
by treating the source signals as if they have unit power. Ac-
cordingly

and

(4)
The discrete-time form of Cohen’s class of TFD for signal

is given by [7]

(5)

where and represent the time index and the frequency index,
respectively. The kernel characterizes the TFD and is a
function of both the time and lag variables. The cross-TFD of
two signals and is defined by [7]

(6)

One possible definition of spatial time–frequency distribution
(STFD) is given in [2] and incorporates both equations (5) and
(6)

(7)

where for .
It is shown in the next section that other forms of STFD can be
more useful in the context of source separation. Under the linear
data model of (1), and assuming a noise-free environment, the
STFD matrix in (7) takes the following simple structure:

(8)

where is the signal TFD matrix whose entries are the
auto- and cross-TFDs of the sources. Equation(8) is similar to
the formula that is commonly used in conventional blind source
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separation and direction-of-arrival (DOA) estimation problems
[8], [9], relating the signal correlation matrix to the data
spatial correlation matrix. If is a full-rank matrix,
the two subspaces spanned by the principle eigenvectors of

and the columns of become identical. In this case,
direction-finding techniques based on eigenstructures can be
applied. If is diagonal, i.e., the signal cross-TFDs at
the time–frequency point are zeros, the mixture matrix
and the signal waveforms can be recovered using blind source
separation methods [1], [2].

B. Source Separation Based on Spatial Time–Frequency
Distributions

The source separation algorithm based on spatial time–fre-
quency distributions is an essential part of the proposed method.
The algorithm is given in details in [2] and is summarized below.

The first step is the whitening of the signal part of the
observation. This is achieved by applying a whitening matrix

to , i.e., an matrix satisfying

(9)

is an unitary matrix , and matrix can be written
as

(10)

where superscript denotes pseudo-inverse. The whitened
process still obeys a linear model

(11)

By pre- and post-multiplying the STFD matrices by
, we obtain

(12)

which is, in essence, the STFD of the whitened data vector.
From the definitions of and

(13)

Equation (13) shows that if is diagonal, then any
whitened data STFD matrix is diagonal in the basis of the
columns of the matrix , and the eigenvalues of
are the diagonal entries of . An estimate of the
unitary matrix may be obtained as a signal subspace of a
whitened STFD matrix evaluated at a time–frequency point
corresponding to the signal autoterm. The source signals can
then be estimated as , and the mixing matrix

is estimated by .
Although the unitary matrix can be obtained from a single

time–frequency point, STFDs corresponding to different
points should be incorporated to reduce the possibility of
having degenerate eigenvalues and, subsequently, nonunique
solutions. The joint-diagonalization (JD) scheme can be used
to incorporate multiple time–frequency points [2]. This scheme

forms STFD matrices at a set
of preferable time–frequency autoterm points. The unitary
matrix is then obtained as the joint diagonalizer of the set

.

III. SPATIAL AVERAGING TIME–FREQUENCYDISTRIBUTIONS

A. Spatial Averaging Methods

The spatial averaging method was introduced by Pillai [6] to
restore the full-rank property of the signal correlation matrix in
the presence of coherent signals. Unlike other spatial smoothing
methods [20]–[23], which only restore the full-rank property of
the mixing matrix when the impinging signals are coherent, the
spatial averaging method enforces the diagonal structure of the
signal correlation matrix. This diagonal matrix property is es-
sential to perform source separation, as previously discussed.
Here, we present the role of spatial averaging in the context of
TFD analysis and propose signal separation using joint diago-
nalization based on spatial averaging of spatial TFD matrices.

The basic idea of spatial averaging is to use subarrays of a
uniform linear array to obtain an averaged correlation matrix
or, in the underlying problem, an averaged STFD matrix, with
the off-diagonal elements set to zero.

Without loss of generality, we consider a simple example of
, i.e., there are only two sources and . The result

is generally true for sources and sensors, as long as .
By ignoring the effect of noise, the received signal at theth

array sensor is represented by

(14)

where are the spatial radian fre-
quencies, are the angles-of-arrival, is the RF wavelength,
and is the distance between the zeroth and theth array sen-
sors. The cross-TFD of and , assuming uniform linear
array, is

(15)

Due to the presence of the cross-terms [second term in each
bracket in (15)], the TFD matrix does not provide
the proper information to carry out source separations.

The auto- and cross-TFD of the data and ,
is

(16)

where we used the sensor receiving as the reference sensor
and set . Denote
and . The values of

and are generally complex. If and
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are real, then the Hermitian Toeplitz spatial time–fre-
quency matrix

...
...

. . .
...

(17)

generated from the cross-TFDs , , ,
between the data samples at the reference sensor

and those at other sensors of the array can be expressed as [24]

(18)

where is a Vandermonde matrix, and

diag (19)

is the corresponding source TFD matrix. Note that
has a different structure from that of the STFD matrix defined
in (7) and was used in [2] for blind source separation. Clearly,
(18) has the same form as (8), but here is diagonal,
even if the selected point corresponds to a crossterm.

In the case of complex signal waveforms, the realness and
the diagonal structure of can be restored by spatial
averaging. We add array sensors symmetrically about the
reference point, as shown in Fig. 1. The received signal atth
sensor of the new set is

(20)

The new cross-TFD of and is

(21)

The spatial averaging of (16) and (21) is given by

(22)

where

Re

Re

Since the terms in the brackets in (21) are all real, the matrix
formed from the TFDs (22)

...
...

. . .
...

(23)

Fig. 1. Array configuration for spatial averaging.

is Hermitian and Toeplitz. This matrix is referred to as the spa-
tially averaged TFD (SATFD) matrix. Similar to the real TFD
case, in the noise-free environment, the SATFD matrix in (23)
can be expressed as

(24)

where

diag (25)

The off-diagonal elements of are zero, whereas the
matrix diagonal entries are now made up of both autoterms and
crossterms of the impinging source signals. By enforcing the
diagonal structure of the source TFD matrix , spatial
averaging of the Hermitian Toeplitz STFD matrices extends the
validity of the TFD-based signal separation in the presence of
cross-TFDs.

The steps for source separation used in [2] and summarized
in Section II can be applied to the SATFD instead of
the STFD . With spatial averaging, the incorporation
of STFDs at only autoterm points into the joint-diagonalization
scheme is no longer crucial to achieve good performance.

B. Comparison between Spatial Averaging and Kernel
Methods

There are two sources of crossterms in the underlying source
separation problem. The first type are the crossterms that are
the results of the interactions between the components of the
same source signal. Whether we use the STFD defined in (7)
or in (17), those crossterms are not harmful to the blind source
separation problem since they always reside, along with the au-
toterms, on the main diagonal of the source TFD matrix. The
other type of crossterms are those generated from the interac-
tions between two signal components belonging to two different
sources. These crossterms are associated with cross-TFDs of the
source signals, and at any given time–frequency point, they con-
stitute the off-diagonal entries of the source TFD matrices. The
crossterms generated from the data cross-TFDs violate the basic
assumption in the problem of source separation regarding the
diagonal structure of the source TFD matrix. We must there-
fore select the time–frequency points that belong to autoterm
regions where crossterm contributions are at minimum. How-
ever, the selection of autoterm points is often difficult in the
absence ofa priori information of the source signals, specifi-
cally for low SNR or when the signals have highly overlapping
time–frequency signatures. The later case can be encountered in
radar echoes and acoustic signal processing.
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The use of smoothing time–frequency kernel for crossterm re-
duction is a candidate solution of the above problem. The main
function of this kernel in the context of source separation is to
prevent the selection and incorporation of crossterm points in
the joint-diagonalization scheme, as well as to reduce the con-
tribution of crossterms at selected autoterm points. In essence,
the fundamental role of the time–frequency kernel is to make
the source TFD matrices as close to a diagonal structure as pos-
sible. The time–frequency kernel can be applied to both forms of
STFDs in (7) and (23). It is noteworthy that the smoothing kernel
does not distinguish between the aforementioned two types of
crossterms, and accordingly, it reduces all entries of the source
TFD matrix, including the diagonal elements.

The problem with the smoothing kernel is fourfold. First, for
sources with closely separated time–frequency signatures, the
effectiveness of the smoothing kernel in reducing crossterms
is highly impaired. Second, reduction of crossterms depends
on their time–frequency locations, especially when fixed shape
kernels are used. For example, time–frequency kernels satis-
fying the marginal properties are not suitable for removing the
crossterms which lie on the time-lag and frequency-lag axes
in the ambiguity domain. Third, depending on the employed
time–frequency kernel, part or all of the crossterms may be
displaced to mount on the selected autoterm points. The situ-
ation can make the source TFD matrix further deviate from a
diagonal structure and cause performance deterioration from the
case when no smoothing is applied. We refer to this undesired
property as the smoothing problem. Fourth, since source sepa-
ration is often performed incorporating a finite number of data
samples, the intrusion of crossterms on autoterm regions cannot
be prevented or entirely removed. This is because the window
spreads out the crossterms in the time–frequency domain so that
the mainlobe or/and the sidelobes of the crossterms are deemed
to overlap with the signal autoterms. We refer to this undesired
property as the leakage problem in STFDs. In addition to the
above drawbacks, the time–frequency kernel ignores the fact
that the first type of crossterms need not be smoothed, as its
appearance along the diagonal elements can improve the effec-
tive signal-to-noise ratio.

The spatial averaging of the STFD defined in (23) at a given
point does not smooth or reduce the crossterms at that

point but rather moves them from their residence on the off-di-
agonal matrix entries to be part of the matrix diagonal elements.
The other part represents the contribution of the autoterms at the
same point. Therefore, not only we are able to set the off-diag-
onal elements of the source TFD matrix to zeros, but we can
also improve performance by selecting the points of peak
values, irrespective of whether these points belong to autoterm
or crossterm regions.

IV. PERFORMANCEEVALUATION

A. Performance Index

We use a slightly modified version of the performance index
applied in [2] to evaluate the performance of the proposed
source separation technique. The estimate of the source signal
vector is computed by applying the pseudo-inverse of the

estimated mixing matrix to the received signal vector ,
i.e.,

(26)

where . We stress that in general, this procedure is
not optimal for recovering the source signals based on an esti-
mate . For large enough sample size, matrixshould be close

to the true one so that well approximates the identity
matrix. We normalize matrix by

(27)

where denotes the matrix formed by the diagonal

elements of . As such, the diagonal elements of become
exactly one, giving more meaning to the performance index

(28)

which defines the interference-to-signal ratio (ISR). Thus,
measures the ratio of the power of the interference ofth source
signal to the power of theth source signal. As the measure of
the global quality of the separation process, we also apply the
global rejection level to evaluate the overall performance of the
proposed method

(29)

B. Effect of Crossterms between Source Signals

In this section, we examine the effect of the time–frequency
crossterms on source separation performance when spatial av-
eraging is not applied. To simplify the problem, we assume that

is an identity matrix. When crossterms are present at the
off-diagonal elements of the TFD matrix , then

(30)

where is the diagonal matrix with the eigenvalues at the
diagonal elements, and is the matrix whose columns are
the corresponding eigenvectors. Note that all the above matrices
depend on the selected point. Substituting (30) in (8),
the STFD matrix of the data vector under noise-free conditions
becomes

(31)

and the STFD matrix of the whitened array signal vector is

(32)

Since is diagonal, is unitary. If the esti-
mated mixing matrix is provided based on a single
point, then from (32)

(33)
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which is dependent on the unitary matrix . Furthermore

(34)

and

...

...
...

. . .
...

...
...

. . .
...

(35)

where . Accordingly, the performance index
becomes

(36)

and the global rejection level is given by

(37)

In general, since the absolute values of are always
equal to or smaller than 1, the global rejection level takes a
positive value. It is clear that only when

holds true for all . That is, is an identity matrix, which
implies that there is no off-diagonal nonzero elements in matrix

.
Consider the specific case of . If we select a point

where the contributions of the two sources to the source TFD
matrix are the same, i.e., , and since

by definition, then it is straightfor-
ward to show that . In this case, is con-
stant equal to 2. The points having such property include
all crossterms at which the autoterms have equal contributions.

Fig. 2. TFD of the source signals (Wigner–Ville distribution).

C. Simulation Results

In this section, we demonstrate the effectiveness of the spa-
tially averaged time–frequency distributions in source separa-
tions. The whitening joint-diagonalization scheme [2] is used
for incorporating multiple time–frequency points into the pro-
posed spatial averaging method. In all simulations, two sources
with the chirp signals

(38)

are used, where is chosen as . Different values of
and are considered. These values control the frequency offset
and amplitude variation between the two signals and can be
chosen to yield closely or widely separated source signatures
in the time–frequency domain. We consider 128 data samples
from which a time–frequency matrix of is formed.
The DOAs of the two signals and are set equal to

and , respectively, from the broadside direction. Fur-
thermore, we assume an equispaced five-element linear array
with the interelement spacing , where is the wavelength.
Subsequently, when the spatial averaging method is used, two
subarrays are formed, each with three elements.

In the first set of simulations, we choose , i.e., neither
signal is amplitude modulated. The Wigner–Ville (WV) distri-
bution of each signal is shown in Fig. 2, where
is set equal to 0.05. Fig. 3 shows the time–frequency distribu-
tion of the mixed signals at the center array sensor. No noise
is present for this case. It is clear that the crossterms lie in the
middle of the two chirps, and their amplitude changes period-
ically. Fig. 4(a) shows the time–frequency distributions of the
separated signals using the technique in [2], where joint diago-
nalization is used without the utilization of the proposed spatial
averaging method. Three time–frequency points are used
at 32, 64, and 96. The frequencyis chosen so that the
TFD computed using the data at the center array sensor is the
largest at each. Peak values of the WV distribution may either
correspond to autoterms or crossterms. In this case, out of three
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Fig. 3. TFD of the mixed signal (Wigner–Ville distribution).

(a)

(b)

Fig. 4. TFD of the separated signals without spatial averaging (Wigner–Ville
distribution). (a) Using peak time–frequency points. (b) Using autoterm points.

points, one crossterm point and two autoterm peaks were

selected. The obtained matrix is

and the computed global rejection level is 0.43 dB.

The result is clearly unsatisfactory, as the matrix is far
from the identity matrix, and crossterms appear in the separated
signals.

Next, we force the selection of autoterm peaks by only con-
sidering the points along the instantaneous frequencies of
the two input signals at the same above time instants. Although
no crossterm point is selected, yet as discussed in Section III,
because of the finite data record, the crossterms leak into au-
toterm regions, causing the source TFD matrix to deviate from
a diagonal structure. We show in Fig. 4(b) the result of source
separation when only the autoterm points are considered. The

obtained matrix becomes

and the respective global rejection level is 23.96 dB.
It is clear that the source separation performance is greatly im-
proved. This good performance implies that the contributions of
crossterms at the three selected autoterm points were insignif-
icant, implying that the corresponding source TFD matrices in
this case were close to diagonal.

Fig. 5 shows the time–frequency distributions of the separated
signals at the same condition as Fig. 4(a), except with the uti-
lization of the proposed spatial averaging method. Spatial aver-
aging entirely mitigates the effect of crossterms. It is clear that
the time–frequency distributions of the separated signals are the

same as those of the original source signals, and are ex-
actly identity matrices. Similar results can be obtained when all
three points are autoterms.

Fig. 6 shows the global rejection level versus the fre-
quency difference between the two chirps, where the input
SNR is 20 dB. When the proposed spatial averaging method
is used, the global rejection level maintains low values. On the
other hand, without spatial averaging, the global rejection levels
become very high. The main reason of the large fluctuation of
the without spatial averaging is that the influence as well
as the number of crossterm points incorporated in the joint-di-
agonalization scheme varies with the frequency difference
(when , no crossterm points were selected). Note
that the crossterms of the Wigner–Ville distribution remain high
even when the frequency difference is large. When selected,
these terms put large values along the off-diagonal terms of the
source TFD matrix and subsequently cause considerable error,
as is evident from the figure. However, when only autoterm

points are used, the global rejection level decreases as
increases. In this case, the matrix off-diagonal elements are

the crossterm values at the autoterm points that become smaller
for higher values of .

Next, we show the effect of using time–frequency smoothing
kernels for reduced interference terms. The Choi–Williams
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Fig. 5. TFD of the separated signals with spatial averaging (Wigner–Ville
distribution).

Fig. 6. Global rejection level versus frequency difference�f (Wigner–Ville
distribution). (Input SNR= 20 dB; o: without spatial averaging;4: with spatial
averaging; : without spatial averaging using autoterm points;5: with spatial
averaging using autoterm points).

(CW) distribution [10] is considered with . Fig. 7 shows
the CW distribution of each signal separately, whereas the CW
distribution of the mixed signals at the center array sensor is
depicted in Fig. 8. The signals are the same as the ones used
in the WV distribution simulations with . Fig. 9(a)
shows the CW distributions of the separated signals. The

obtained matrix is

and the respective global rejection level is 0.26 dB. At
this small frequency offset, effective smoothing of crossterms
is difficult, and as a result, even with the use of time–frequency
kernel, one crossterm point was still selected out of the

Fig. 7. TFD of the source signals (Choi–Williams distribution).

Fig. 8. TFD of the mixed signal (Choi–Williams distribution).

three points. When only the autoterm points are

used, the matrix becomes

and the global rejection level is reduced to 12.86 dB. The
CW distributions of the separated signals are shown in Fig. 9(b).

Fig. 10 shows the CW distributions of the separated signals
under the same condition as Fig. 9(a), with the utilization of the
spatial averaging method. Again, it is clear that the time–fre-
quency distributions of both cases are the same as the source

signals, and are exactly an identity matrix. The same re-
sults can be obtained when only the autoterm points are
used.

Fig. 11 shows the global rejection level versus the frequency
difference between the two chirps, where the input SNR
is 20 dB. It is evident from this figure that the kernel method
fails when the two signals have close time–frequency signatures.
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(a)

(b)

Fig. 9. TFD of the separated signals without spatial averaging (Choi–Williams
distribution). (a) Using peak time–frequency points. (b) Using autoterm points.

Using the proposed spatial averaging method outperforms the
case when no spatial averaging is applied. Three important ob-
servations on the difference between the WV distribution and
the CW distribution in the context of source separation are in
order. First, the CW kernel effectively reduces the crossterms,
particularly when is large. Accordingly, crossterms are not
as large as the autoterms, and as such, it is unlikely for the
crossterms to be selected and incorporated in the joint-diago-
nalization scheme. Second, whenis large enough, the global
rejection level is significantly reduced for the CW distribution,
even when spatial averaging is not applied. Third, when the
spatial averaging method is used, the performance at small fre-
quency offset from the CW distribution is worse than that ob-
tained from the WV distribution. The reason is that source sepa-
ration is perturbed by the presence of noise, and the performance
nevertheless is sensitive to the input SNR. When comparing the
WV distribution and the CW distribution, the noise floor rela-
tive to peak values is lower in the WV distribution than in the
CW for the underlying chirp signal example.

Fig. 10. TFD of the separated signals with spatial averaging (Choi–Williams
distribution).

Fig. 11. Global rejection level versus frequency difference�f (Choi–Williams
distribution). (Input SNR= 20 dB; o: without spatial averaging;4: with spatial
averaging; : without spatial averaging using autoterm points;5: with spatial
averaging using autoterm points).

To show the effect of the input SNR on the source separa-
tion performance, Figs. 12 and 13 depict the global rejection
level versus the input SNR, where the frequency difference is
0.01. Increasing the SNR certainly improves the source sepa-
ration performance when spatial averaging is applied. On the
other hand, without spatial averaging, the source separation per-
formance holds an almost constant high level. Such a perfor-
mance demonstrates that crossterms are more of a fundamental
problem than noise in TFD-based source-separation problems.

In the second set of simulations,is set to zero in (38), ren-
dering the two source signals identical in terms of their instanta-
neous frequency characteristic. However, one of the two source
signals is amplitude modulated, which is caused by a nonzero
positive value of .

Fig. 14 shows the global rejection level versus, where the
WV distribution is considered, and the input SNR is 20 dB. It
is clear that the two signals cannot be separated without spatial
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Fig. 12. Global rejection level versus input SNR (Wigner–Ville distribution).
(�f = 0:01; o: without spatial averaging;4: with spatial averaging; :
without spatial averaging using autoterm points;5: with spatial averaging
using autoterm points).

Fig. 13. Global rejection level versus input SNR (Choi–Williams distribution).
(�f = 0:01; o: without spatial averaging;4: with spatial averaging; :
without spatial averaging using autoterm points;5: with spatial averaging
using autoterm points).

averaging, but when applying spatial averaging, satisfactory per-
formance of source separation can be achieved. For ,
the proposed technique yieldsa global rejection level26.72 dB.

V. CONCLUSIONS

Spatial averaging of spatial time–frequency distributions has
been introduced and the role of spatial averaging in mitigating
the effects of crossterms when bilinear transforms are used for
signal recovery has been shown. The spatial averaging of the
spatial time–frequency distributions of the data across an an-
tenna array removes the undesired effect of crossterms between
the impinging signals. These terms reside along the off-diag-
onal entries of the source time–frequency distribution matrix
and consequently impede the source separation performance,

Fig. 14. Global rejection level versus� (Wigner–Ville distribution). (Input
SNR= 20 dB; o: without spatial averaging;4: with spatial averaging).

which is based on preassumed diagonal matrix structure. Spa-
tial averaging amounts to forming a spatial Hermitian Toeplitz
matrix using the auto- and cross-time–frequency distributions
of the data over one half of the uniform linear array. This ma-
trix is then added to the spatial matrix corresponding to the
other half of the array. The desired effect of this averaging is
reallocating the interaction between the source signals in the
time–frequency domain from the off-diagonal to the diagonal
elements of the source TFD matrix. In this respect, unlike the
method proposed in [2], cross-terms, due to their potential high
values, are regarded as useful components that could be used
for improved performance. Spatial averaging can be applied to
all members of Cohen’s class of TFDs, irrespective of the em-
ployed smoothing kernel. When using a time–frequency kernel,
the problem amounts to averaging in all three dimensions of
time, frequency, and space.

Joint-diagonalization (JD) is applied to include multiple
spatially averaged time–frequency distributions at different
time–frequency points. With cross-terms moved to the diag-
onal entries of the TFD matrix, the prime task of the source
separation based on the JD scheme is to avoid degenerate
eigenvalues that are responsible for the nonuniqueness solution
of the problem.

Simulation examples were presented to illustrate the effec-
tiveness of the new approach. The two performance measures
used were the global rejection level and the values of the
off-diagonal elements of the product of the mixing matrix
and the Pseudo inverse of its estimate. Two sources and five
sensors were considered. The source signals were chirp signals
with the same sweeping frequency, but their corresponding
constant frequencies and amplitudes were offset by different
values. Both Wigner–Ville and Choi–Williams distributions
were considered. It was shown that the spatial averaging
method significantly improves the performance measures over
the nonspatially averaging method, specifically when the two
signals have close time–frequency signatures.

Without spatial averaging, performance is very sensitive to
whether only auto-term or cross-term points or their mix are
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incorporated in the source separation procedure. With spatial
averaging, this is no longer a concern since both terms appear
along the diagonal. It is also shown that the Choi–Williams
distribution provides better results than the Wigner–Ville
distribution when no spatial averaging is applied since it lowers
the likelihood of selecting crossterm points. With spatial
averaging, the issue becomes merely SNR, and in this respect,
the Wigner–Ville distribution, due to its high peak values,
yields better performance than the Choi–Williams distribution.
Therefore, the time–frequency smoothing becomes unneces-
sary whenever spatial array averaging is possible.
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