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Spatial Averaging of Time—Frequency Distributions
for Signal Recovery in Uniform Linear Arrays

Yimin Zhang Member, IEEEand Moeness G. AmjrSenior Member, IEEE

Abstract—This paper presents a new approach based on (the SOBI technique) outlined in [9] could therefore be used
spatial time—frequency averaging for separating signals received in the time—frequency formulation of the problem. The gen-
by a uniform linear antenna array. In this approach, spatial 4| theory of solving blind source separation problems using

ggﬁ;%%mc?atgf i;h%;;?;ren:ggq:fnr%|t?$fér'?i%'gfﬁeé$?§3 g]:)igt]s. spatial arbitrary joint-variable distributions, including those of

This averaging restores the diagonal structure of the source TFD time and frequency, is given in [3]. In [4], the two arbitrary
matrix necessary for source separation. With spatial averaging, variables are chosen as the time-lag and frequency-lag, and the

crossterms move from their off-diagonal positions in the source source separation was performed using spatial ambiguity func-
TFD matrix to become part of the matrix diagonal entries. Itis  i5ns The use of STFDs for direction finding is discussed in [5]

shown that the proposed approach yields improved performance . .
over the case when no spatial averaging is performed. Further, we and [18], where the time—frequency MUSIC and the time-fre-

demonstrate that in the context of source separation, the spatially quency maximum likelihood techniques are proposed.
averaged Wigner-Ville distribution outperforms the combined Although blind source separations based on TFD outperform
spatial-time—frequency averaged distributions, such as the one the SOBI method for nonstationary signals, the fundamental
obtained by using the Choi-Williams distribution. Simulation -, oh1em with the bilinear time—frequency approach remains the
examples involving the separation of two sources with close AM . - .
and FM modulations are presented. need for the mcorporatl_on of STFD matr_lces computed only at
the source autoterm points. Crossterms impede performance, as
they reside on the off-diagonal elements of the source TFD ma-
trix, and as such, violate its diagonal structure necessary for
source separation. Identification of autoterm regions are often
difficult for a large class of multicomponent nonstationary sig-
. INTRODUCTION nals, and even if properly identified, due to the complexity of
ECENTLY, time—frequency distributions (TFDs) havéh‘? impinging signal time—frequ.ency signatures a_nd the use of
Rbeen employed for direction finding and blind sourcénite datarecords, autoterm regions cannot be entirely free from
separation problems in sensor array processing [1]-[5]. TRESSterm mainlobe or/and sidelobe contamination.
spatial time—frequency distributions (STFDs) were introduced N this paper, we discuss the role of TFD crossterms and
in [1] and represented by a spatial matrix whose elements &monstrate the effect of spatial averaging on STFDs. By uti-
the auto- and cross-time—frequency distributions of the ddt&ng the Vandermonde structure of the array manifold matrix
received at the different array sensors. STFD techniques &Ré performing spatial averaging on the spatial time—frequency
most appropriate to handle sources of nonstationary waveforftigiribution matrices, we set the off-diagonal elements of the
that are localized in the time—frequency domain. The robustn&8§responding source TFD matrix to zero. This is achieved by
of the subspace estimates using STFD matrices is analyzed¥aVving the crossterms from their off-diagonal positions to join
[17] and shown to have an advantage over those obtained friif§ @utoterms as diagonal entries of the source TFD matrix at
the covariance matrices. one time—frequency point. In this respect, the performance of
The application of STFDs to separating sources with distindé Source separation technique becomes much less dependent
time—frequency signatures is presented in [2]. In this referen®¥) the selection of the time—frequency points at which the STFD
it is shown that the source TFD matrix, whose elements dnatrices are computed. It is shown that the spatially averaged
the auto- and cross-TFD of the source signals, and the sen3df DS outperform the case where no spatial averaging is per-
data STFD have the same relationship as the one betweenf@{gned, even when only autoterm points are involved in both
source and the data correlation matrices. This relationship is §85€S-
fined by the mixing or the array manifold matrix. The steps ap- SPatial averaging is a simple and well-known technique in
plied in blind source separation based on second-order statisfie§ventional array processing [6]. It employs additional array
sensors to reduce cross-correlation in coherent and correlated
signal environments, thereby permitting proper angle-of-arrival
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specifically for sources whose signatures are closely separatdtere superscriptf denotes the conjugate transpose of a ma-
in the time—frequency domain. trix or a vector. In [2], it is assumed th&,(7) = diagri1(7),

The restoration of the diagonal structure of the source TFD-, r,,(7)], where dia§] is the diagonal matrix formed
is only part of the problem. Source separation using spatialljth the elements of its vector valued argument, and
averaged TFD evaluated at a single time—frequency point cgp(v) = limgy .. Ele s;(t + 7)s¥(t) denotes the cor-
still lead to noisy and nonunique results. Since the poweglation ofs;(¢). This assumption implies that the components
distribution of the signals impinging on the array varies ovey;(¢), 1 < ¢ < n are mutually uncorrelated. However, in our
the time—frequency plane, then different time—frequency poirmsoposed method, this assumption is no longer necessary.
may exhibit different SNR’s. The main two advantages of in- The additive nois&(¢) is modeled as a stationary, temporally
corporating several spatially averaged TFD matrices evaluatghite, zero-mean complex random process independent of the
at different time—frequency points into a joint-diagonalizatiosource signals. For simplicity, we also requité&) to be spa-
scheme are to avoid having degenerate eigenvalues andidlly white, i.e.,

reduce the possibility of choosing a point with high noise - )
contamination. Eln(t+m)n" ()] = 0,,6(r)1 3)

It |shnoted. thathunl_|kfe the method r']n [2], the prq][:)(?;;ed Z%hereé(f) is the Kronecker delta, anfl denotes the identity
proach requires t € |n.ormat|on on t € array manitold and |Raix - Since the signal power and the signal ordering are inde-
sensitive to the calibration error. In this case, conventional A%rminable in source separations [3], we simplify the problem

estimation methods, such as the maximum likelihood [11], mgy treating the source signals as if they have unit power. Ac-
trix pencil [12], MUSIC [13], root MUSIC [14], [15], and ES- cordingly

PRIT [16] techniques can also be used to estimate the mixing
matrix and further to separate the source signals. The proposed 1 K
approach not only requires no angular search but also enjoys tHes(0) =1 and Ry, = Tlﬂ}go T Z y(t)y' (1) = AA".
discriminatory property of TFD-based array processing, where t=1 (4)
fewer sources can be considered by only selecting their reSPeCiy o discrete-time form of Cohen's class of TED for signal
tive time—frequency signatures [17]-[19]. «(t) is given by [7]

This paper is organized as follows. In Section IlI, the source

separation approach based on spatial time—frequency distribu- i i

tion is briefly summarized. In Section Ill, we introduce the spa- Daa(t; f) = Z Z ¢m, Da(t +m+1)

tially averaged time—frequency distributions and discuss the dif- I=—com==o0

ference between spatial averaging and kernel methods in han- ca (t4m — De ! (5)

dling the crossterm problem. Simulation results demonstratin eret and f represent the time index and the frequency index
h fuln f the pr hni re given in _ . o
TVe usefuness of the proposed technique are give SeCtrespecnvely. The kernel(m, 1) characterizes the TFD and is a

function of both the time and lag variables. The cross-TFD of

Il. SOURCESEPARATION BASED ONSPATIAL TIME—FREQUENCY two signalsz;(t) andz;(t) is defined by [7]

DISTRIBUTIONS

Doyt )= D D ¢lm, Dai(t+m+1)

A. Spatial Time—Frequency Distributions

l=—o0om=—00
In many practical situations, the data vect6t) for an/V-ele- x4 m— De (6)
ment array follows an instantaneous mixture model and is given !
by One possible definition of spatial time—frequency distribution
(STFD) is given in [2] and incorporates both equations (5) and
z(t) = y(t) + n(t) = As(t) +n(t) @D (e)
where z(t) = [zo(t), ---, xny_1(#)]¥ is the data snapshot o0 oo
vector at timet, and the superscript’ denotes transpose. The Dee(t, )= Y. > ¢(m, Da(t+m+1)
vectors(t) = [s1(t), ---, s, (t)]* containsn source signals l=—c0om=—00
at the same time, and(t) is the additive noise vector. This cxf(t 4 m = Dem 41 7

model is commonly used in the field of narrowband array o

processing. The vectai(t) = [yo(t). - - -, yn—1(t)]* contains Where[Dez(t, )i j = Da; (¢, f) ford, j =0, .-, N —1.

the noise-free array output. The mixing matxs the transfer It is shown in the next section that other forms of STFD can be
function between the source signals and the data at the a e useful in the context of source separation. Under the linear
sensors. We assume that the mixing matixs full column data model of (1), and assuming a noise-free environment, the

rank. STFD matrix in (7) takes the following simple structure:
_ The source s_lgnal vect@_(t) is ass_umed to be a deterministic D.. = AD,,(t, f)AT 8)
signal vector with correlation matrix
|z whereD,(t, f)isthe signal TFD matrix whose entries are the
— lim = H auto- and cross-TFDs of the sources. Equation(8) is similar to
R, (1) Tlgr;o T Zs(t+¢)s (t) 2

=1 the formula that is commonly used in conventional blind source
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separation and direction-of-arrival (DOA) estimation problenferms K STFD matriceq D...(¢;, fi)|i = 1, ---, K} at a set
[8], [9], relating the signal correlation matrix to the dataf preferableK time—frequency autoterm points. The unitary
spatial correlation matrix. ID4s(¢, f) is a full-rank matrix, matrix U is then obtained as the joint diagonalizer of the set
the two subspaces spanned by the principle eigenvectors{®f,.(¢;, f)|li =1, ---, K}.

D..(t. f)and the columns ot become identical. In this case,

direction-finding techniques based on eigenstructures can b#. SPATIAL AVERAGING TIME—FREQUENCY DISTRIBUTIONS
applied. If D, (¢, f) is diagonal, i.e., the signal cross-TFDs a}s\
the time—frequency pointt, f) are zeros, the mixture matrix”

and the signal waveforms can be recovered using blind sourcé he spatial averaging method was introduced by Pillai [6] to
separation methods [1], [2]. restore the full-rank property of the signal correlation matrix in

the presence of coherent signals. Unlike other spatial smoothing
B. Source Separation Based on Spatial Time—Frequency methods [20]-[23], which only restore the full-rank property of
Distributions the mixing matrix when the impinging signals are coherent, the

The source separation algorithm based on spatial time—fRPatial averaging method enforces the diagonal structure of the

quency distributions is an essential part of the proposed methtgnal correlation matrix. This diagonal matrix property is es-

The algorithm is given in details in [2] and is summarized beloyentia! to perform source separation, as previously discussed.
The first step is the whitening of the signal pgtt) of the Here, we present the role of spatial averaging in the context of

observation. This is achieved by applying a whitening matriX™ P @nalysis and propose signal separation using joint diago-
W toy(t), i.e., ann x N matrix satisfying nalization based on spatial averaging of spatial TFD matrices.

The basic idea of spatial averaging is to use subarrays of a

Spatial Averaging Methods

) 1 & . . = uniform linear array to obtain an averaged correlation matrix
Tlﬂ}go T ZWy(t)y OWT =WRy,,W or, in the underlying problem, an averaged STFD matrix, with
t=1 the off-diagonal elements set to zero.
=waAawh Without loss of generality, we consider a simple example of
=1. (9) n =2,i.e., thereareonlytwo sourcegt) andsz(¢). The result

) ) _ ] ] is generally true for. sources andv sensors, as long as< N.
W Ais ann x n unitary matrixt/, and matrixA can be written By ignoring the effect of noise, the received signal atitihe

as array sensofi = 0, 1, ---, N — 1) is represented by

_w# : :
A=W"U (10) l’z(t) — xgl) (t)—i—xi”(t) — Sl(t)c—ﬂigwl +$2(t)6_]d“‘"2 (14)
where superscript#t denotes pseudo-inverse. The whiten

e\Sé/here . = 2wsingy /A, k = 1, 2 are the spatial radian fre-
process:(t) = Wx(t) still obeys a linear model K msin ér /2, X pst I

guenciesg;, are the angles-of-arrival is the RF wavelength,
2(t) = Wx(t) = W[As(t) + n(t)] = Us(t) + Wa(t). (11) andd; isthe distance between the zeroth andithearray sen-
sors. The cross-TFD af;(t) andz;(¢), assuming uniform linear

By pre- and post-multiplying the STFD matrics.(t, f) by array, is

W, we obtain
Dl‘il‘j (tv f) :DJ;(_UJ;(_U (tv f) + DJ;(?)J;(_U (tv f)

D,.(t, f) = WD, (t, YW 12
(& f) (& f) (12) +D e @ )+ D oy (¢, f)
which is, in essence, the STFD of the whitened data vegtor C L

From the definitions o andU/ = [Dslsl(ta F) 4 Dy (t, eI (wz_wl)}
. e dldi=dj)wr

| | o [ Dovealts )+ Doy (t, fe 74|
Equation (13) shows that iD,,(t, f) is diagonal, then any i dimd; e
whitened data STFD matrix is diagonal in the basis of the ceT T, (15)
columns of the matridJ, and the eigenvalues dQZZ(t, 1D

D..(t, f) = UDy(t, YU, (13)

Due to the presence of the cross-terms [second term in each

are the dlagonal entries dﬂ”.(t’ ). An e_st|mateU of the bracket in (15)], the TFD matri¥D,(¢, f) does not provide
unitary matrixU may be obtained as a signhal subspace of ) : .
the proper information to carry out source separations.

whitened STFD matrix evaluated at a time—frequency poin The auto- and cross-TFD of the data(t) and;(t), i =

corresponding to the signal autoterm. The source signals @ N 1is
then be estimated ag¢) = UW«(t), and the mixing matrix 7’
Als estimated byl = W 0. Dy, (b £) = [Darsy (b )+ Do, (8, )] 24
Although the unitary matrix can be obtained from a single + Dy, s, (t, f) + Dsys, (£, )] e (16)
8282 ? 8182 )

time—frequency point, STFDs corresponding to differgntf)

points should be incorporated to reduce the possibility @fhere we used the sensor receivingt) as the reference sensor
having degenerate eigenvalues and, subsequently, nonunigoe setdy = 0. Denoteb (¢, f) = Ds,s, (¢, f) + Dsys, (t, f)
solutions. The joint-diagonalization (JD) scheme can be usadd b:(¢, f) = D,,., (¢, f) + Ds,s, (¢, f). The values of
to incorporate multiple time—frequency points [2]. This schemig (¢, f) and bx(¢, f) are generally complex. Ib; (¢, f) and
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ba(t, f) are real, then the Hermitian Toeplitz spatial time—fre HN) - #EN) #D # # #N-2)  HN-D

quency matrix

ﬁ:ﬂx(ta f) = e i
Dngg(tv f) Dacgacl(tv f) DacgazN,l(tv f) ‘
D.’:o.’l‘l(t’ f) Dl‘ol‘o(t’ f) DWOJ’?N—Z(t’ f) \ ,

. . ' ' Additional N-1 sensors Original N sensors
Dwowal(t’ f) D$0$N72 (t’ f) e DWOWO (t’ f)
(17) Fig. 1. Array configuration for spatial averaging.
generated from the cross-TFD%, ., (t, f), Dayz, (£, f), ---, is Hermitian and Toeplitz. This matrix is referred to as the spa-

Dyyen_, (8, [) between the data samples atthe reference sengally averaged TFD (SATFD) matrix. Similar to the real TFD
and those at other sensors of the array can be expressed asd¢a4g, in the noise-free environment, the SATFD matrix in (23)
can be expressed as

Dzo(t, f) = ADss(t, /A (18) ] ) Y
D:l::l: 3 :A-Dss 3 A 24
whereA is a Vandermonde matrix, and . 5) & 5) @9
. where
D, (t, f) =diadb.(z, ), b2(t, f (19) .
(4, 1) = diadinlt, 1), ba(t: ) Dualt. ) = diages(t, ). ealt, £l (25)

is the corresponding source TFD matrix. Note thht, (¢, f) . )
has a different structure from that of the STFD matrix definefjn€ Off-diagonal elements d,, (¢, f) are zero, whereas the
in (7) and was used in [2] for blind source separation. Clearliatrix diagonal entries are now made up of both autoterms and
(18) has the same form as (8), b, (¢, f) here is diagonal, crossterms of the impinging source signals. By enforcmg the
even if the selectett, f) point corresponds to a crossterm. ~diagonal structure of the source TFD matfk, (¢, f), spatial

In the case of complex signal waveforms, the realness a@¥fraging of the Hermitian Toeplitz STFD matrices extends the
the diagonal structure aD,,(t, f) can be restored by spati(.:ﬂvahdlty of the TFD-based signal separation in the presence of
averaging. We add/ — 1 array sensors symmetrically about th&0Ss-TFDs.

reference point, as shown in Fig. 1. The received signahat | "€ Steps for source separation used in [2] and summarized
sensor of the new set is in Section Il can be applied to the SATHR,..(¢, f) instead of

the STFDD...(¢, f). With spatial averaging, the incorporation
x_;(t) = xg) ) —l—a:g) (t) = s1(t)e?4“r 4 s59(t)e? 2. (20) of STFDs at only autoterm points into the joint-diagonalization
scheme is no longer crucial to achieve good performance.
The new cross-TFD af(t) andz_;(t) is
' B. Comparison between Spatial Averaging and Kernel
Dacgac,i (tv f) = [Dslsl (tv f) + Dszsl(tv f)] e_jd{wl Methods

+ [Daysn(t, F) + Disrao(t, 4“2 (21)  There are two sources of crossterms in the underlying source
. _ L separation problem. The first type are the crossterms that are
The spatial averaging of (16) and (21) is given by the results of the interactions between the components of the
= (i _ N same source signal. Whether we use the STFD defined in (7)
D'g"”)"(t’ 1= [D”:O”‘”' (& f) + Droe_ (8, f)} / 2 orin (17), those crossterms are not harmful to the blind source
=ci(t, [edter £yt f)eddive (22) separation problem since they always reside, along with the au-
toterms, on the main diagonal of the source TFD matrix. The
where other type of crossterms are those generated from the interac-
tions between two signal components belonging to two different
cr(t, £) = Deyai (t f) + ReDass, (8, £)] sources. These crossterms are associated with cross-TFDs of the
ca(t, f) =Dsys, (t, f) + Re[D;, 5, (2, f)]. source signals, and at any given time—frequency point, they con-
stitute the off-diagonal entries of the source TFD matrices. The
Wossterms generated from the data cross-TFDs violate the basic
assumption in the problem of source separation regarding the
Doa(t, f) = diagonal structure of the source TFD matrix. We must there-
N (0) = (1) = (N—1) fore select the time—frequency points that belong to autoterm
Dz (t, f) Dz (t, ) o Das T2 ) regions where crossterm contributions are at minimum. How-
DY t, DO, o DAV, ) ever, the selection of autoterm points is often difficult in the
. . _ absence of priori information of the source signals, specifi-
' ' ' cally for low SNR or when the signals have highly overlapping
DSV, DT - DY, ) time—frequency signatures. The later case can be encountered in
(23) radar echoes and acoustic signal processing.

Since the terms in the brackets in (21) are all real, the mat
formed from the TFDs (22)
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The use of smoothing time—frequency kernel for crossterm restimated mixing matrixd to the received signal vectai(t),
duction is a candidate solution of the above problem. The maia.,
function of this kernel in the context of source separation is to - - -
prevent the selection and incorporation of crossterm points in 5(t)=A"z(t) = A" As(t) + A" n(t) (26)
the joint-diagonalization scheme, as well as to reduce the con-
tribution of crossterms at selected autoterm points. In esserBereA = W07, We stress that in general, this procedure is
the fundamental role of the time—frequency kernel is to make@t optimal for recovering the source signals based on an esti-
the source TFD matrices as close to a diagonal structure as gBateA. For large enough sample size, matishould be close
sible. The time—frequency kernel can be applied to both formstof the true oneA so thatA A well approximates the identity
STFDsin (7) and (23). Itis noteworthy that the smoothing kernglatrix. We normalize matri by
does not distinguish between the aforementioned two types of . . "
crossterms, and accordingly, it reduces all entries of the source A. = Adiagonal(A” A) (27)
TFD matrix, including the diagonal elements. _ )

The problem with the smoothing kernel is fourfold. First, fofvherediagonal(F) denotes the matrix formed by the diagonal
sources with closely separated time—frequency signatures, @gments of”. As such, the diagonal elements4f A become
effectiveness of the smoothing kernel in reducing crosster@%actly one, giving more meaning to the performance index
is highly impaired. Second, reduction of crossterms depends i 9
on their time—frequency locations, especially when fixed shape Iyy=F ‘(Ae A)pq‘
kernels are used. For example, time—frequency kernels satis-
fying the marginal properties are not suitable for removing thehich defines the interference-to-signal ratio (ISR). Thizg,
crossterms which lie on the time-lag and frequency-lag axe¥asures the ratio of the power of the interferencglosource
in the ambiguity domain. Third, depending on the employegignal to the power of thgth source signal. As the measure of
time—frequency kernel, part or all of the crossterms may e global quality of the separation process, we also apply the
displaced to mount on the selected autoterm points. The siéliobal rejection level to evaluate the overall performance of the
ation can make the source TFD matrix further deviate fromR{oposed method
diagonal structure and cause performance deterioration from the

(28)

case when no smoothing is applied. We refer to this undesired Tpery = Z Ipq (29)
property as the smoothing problem. Fourth, since source sepa- 7P

ration is often performed incorporating a finite number of data

samples, the intrusion of crossterms on autoterm regions canBotEffect of Crossterms between Source Signals

be prevented or entirely removed. This is because the WIndOV\1n this section, we examine the effect of the time—frequency

spreads out the crossterms in the time—frequency domain so %
the mainlobe or/and the sidelobes of the crossterms are dee ing is not applied. To simplify the problem, we assume that
to overlap with the signal autoterms. We refer to this undeswgg is an identity matrix. When crossterms are present at the

property as the leakage problem in STFDs. In addition to tlaqaf _diagonal elements of the TFD matrBs, (¢, f), then
above drawbacks, the time—frequency kernel ignores the fact

sterms on source separation performance when spatial av-

that the first type of crossterms need not be smoothed, as its D,,(t, f) = P(t, )G(t, )P (¢, f) (30)
appearance along the diagonal elements can improve the effec-
tive signal-to-noise ratio. whereG(t, f) is the diagonal matrix with the eigenvalues at the

The spatial averaging of the STFD defined in (23) at a givetiagonal elements, add(¢, f) is the matrix whose columns are
(t, f) point does not smooth or reduce the crossterms at thiae corresponding eigenvectors. Note that all the above matrices
point but rather moves them from their residence on the off-dlepend on the selectdd, f) point. Substituting (30) in (8),
agonal matrix entries to be part of the matrix diagonal elementde STFD matrix of the data vector under noise-free conditions
The other part represents the contribution of the autoterms at Bggomes
same point. Therefore, not only we are able to set the off-diag- "
onal elements of the source TFD matrix to zeros, but we can za(t, [) = ADss(t, [)A
also improve performance by selecting thef) points of peak = AP(t, [)G(t, P (L, HAT  (31)

values, irrespective of whether these points belong to autoterm
or crossterm regions. and the STFD matrix of the whitened array signal vector is

D..(t, f) =WAD,,(t, /)A"W"
IV. PERFORMANCEEVALUATION —WAP(t, [)G(t, )P (t, HATWH . (32)

A. Perf Ind
erformance Index SinceG(t, f) is diagonal WAP(t, f) is unitary. If the esti-

We use a slightly modified version of the performance indexated mixing matrixA is provided based on a single, f)
applied in [2] to evaluate the performance of the proposegint, then from (32)

source separation technique. The estimate of the source signal .
vector is computed by applying the pseudo-inverse of the A=WH*WAP(t, ) = AP(t, f) (33)
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TFD of source 1 TFD of source 2

which is dependent on the unitary maté#¢, f). Furthermore 05 05

045

AT A= (AP, P*A= P, f) (34)

04

and 0.35}

o
w
T
o
[)

e

A#A = [diagonal (A#Aﬂ - A#A

frequency
o
nN
o
frequency
o
n
[3,]

-1

:[diagonal (PR, )] P, f)
2% (t f) o i
p2_21 (tv f) ““““
o Pralt, f)
pll(tv f) p21(t7 f) pnl(tv f) i
p2(t, f) pa2(t, f) - pe2(t, f) Fig. 2. TFD of the source signals (Wigner-Ville distribution).
pinlt ) panlt, £) o pan(t, f) C. Simulation Results
1 p71p21(t £ o plpaalt, 1 In this section, we demonstrate the effectiveness of the spa-
1 22 ’i’; " tially averaged time—frequency distributions in source separa-
| Pu pi2(t; f) 1 o PanPn2(ts f) tions. The whitening joint-diagonalization scheme [2] is used
- for incorporating multiple time—frequency points into the pro-
posed spatial averaging method. In all simulations, two sources
pitpin(t, ) paspan(t, f) - 1 with the chirp signals
(35)
wherep;; = [P(t, f)];;. Accordingly, the performance index  s1(t) = TN s () = ¢TI /D (o4t (3g)
becomes
are used, wherg is chosen a8.008x. Different values ofu
= |P;q1 (t, Nyt N2 (36) anda are considered. These values control the frequency offset
and amplitude variation between the two signals and can be
and the global rejection level is given by chosen to yield closely or widely separated source signatures
in the time—frequency domain. We consider 128 data samples
_ I from which a time—frequency matrix d28 x 128 is formed.
perf = ; re The DOAs of the two signals; (¢) ands.(¢) are set equal to
aF4q

. N 30° and 60°, respectively, from the broadside direction. Fur-
_ Z ea(t, f —2 Z et NP thermore, we assume an equispaced five-element linear array
with the interelement spacirg5A, wherel is the wavelength.
" Subsequently, when the spatial averaging method is used, two
Z Ipgq(t, )72 = n. (37) subarrays are formed, each with three elements.
=1 In the first set of simulations, we choose= 0, i.e., neither
signal is amplitude modulated. The Wigner-Ville (WV) distri-
In general, since the absolute valuespgf(¢, f) are always bution of each signal is shown in Fig. 2, whef(= w/27)
equal to or smaller than 1, the global rejection lelygl ; takes a is set equal to 0.05. Fig. 3 shows the time—frequency distribu-
positive value. Itis clear that,..,.; = 0 only whenp,,(¢, f) = tion of the mixed signals at the center array sensor. No noise
1 holds true for allg. That is, P is an identity matrix, which is present for this case. It is clear that the crossterms lie in the
implies that there is no off-diagonal nonzero elements in matmiddle of the two chirps, and their amplitude changes period-
D, (t, f). ically. Fig. 4(a) shows the time—frequency distributions of the
Consider the specific casewf= 2. If we select d¢, f) point separated signals using the technique in [2], where joint diago-
where the contributions of the two sources to the source THalization is used without the utilization of the proposed spatial
matrix are the same, i.el),,,, (¢, f) = D,,,,(t, f), and since averaging method. Three time—frequelityf) points are used
D, ., (t, f) = Dj,, (¢, f) by definition, then it is straightfor- at¢ = 32, 64, and 96. The frequengyis chosen so that the
ward to show thalfp,, (, f)| = 1/+/2. Inthis casel,..; is con- TFD computed using the data at the center array sensor is the
stant equal to 2. Thé&, f) points having such property includelargest at each Peak values of the WV distribution may either
all crossterms at which the autoterms have equal contributiogsrrespond to autoterms or crossterms. In this case, out of three

p=1p#q
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(t, f) points, one crossterm point and two autoterm peaks were
selected. The obtaine&fA matrix is

aFa— [ 100+,0.00 0.19+0.65
¢ 120214 50.63 1.00 + j0.00

and the computed global rejection levgl,; is —0.43 dB.

The result is clearly unsatisfactory, as the maﬂig#A is far
from the identity matrix, and crossterms appear in the separated
signals.

Next, we force the selection of autoterm peaks by only con-
sidering thet, f) points along the instantaneous frequencies of
the two input signals at the same above time instants. Although
no crossterm point is selected, yet as discussed in Section lll,
because of the finite data record, the crossterms leak into au-
toterm regions, causing the source TFD matrix to deviate from
a diagonal structure. We show in Fig. 4(b) the result of source
separation when only the autoterm points are considered. The

obtainedAfA matrix becomes

A#A _ 1.00 + 50.00 0.00 — 50.06

e —0.01 — j0.01 1.00 + 50.00
and the respective global rejection levgl, s is —23.96 dB.

It is clear that the source separation performance is greatly im-
proved. This good performance implies that the contributions of
crossterms at the three selected autoterm points were insignif-
icant, implying that the corresponding source TFD matrices in
this case were close to diagonal.

Fig. 5 shows the time—frequency distributions of the separated
signals at the same condition as Fig. 4(a), except with the uti-
lization of the proposed spatial averaging method. Spatial aver-
aging entirely mitigates the effect of crossterms. It is clear that
the time—frequency distributions of the separated signals are the

same as those of the original source signals,hﬁd& are ex-
actly identity matrices. Similar results can be obtained when all
three(t, f) points are autoterms.

Fig. 6 shows the global rejection levgl.,.; versus the fre-
quency differencé f between the two chirps, where the input
SNR is 20 dB. When the proposed spatial averaging method
is used, the global rejection level maintains low values. On the
other hand, without spatial averaging, the global rejection levels
become very high. The main reason of the large fluctuation of
the ... without spatial averaging is that the influence as well
as the number of crossterm points incorporated in the joint-di-
agonalization scheme varies with the frequency differente
(whenéf = 0.1, no crossterm points were selected). Note
that the crossterms of the Wigner-Ville distribution remain high
even when the frequency difference is large. When selected,
these terms put large values along the off-diagonal terms of the
source TFD matrix and subsequently cause considerable error,
as is evident from the figure. However, when only autoterm
(t, f) points are used, the global rejection level decreases as
6f increases. In this case, the matrix off-diagonal elements are
the crossterm values at the autoterm points that become smaller
for higher values off.

Fig. 4. TFD of the separated signals without spatial averaging (Wigner—Ville Next, we show the e_ﬁeCt of usmg time—frequency gmo-o'Fhing
distribution). (a) Using peak time—frequency points. (b) Using autoterm pointéernels for reduced interference terms. The Choi—Williams
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Fig. 6. Global rejection level versus frequency differenge(Wigner—Ville
distribution). (Input SNR= 20 dB; o: without spatial averagind\: with spatial
averaging{J: without spatial averaging using autoterm poinys;with spatial three (t7 f) points. When only the autoten(ﬁj7 f) points are

averaging using autoterm points). used thazl#A matrix becomes
! €

(CW) distribution [10] is considered with = 1. Fig. 7 shows A [1-00 +70.00 —0.02 +0.18
the CW distribution of each signal separately, whereas the CW ‘ 0.01+50.14  1.00+50.00

distribution of the mixed signals at the center array sensor is

depicted in Fig. 8. The signals are the same as the ones u% the g_Iong rejection levél...; is rgduced t(}lZ.SGQB.The
in the WV distribution simulations with f — 0.05. Fig. 9(a) <\ distributions ofthe separated signals are shown in Fig. 9(b).
heFlg. 10 shows the CW distributions of the separated signals

under the same condition as Fig. 9(a), with the utilization of the
spatial averaging method. Again, it is clear that the time—fre-
quency distributions of both cases are the same as the source

shows the CW distributions of the separated signals. T
obtainedA” A matrix is

. . . N . . .
~# [ 1.00+50.00 0.03+ 50.70 signals, andd_ A are exactly an identity matrix. The same re-
A A= —0.05 4 50.67 1.00 + j0.00 sults can be obtained when only the autotétmyf) points are
used.

and the respective global rejection levgl, s is —0.26 dB. At Fig. 11 shows the global rejection level versus the frequency
this small frequency offset, effective smoothing of crossterndiifferenceé f between the two chirps, where the input SNR
is difficult, and as a result, even with the use of time—frequency 20 dB. It is evident from this figure that the kernel method
kernel, one crossterrft, f) point was still selected out of the fails when the two signals have close time—frequency signatures.
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(ﬁ’stribution). (Input SNR= 20 dB; o: without spatial averagingy: with spatial
averaging[): without spatial averaging using autoterm poirgs; with spatial
Using the proposed spatial averaging method outperforms #veraging using autoterm points).

case when no spatial averaging is applied. Three important ob-

servations on the difference between the WV distribution andTo show the effect of the input SNR on the source separa-
the CW distribution in the context of source separation are fion performance, Figs. 12 and 13 depict the global rejection
order. First, the CW kernel effectively reduces the crossternisyel versus the input SNR, where the frequency difference is
particularly whens f is large. Accordingly, crossterms are no0.01. Increasing the SNR certainly improves the source sepa-
as large as the autoterms, and as such, it is unlikely for tretion performance when spatial averaging is applied. On the
crossterms to be selected and incorporated in the joint-diagher hand, without spatial averaging, the source separation per-
nalization scheme. Second, whghis large enough, the global formance holds an almost constant high level. Such a perfor-
rejection level is significantly reduced for the CW distributionmance demonstrates that crossterms are more of a fundamental
even when spatial averaging is not applied. Third, when tipeoblem than noise in TFD-based source-separation problems.
spatial averaging method is used, the performance at small frein the second set of simulations,is set to zero in (38), ren-
guency offset from the CW distribution is worse than that olglering the two source signals identical in terms of their instanta-
tained from the WV distribution. The reason is that source sep@ous frequency characteristic. However, one of the two source
ration is perturbed by the presence of noise, and the performasignals is amplitude modulated, which is caused by a nonzero
nevertheless is sensitive to the input SNR. When comparing thesitive value ofx.

WYV distribution and the CW distribution, the noise floor rela- Fig. 14 shows the global rejection level verguswvhere the

tive to peak values is lower in the WV distribution than in th&VV distribution is considered, and the input SNR is 20 dB. It
CW for the underlying chirp signal example. is clear that the two signals cannot be separated without spatial
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which is based on preassumed diagonal matrix structure. Spa-

10 : : , : . tial averaging amounts to forming a spatial Hermitian Toeplitz
matrix using the auto- and cross-time—frequency distributions

o - ° ? ? ke ° 1 of the data over one half of the uniform linear array. This ma-
trix is then added to the spatial matrix corresponding to the

S10F g 1 other half of the array. The desired effect of this averaging is

reallocating the interaction between the source signals in the
time—frequency domain from the off-diagonal to the diagonal
elements of the source TFD matrix. In this respect, unlike the
¥ & ‘ method proposed in [2], cross-terms, due to their potential high
ok | values, are regarded as useful components that could be used
for improved performance. Spatial averaging can be applied to
_sol v 1 all members of Cohen’s class of TFDs, irrespective of the em-
b ployed smoothing kernel. When using a time—frequency kernel,
-60 {1 the problem amounts to averaging in all three dimensions of
: time, frequency, and space.

=70 o 0 20 2 ) Joint-diagonalization (JD) is applied to include multiple

input SNR (dB) spatially averaged time—frequency distributions at different
Fig.13. Global rejection level versus input SNR (Choi—Williams distribution t_|me—freq_uency points. With _cross-terr_ns moved to the diag-
(6f = 0.01; o without spatial averagingA: with spatial averagingt: ~onal entries of the TFD matrix, the prime task of the source
without spatial averaging using autoterm poiris; with spatial averaging separation based on the JD scheme is to avoid degenerate
using autoterm points). eigenvalues that are responsible for the nonuniqueness solution
of the problem.

averaging, but when applying spatial averaging, satisfactory perSimU|ati0n examples were presented to illustrate the effec-
formance of source separation can be achievedaFer0.002, tiveness of the new approach. The two performance measures
the proposed technique yields a global rejectionlex28.72dB. used were the global rejection level and the values of the
off-diagonal elements of the product of the mixing matrix
and the Pseudo inverse of its estimate. Two sources and five
sensors were considered. The source signals were chirp signals

Spatial averaging of spatial time—frequency distributions hasth the same sweeping frequency, but their corresponding
been introduced and the role of spatial averaging in mitigatimgnstant frequencies and amplitudes were offset by different
the effects of crossterms when bilinear transforms are used ¥atues. Both Wigner—Ville and Choi—Williams distributions
signal recovery has been shown. The spatial averaging of there considered. It was shown that the spatial averaging
spatial time—frequency distributions of the data across an anethod significantly improves the performance measures over
tenna array removes the undesired effect of crossterms betwt#ennonspatially averaging method, specifically when the two
the impinging signals. These terms reside along the off-diagjgnals have close time—frequency signatures.
onal entries of the source time—frequency distribution matrix Without spatial averaging, performance is very sensitive to
and consequently impede the source separation performandeether only auto-term or cross-term points or their mix are

V. CONCLUSIONS
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incorporated in the source separation procedure. With spatigls] Y. zhang, W. Mu, and M. G. Amin, “Time—frequency maximum like-
averag”']g' this is no |Onger a concern since both terms appear lihood methods for direction flndlng,ﬂ. Franklin Inst, vol. 337, pp.

483-497, July 2000.

a!ong the d'agor?al- It is also shown that the Chc_>|—W|II|a_ms[19] Y. Zhang and M. G. Amin, “Blind separation of sources based on their
distribution provides better results than the Wigner-Ville time—frequency signatures,” iBroc. ICASSP Istanbul, Turkey, June
distribution when no spatial averaging is applied since it lowers__ 2000.

the likelihood of selecting crossterm points. With spatial

20] J. E. Evans, J. R. Johnson, and D. F. Sun, “High resolution angular spec-
trum estimation techniques for terrain scattering analysis and angle of

averaging, the issue becomes merely SNR, and in this respect, arrival estimation,” irProc. First Acoust., Speech, Signal Process. Work-
the Wigner-Ville distribution, due to its high peak values, _ Shop Spectral EstimHamilton, ON, Canada, Aug. 1981.

[21] T.J. Shan and T. Kailath, “On spatial smoothing for DOA estimation of

yields better performance than the Choi.—WiIIiams distribution. coherent sources|EEE Trans. Acoust., Speech, Signal Processioly
Therefore, the time—frequency smoothing becomes unneces- ASSP-33, pp. 806-811, 1985.
sary whenever spatial array averaging is possible. [22] R.T. Williams, S. Prasad, A. K. Mahalanabis, and L. H. Sibul, “An im-
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