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Abstract—Multiple source signals impinging on an antenna
array can be separated by time–frequency synthesis techniques.
Averaging of the time–frequency distributions (TFDs) of the data
across the array permits the spatial signatures of sources to play a
fundamental role in improving the synthesis performance. Array
averaging introduces a weighting function in the time–frequency
domain that decreases the noise levels, reduces the interactions
of the source signals, and mitigates the crossterms. This is
achieved independent of the temporal characteristics of the source
signals and without causing any smearing of the signal terms.
The weighting function may take noninteger values, which are
determined by the communication channel, the source positions,
and their angular separations. Unlike the recently devised blind
source separation methods using spatial TFDs, the proposed
method does not require whitening or retrieval of the source
directional matrix. The paper evaluates the proposed method in
terms of performance and computations relative to the existing
source separation techniques based on quadratic TFDs.

Index Terms—Array processing, signal synthesis, source separa-
tion, time–frequency distribution.

I. INTRODUCTION

T IME–FREQUENCY distributions (TFDs) have been
shown to be very useful for nonstationary signal analysis

and synthesis [1]–[5]. While TFDs have been sought out and
successfully used in the areas of speech, biomedicine, the
automotive industry, and machine monitoring, their applica-
tions to sensor and spatial signal processing have not been
sufficiently investigated. By properly incorporating the spatial
dimension into time–frequency signal representations, the
bilinear and higher order forms of TFDs can be a powerful tool
for high-resolution angle-of-arrival estimation and recovery
of the source waveforms impinging on a multisensor receiver,
specifically those of nonstationary temporal characteristics.

Synthesizing the signal from bilinear distributions of the data
at a single antenna receiver is often impeded by the presence
of high levels of noise and crossterms. These undesired terms
not only obscure the true signal power localization in the
time—frequency (t-f) domain but also reduce the synthesized
signal quality. Signal synthesis using TFDs can be improved
using an antenna array receiver. The availability of the source
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signals at different array elements allows the implementation of
t-f synthesis techniques that utilize the source spatial signatures
for crossterm reduction and noise mitigation. In this paper,
we introduce a new approach for signal synthesis in antenna
arrays that utilizes the spatial separation of the sources as well
as the sources’ t-f characteristics. In effect, we perform source
separation, or signal recovery, based on the difference in both
the t-f and spatial signatures of the signal arrivals. The signals
impinging on the multi-antenna receiver are assumed to be
localizable in the t-f domain, e.g., FM and polynomial phase
signals. The estimation of the signal waveforms and/or their
respective spatial signatures are found important applications
in, for example, jammer suppression in spread spectrum
communication systems and global positioning system (GPS)
receivers, and various radar and sonar systems (see, for ex-
ample, [6] and [7]).

Unlike the proposed technique, the existing array signal pro-
cessing techniques for nonstationary source separation using
bilinear distributions require the construction of spatial TFD
(STFD) matrices from the data snap shots. The elements of this
matrix represent the auto- and cross-TFDs of the data across the
array. It was shown in [14]–[16] that the formula relating the
TFD matrix of the sensor data to that of the sources is identical
to the relationship between the data covariance matrix and the
source correlation matrix. Blind source separation (BSS) can
therefore be performed using the source t-f signatures, instead
of their correlation functions. The former is more suitable for
nonstationary signal environments. The BSS based on TFDs
method introduced in [14] first estimates the array, or the spa-
tial signature, matrix from the STFD using joint diagonalization.
Then, it proceeds to use this matrix estimate to undo the mixing
at the array and recover the source signals.

The main difficulty of the above approach, however, is the
need to construct the STFD matrices from auto-term points.
Selections of cross-terms violate the diagonal structure of the
source TFD matrix, which is a necessary condition for most
blind source separation methods. Even if successfully selected,
the autoterm region is often contaminated by high level of noise
and intruded upon by the crossterms through the energy in their
mainlobes and/or sidelobes. The key feature of the proposed
technique is the utilization of the sources’ spatial structures to
enhance their t-f signatures in the t-f domain. Bilinear signal
synthesis methods [8]–[10] can then be applied to the enhanced
source t-f features to recover the signal waveform and its tem-
poral characteristics. By averaging the TFDs of the data across
the array, we permit the source spatial signatures (SS) to play
a fundamental role in reducing noise and crossterm contamina-
tion of the true signal t-f power concentration, leading to im-
proved synthesis performance. It is shown that the performance
is determined by the inner product of the source array vectors
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and improves for weakly correlated and orthogonal source spa-
tial signatures. In the case of Gaussian channel and omni-direc-
tional uniform linear arrays, spatial averaging produces asinc
weighting function whose maximum value, normalized to one,
is assigned to all source autoterms, whereas its fractional values
are assigned to the source crossterms, and thereby mitigating
their effects. It is shown that the extent of crossterm reduction is
a function of the spatial frequency separation of the sources and
does not rely on the source specific locations or their t-f char-
acteristics. However, sources positioned near the broadside will
generally exhibit lower interactions in the t-f domain than those
at the endfire.

Unlike source separation techniques based on STFD, the pro-
posed approach does not require whitening or retrieval of the
source directional matrix, thereby, simplifying the signal re-
covery process. Further, as a result of the averaging process in
the proposed approach, a weighting function in the t-f domain is
constructed, which decreases the noise levels, reduces the inter-
actions of the source signals, and mitigates the cross-terms. This
is achieved independent of the temporal characteristics of the
source signals and without causing any smearing of the signal
auto-terms.

The paper is organized as follows. The signal model is pre-
sented in Section II, and the proposed array averaging tech-
nique is also formulated. The effect of source angular separa-
tion on cross-term reduction is cast in Section II using the im-
plicit beamforming properties of spatial averaging. Section II
also addresses the equivalent t-f weighting introduced by the
proposed technique. The complete synthesis procedure is de-
vised in Section III, where the signals are synthesized from the
array averaged extended Wigner-Ville distribution (WVD). The
extended WVD [11] is used to avoid the need for extracting the
odd-indexed and even-indexed vectors separately via eigenanal-
ysis. Numerical simulations illustrating the performance of the
proposed method are given in Section IV.

II. PROBLEM FORMULATION

A. Signal Model

Assume source signals incident on an-sensor array. The
propagation delay between antenna elements is assumed to be
small relative to the inverse of the transmission bandwidth so
that the received signals are identical to within a complex con-
stant. The data received across the array is, in discrete-time ex-
pression, given by the narrowband model

(1)

where and
are the data snapshot

vector and the source signal vector at time instant,
respectively. The superscript denotes the vector/matrix
transpose. It is assumed that . The vector is
the noise vector whose elements are modeled as stationary,
spatially and temporally white complex Gaussian processes
with zero mean and variance of , i.e.,

(2)

where the superscript denotes transpose conjugation. More-
over, is the Kronecker delta,denotes the identity matrix,
and denotes the mixing matrix

(3)

The columns of matrix are the source spatial signatures (SSs)
and are given by

(4)

where is the th component of theth SS . Matrix
serves as the transfer function between the source signals
and the data . Furthermore, we assume that matrixis of
full column rank, which implies that the SSs associated with the

sources are linearly independent. To simplify the discussion,
we exchange any possible scalar factor embedded into the
source signal and assume that . It is clear that this
exchange does not affect the data observed from the antenna
array.

It is evident that when , (1) represents a multicom-
ponent scenario due to the mixture of the signals at each sensor.
Therefore, a quadratic TFD at the individual sensors would con-
tain not only the autoterms of all source signals but the in-
teractions of the source signals as well, causing undesirable
crossterms.

For the purpose of subsequent derivation, we first expand (1)
using definitions (3) and express the received noise-free data
vector

(5)

Specifically, the data received at sensor( ) is
given by

(6)

B. Array-Averaged WVD

The discrete form of WVD of the signal is given by [4]1

(7)

where denotes complex conjugation, andand represent the
time index and the frequency index, respectively. Equation (7) is
often referred to as the auto WVD of the signal . Similarly,
the cross WVD of any two signals and is defined as

(8)

1There should be a factor of 2 in front of the summation. However, this factor
is omitted in this and subsequent equations for simplicity.
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Substituting (6) into (7), we can express the WVD of the signal
at the th sensor as

(9)

where will herein be referred to as the auto-sensor
WVD of . corresponds to the auto-source or
cross-source WVD, depending on whether , or . It
is important to note that there are two types of crossterms in
the underlying problem. The first type are the crossterms that
are present in the auto-source WVD. These terms are the re-
sults of the interactions between the components of the same
source signal, which is the case when the source signal itself is
of multicomponents. We assume monocomponent sources for
simplicity. The other type of crossterms are found in the cross-
source WVD and generated from the interactions between two
signal components belonging to two different sources. A variant
of the two is the crossterms in the cross-sensor WVD, which re-
sults from the interactions of the signals from different array
elements. It is generally the collection of the above crossterms
and the source auto-terms. We note that the cross-sensor WVD
does not play a role in the analysis presented in this paper.

Averaging the auto-sensor WVDs over the array yields

(10)

In (10), is the inner product of the SSs and . For
, . Defining the spatial correlation

coefficient

(11)

(10) can be then rewritten as

(12)

The above equation shows that is a linear combination
of the auto-source and cross-source WVDs of all signal arrivals.
To obtain a general and compact form for , we define
the source WVD matrix that enters as its ( )th
element

(13)

and

(14)

Accordingly, the averaged WVD could be simplified to

(15)

where denotes the Hadamard product, or the matrix ele-
ment-by-element product, and is an vector of unit
values, i.e., . Equation (15) is valid for every
( ) point and elucidates the averaging of the WVD across the
array. It includes all the signal autoterms and crossterms that
naturally appear in a typical multicomponent WVD. However,
in (15), these autoterms and crossterms are weighted by
constant values, which are the spatial correlation coefficients
that have resulted from the inner product between the sources’
SSs, which are exhibited in the elements of matrix. It is
important to note that by the virtue of the inner product, the
source directional information carried by its respective SS is
lost in .

The diagonal elements of the matrix constitute
all the autoterms of the source signals, whereas the off-diag-
onal elements are their respective cross-terms. It is straightfor-
ward to show that for theth and the th sources

and (16)

indicating that the constant coefficients in (15) for the auto-
source WVD’ are always greater than, or at least equal to, those
for the cross-source WVDs. For a large array or widely sepa-
rated sources, , leading to significant suppression of
the crossterms. This property is utilized by the array averaging
process and is shown to improve the signal synthesis perfor-
mance.

An interesting case arises when all SSs are orthogonal, i.e.,
for any . In this case, becomes an identity

matrix and yields

(17)

It should be noted that in (17) is solely the summation
of the source signal autoterms. The above equation highlights
the fact that all crossterms between different source signals are
entirely eliminated from , and only the autoterms are
maintained, which is most desirable from the synthesis perspec-
tive.

C. Beamforming Effect

In order to establish quantified analysis on the suppression ef-
fect of crossterms based on the proposed array averaging tech-
nique, we consider the special case of a Gaussian channel and
a uniform linear array (ULA). With no signal scattering, the SS
displays the structure

(18)

The spatial frequency of theth source is given by

(19)
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where is the interelement spacing,is the wavelength, and
is the angle of arrival (AOA). From (11), we obtain

(20)

where denotes the difference between the
two spatial frequencies and . Equation (20) is the well-
known array factor for an -element ULA [17]. The spatial
pattern represented by (20) reaches its maximum value within
the mainlobe at . The pattern has secondary maxima
in the side lobes. The largest of those maxima occurs within the
first sidelobe and is asymptotically (for large) 13 dB down
from the unit value (the highest normalized sidelobe level of a
uniformly fed ULA is about 13 dB for large ). In this regard,
if the difference in the spatial frequencies of adjacent sources are
greater than , which is half of the mainlobe width,
the suppression of crossterms could always be guaranteed by at
least 13 dB for a large value of . From (20), we have

(21)

Using this result, we could further rewrite (12) as

(22)

which is the asymptotical form of the orthogonal scenario de-
scribed in (17). The importance of (22) lies in the fact that by
utilizing the array averaging approach, crossterm could be sup-
pressed to any extent if there are sufficient number of array ele-
ments. In other words, the orthogonality in SSs could be always
approached by increasing the array manifold. As such, in the
underlying problem, the array size is cast as an important pa-
rameter influencing the performance of crossterm suppression
through array averaging.

Since and appear as a product in (20), then as the number
of the sensor increases, the sources could be more closely
spaced without impeding crossterm suppression. It is important
to note that because of the nonlinearity between and ,
the condition on angular separation for the same level of
cross-term suppression is more relaxed when the sources are
near the broadside and more rigid when they are placed at the
endfire.

The condition for the orthogonal structure of all SSs in a
ULA, and subsequently full crossterm suppression, could be de-
termined by simply setting (20) equal to 0. Consequently, we
obtain

(23)

and (17) follows. Conversely, the worst performance corre-
sponds to the case in which the sources are closely spaced,
i.e., . In this case, , that means the
received signal at different antenna sensors are highly corre-
lated, and the crossterms would not encounter any significant
changes as a result of array averaging. In general, if all the
sources impinging on the array are closely spaced, the source
signal crossterms cannot be substantially reduced by array

averaging, and the averaged WVD has less difference to the
WVD computed from the output of a single antenna receiver. It
is noted that the degradation of source separation performance
in the presence of closely spaced sources is typical and common
for all spatial signal processing methods because of the close
spatial signatures of the sources.

D. Equivalent Time-Frequency Weighting

The incorporation of the source SSs into WVD results in mul-
tiplying the original WVD with an appropriate weighting coef-
ficient to an autoterm or a crossterm. When the autoterms and
crossterms are separated in the t-f domain, a weighting coeffi-
cient is similar to a mask function in the t-f domain. However,
unlike the conventional mask functions that typically, but not
necessarily, assigns 1 for desired t-f regions and 0 elsewhere,
the weights produced by the source spatial structure may as-
sume any values, which are dependent on both the communi-
cation channels and source spatial locations. These weighting
values are high over autoterm regions and small over crossterm
regions, regardless of their specific locations in the t-f domain.
It is emphasized that in our method, different weighting coeffi-
cients can be applied to an autoterm and a crossterm separately,
even they are completely overlapping.

It is noteworthy that there are two types of crossterms in the
underlying problem. The first type are the crossterms that are the
results of the interaction between the components of the same
source signals. Those crossterms are not harmful to signal syn-
thesis and will not be suppressed in the process of spatial av-
eraging. The other type of crossterms are those generated from
the interactions between two signal components beloging to two
different sources. The latter type of crossterms must be sup-
pressed so that the source signals can be synthesized separately.

Since the suppression of crossterms between different source
signals is controlled by the inner product of the source SSs
and is not dependent on the source temporal characteristics and
signal frequency contents, the evolved t-f mask in the under-
lying problem only reduces the crossterms that are produced
from the interaction of the signals of different sources. That is,
the array averaging process of the sensors’ WVDs does not re-
duce the crossterms of the signal components belonging to the
same source. These crossterms are, in essence, highlighted by
the same coefficient that multiplies the respective source au-
toterms, and their retainment is important when synthesizing
multicomponent signals. In other words, unlike reduced inter-
ference distributions (RIDs) [4], [12] in which appropriate ker-
nels are applied for smoothing all crossterms, the proposed syn-
thesis method using array processing applies selective mitiga-
tion of crossterms, as it identifies and eliminates the “undesired”
crossterms over any t-f regions, even if they are overlapped by
the source autoterms, which is the case shown in the simula-
tion section. Another advantage of the proposed method over
the RIDs lies in the fact that the array averaging technique does
not produce any smearing effect. That is, the averaging process,
apart from scalar multiplication, does not alter the shapes of the
signal autoterms in the t-f domain.

The averaged WVD is not a valid WVD as there
rarely exists a signal waveform that has the same WVD as

. In the sense of signal synthesis or blind source
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separation, the criterion of minimum square error (MSE) is
often applied to obtain the signal with WVD that best
approximates the modified WVD, i.e.,

(24)

If desired, one may combine kernel smoothing and spatial
smoothing. This is achieved by replacing the WVD in (13)–(17)
with another member of Cohens class of TFDs. It is evident
from above equations, however, that the extent to which the
crossterms are mitigated via spatial averaging is kernel blind.
It depends exclusively on the expression of, which is deter-
mined by the spatial information of the source signals and is
independent of , which is the specific t-f expression used.
The integration of both spatial and t-f averaging can result in sig-
nificant crossterm suppression that cannot be achieved by each
type of averaging applied alone.

The above discussion is based on the noise-free assumption.
Because the noise is spatially and temporally white, the aver-
aging process in the presence of noise could also provide a re-
duction of the noise variance in the WVD in by a factor
of over the WVD of the single sensor. It is the random-
ness of the noise described by the noise variance, not the au-
toterm noise Wigner-Ville spectrum that remains unchanged in
the array averaging, which contributes to the distortion of a syn-
thesized signal. Therefore, the reduction of the noise variance
amounts to increasing the synthesis robustness with respect to
noise, which becomes important in the environment where the
desired signals are submerged within the noise. Therefore, the
benefits of the proposed method is two-fold: reduction of the
signal crossterms and the additive noise level.

III. SIGNAL SYNTHESIS

A. Analogy of the Array WVD Signal Synthesis to “Weighted
Model”

The proposed array averaging technique structurely resem-
bles the “weighted model” introduced in [9] and is given by

(25)

where is the weighting factor for the signal sources’ auto- or
cross-terms . denotes the weighted t-f dis-
tribution and is similar in structure to the array averaged WVD

defined in (12). The key difference between (25) and
(12) is that in the underlying problem, we do not intentionally
select the weight factors in (12). They evolve naturally from
the inner products of the associated SSs embedded in the ma-
trix of and are generated without any “human intervention”
through the process of array averaging.

B. Signal Synthesis From Averaged WVD

WVD-based signal synthesis using the MSE criterion (24)
could be found in [8]–[11]. In the following, we derive the signal

synthesis result for (12). Denote

(26)

where is defined in (12). Combining (8), we obtain

(27)

Construct a matrix with

(28)

where and
. We also denote . The

solution to the synthesis problem is equivalent to performing
an eigendecomposition on and determining the
eigenvector corresponding to the largest eigenvalue [9], [10].

Since is complex conjugate symmetric

(29)

where and are the real-valued eigenvalues and the
orthonormal eigenvectors of . Inserting (29) into (28) and
defining , we obtain

(30)

Let be the largest eigenvalue, and let be the respective
eigenvector. The solution to the synthesis problem could be
easily expressed as [9], [10]

(31)

where is an unknown value representing the phase ambiguity.
From the definition of , it is evident that the synthesized

signal is a linear combination of the original signal components
, . However, this is not the desired result

since, in most cases, we need to synthesize each individual
signal component from the multicomponent WVD without
the interference of the other signal components. This can be
achieved by placing a mask on the desired signal autoterm
and perform the synthesis process. The purpose of applying a
mask is to reduce the crossterms and to mitigate other signals’
autoterms. This is necessary because it has been shown that
the existence of crossterms and the autoterms of other signal
may completely fail the synthesis strategy [9]. With the use
of averaged WVD across the antenna array, the autoterms
are substantially enhanced with respect to both noise and
crossterms and, thus, can be easily identified without thea
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priori knowledge of the signal waveforms and signatures, even
in low SNR situations. It is noted that the construction of a
mask does not require the exact knowledge or estimation of the
signal waveforms and their WVDs. Rough bounds separating
different autoterm areas would suffice when the noise and
crossterms are sufficiently suppressed.

In this paper, we utilize the method ofextended discrete-time
Wigner distribution(EDTWD), which was introduced in [11], to
the output of array averaged WVD. The advantage of using the
EDTWD lies in the fact that it does not requirea priori knowl-
edge of the source waveform and thereby avoids the problem
of matching the two “uncoupled” vectors (even-indexed and
odd-indexed vectors).

The overall synthesis procedure is summarized in the fol-
lowing steps.

1) Given the received data of theth sensor , compute the
EDTWD

(32)

2) Apply the averaging process, that is, summing the EDTWD
across the array

(33)

3) Place an appropriate t-f mask on such that only the
desired signal autoterms are retained.

4) Take the inverse fast Fourier transform (IFFT) of the masked
WVD

(34)

5) Construct the matrix with

(35)

6) Apply eigendecomposition to the matrix , and
obtain the maximum eigenvalue and the associated
eigenvector . The desired signal is given by

(36)

where again, is an unknown value representing the phase
ambiguity.

7) Repeat step 3 through 6 until all source signals
are retrieved.

C. Array Matrix Estimation

Upon synthesizing all the source signals, the mixing, or array,
matrix can be estimated through the least-square (LS) crite-

rion, which minimizes

(37)

That is

(38)

The LS estimate of the array matrix is obtained as [18]

(39)

where

(40)

represents the estimated signal source covariance matrix, and
, with

(41)

is the correlation vector between the data vector received across
the array and theth source signal . In (37)–(41), the nota-
tion “ ” signifies the fact that we deal with estimated variables.

It is evident from the implementation of the proposed algo-
rithm that the spatial information needs to be sacrified in the
first phase to reduce crossterms and noise. The mixing matrix
could be estimated only after the complete retrieval of the signal
source waveforms. This is fundamentally different from other
algorithms that combine array signal processing with conven-
tional bilinear distributions, e.g., the STFD, in which the mixing
matrix estimation precedes the estimation of the source signals
and is provided using relationship

(42)

where is the signal TFD matrix whose entries are the
auto- and cross-TFDs of the sources, and is the data
STFD matrix. In the STFD-based source separation, the esti-
mate of is provided using whitening, followed by joint di-
agonalization of for ( , autoterm regions). This
estimate is then included to obtain the source signals using the
pseudo-inverse of .

A hybrid technique based on both array averaging and
STFD can be adopted. The array averaging of WVDs is first
performed to offer a good estimate of t-f signatures of source
signals through cross-term suppression properties. Once the
auto-source WVDs are determined, we could then construct the
STFD matrices and recover the synthesized signal waveforms,
as well as the mixing matrix based on (39).
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D. Signal Synthesis With Overlapping T-F Signatures

The procedures we have discussed is appropriate to synthe-
size the signal waveform whose t-f signatures are distinct. In this
case, the masked t-f region always contains the autoterm of the
desired source signal with the influence from other sources often
negligible. However, if the source t-f signatures overlap, the
mask is deemed to capture undesired autoterms. This problem
cannot be mitigated by spatial averaging of TFDs and a modifi-
cation of the proposed method is in order.

Assume that upon implementing the synthesis process
described in Section III-B, we obtain the estimate of the mixing
matrix . Since there are interfering signal autoterms from
other sources, should be considered different from. We
use to construct a beamformer applied to the data received
across the array (assume the noise-free scenario). That is

(43)

where is a vector. Clearly

(44)

It is expected that is a perturbed version of . With the
approximations

(45)

and

(46)

then, the WVD of is given by

(47)
for , . This shows that in (47), except theth
auto-source term, all other terms, either auto- or cross-source
terms, are significantly reduced from . In the case of
ULA, the suppression of those terms are at least 13 dB for large
value of . The suppression of the autoterms other than source

is , which is more than 26 dB down from theth source.
Therefore, the effect of the overlapping autoterms from other
sources becomes negligible. If we apply the steps 3–8 of the
synthesis procedure of Section III-B using the improved WVD
in (47), the synthesized signal will be enhanced.

E. Computational Cost

To compare the computational cost of the proposed method
and STFD, we use the number of complex multiplications as the
evaluation criterion. For the array averaged WVD, the compu-
tational cost is shown to be (Appendix A)

(48)

where the operand denotes the order of “.”

The computational cost for a typical STFD process is given
as (also see Appendix A)

(49)

Thus, the array averaging technique requires higher computa-
tions than the STFD based method.

IV. SIMULATION RESULTS

In this section, we provide computer simulations to demon-
strate the improvement gained by the proposed technique in
the reduction or elimination of crossterms. Specifically, we
examine the effect of array averaging on the retrieval and
separation of the nonstationary signals impinging on the mul-
tisensor array. In all the simulations presented in what follows,
we consider several signals incident on an eight-sensor ULA
( ) with interelement spacing of half-wavelength. The
additive noise is zero mean, Gaussian distributed, and spatially
and temporally white. The length of the signal sequence is
set to .

Moreover, we use the same performance index applied in [14]
and [16] to evaluate the performance of the proposed technique

(50)

where the superscript denotes the pseudo-inverse. Equation
(50) defines the interference-to-signal ratio (ISR). Thus,
measures the ratio of the power of the interference ofth source
signal to the power of theth source signal. For large enough

, we have for . We also apply the global rejec-
tion level to evaluate the overall performance of the proposed
method

(51)

In the first example, three chirp signals , , and
arrive at the array with AOAs of 20 , 0 , and 20, with

the respective start and end frequencies given by (0.90.5 ),
(0.66 0.26 ), and (0.5 0.1 ). In the t-f plane, the source
signals have parallel signatures, emulating a multipath environ-
ment. The crossterm of and also forms a chirp-like
crossterm structure whose frequency starts from 0.7and ends
with 0.3 and, therefore, lies closely to the t-f signature of

. Fig. 1 depicts the WVD of the signals at the reference
sensor (sensor #1) for the case of noise-free environment. It is
clear that the t-f signature of all signal autoterms and crossterms
are parallel in the t-f domain. The crossterms produced from
the three source signals are even more dominant than the source
autoterms. In the single sensor receiver, it becomes difficult to
distinguish the source autoterms from the crossterms without
anya priori knowledge of the sources. From the above AOAs,
we obtain

(52)
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Fig. 1. WVD in noise-free case at reference sensor.

Fig. 2. Array-averaged WVD in noise-free environment.

The off-diagonal elements are small ( 13 dB), compared
with the matrix diagonal entries, indicating that the sources spa-
tial signatures are weakly correlated, and the array averaging
process could result in a substantial reduction in the crossterms.
Fig. 2 shows the corresponding array-averaged WVD. Due to
the reduction in cross-terms by more than 13 dB, the t-f sig-
natures of the sources are distinctively exhibited in the plots.
Explicitly, the crossterm from and ceased to become
an interfering factor in identifying the adjacent signal source

. In effect, averaging the WVDs across the array has sig-
nificantly reduced the crossterms, whereas the three signals’ au-
toterms have remained intact.

Next, we add 5 dB noise to the data at each array sensor so that
the input SNR is 5 dB. Figs. 3 and 4 depict both the reference-
sensor WVD and the array-averaged WVD. It is evident that the
noise obscures both the signal autoterms and crossterms of the
WVD at a single sensor. It is difficult, therefore, to retrieve the
desired signal if we only synthesize from a single sensor.

Fig. 3. WVD of the corrupted signals at reference sensor.

Fig. 4. Array-averaged WVD of the corrupted signals.

Upon averaging, both noise and crossterms are sufficiently
reduced to clearly manifest the individual source t-f signature,
and the signals could be individually recovered if we place the
appropriate masks in the t-f region. Figs. 5 and 6 shows the
WVD of the synthesized signal using the array averaging
and STFD techniques, respectively. Fig. 7 displays the real
parts of the original signal , the STFD-recovered ,
and synthesized by the proposed method. It is clear that
the result from the array averaging technique is closer to the
original signal than the recovered signal from the STFD-based
method. We also plot the global rejection level versus the
input SNR in Fig. 8. The input SNR takes values from10 dB
to 20 dB. Both the STFD-based and the array averaging-based
techniques are used to compute the empirical defined in
(51). Increasing the SNR certainly improves the performance
for both methods, and simulations show that the STFD-based
method is outperformed by the array averaging technique,
which is consistent with the results given in Fig. 7.
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Fig. 5. WVD of synthesized̂s (t) using array averaging.

Fig. 6. WVD of synthesized̂s (t) using STFD.

Fig. 7. (a) Real part of originals (t). (b) Real part from the STFD-recovered
ŝ (t). (c) Real part from the array averagedŝ (t).

Fig. 8. Global rejection level versus input SNR (�: by STFD; �: by array
averaging).

Fig. 9. WVD of the two overlapping signals from a reference sensor.

In the second example, we use two chirp signals with highly
overlapping autoterms. The signals are from AOAs of20
and 20 with start and end frequencies of (0.900.96 ) and
(0.16 0.10 ), respectively. Fig. 9 shows the WVD of the data
received at the reference sensor #1, where the input SNR is

5 dB. The two signal autoterms highly overlap. The respective
crossterm is located in the middle which also overlaps with the
autoterms. The array averaged WVD is plotted in Fig. 10. Using
the conclusions derived in Section II, we expect that the cross
term would be suppressed by about 19 dB after the array aver-
aging process. This is supported by the plots in Fig. 10. To syn-
thesize the signal, we place the mask along each t-f signature.
Any reasonable selection of the mask inevitably includes com-
ponents from the other source. Therefore, each signal synthe-
sized following the procedures described in Section III-B is, in
essence, corrupted by the other signal. By further implementing
the beamformer and synthesis procedures from Section III-D,
we could obtain an improved signal. The WVDs of the first syn-
thesized signal before and after the beamforming process are
shown in Fig. 11. The corresponding global rejection levels are
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Fig. 10. Array averaged WVD.

calculated and equal to16.4 dB and 20.4 dB for the respec-
tive cases. Therefore, a 4-dB improvement is achieved using the
beamforming process. It is evident from this example that the
proposed method works well for highly overlapped signals.

V. CONCLUSION

A two-step synthesis technique using bilinear distributions
was proposed for multisensor receivers. The first step is to av-
erage the Wigner–Ville distributions of the sensor data across
the array. This averaging process allows the distinction in the
spatial structures of the sources to play a key role in improving
their t-f representations. This improvement is manifested in the
reduction of the noise floor and mitigation of cross-terms in the
t-f domain. The second step is to apply well-known bilinear syn-
thesis methods to the averaged WVD. It was shown that the
proposed synthesis approach is fundamentally different from
the one recently devised using spatial TFDs. In the latter, the
source spatial signatures need to be first estimated before the
sources could be separated. The main attraction of the proposed
approach is that it naturally extends bilinear signal synthesis to
array processing. In doing so, it capitalizes on the spatial dimen-
sion to reduce the cross-terms without smearing the auto-terms,
which cannot be achieved using the t-f smoothing operation via
reduced interference distributions.

APPENDIX

COMPUTATION FOR STFD-BASED AND ARRAY

AVERAGING-BASED TECHNIQUES

We first derive the computational requirement for a single
EDTWD counting the complex multiplications. It is clear from
(39) that for a sequence ( ), the EDTWD
would generate a two-dimensional TFD

. The computation cost is determined by constructing a
matrix whose elements are given by

(A.1)

(a)

(b)

Fig. 11. WVD of the first synthesized signal (a) before beamforming and (b)
after beamforming.

The number of complex multiplication involved in (A.1) is

(A.2)

The EDTWD could be obtained simply by calculating the fast
Fourier transform (FFT) with respect to theparameter in

. Assuming that is the computation cost for a
sequence of length ( ), we have .
Therefore, the computation cost required in a single EDTWD is

(A.3)

Other costs are for IFFT, (according to [19])
for eigendecomposition to recover source waveforms, and

for recovery of the mixing
matrix. The total cost is computed by summing the above
results. Since the number of samplesis often much greater
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than other parameters, we neglect all items but , yielding

(A.4)

The computation requirements of STFD could be calculated
in two parts [20]. The first part is related to extractions of the
t-f signature. This is achieved by computing the WVD of the
data from a single reference sensor and selecting the t-f points
that are associated with the different signal sources. Similar to
EDTWD, the required cost for this process is .
The second part involves the construction of the STFD matrices
and recovery of the signal waveforms. It is straightforward to
show that the respective computation cost is the following:

• estimation of the auto correlation matrix: ;
• computation of the whitening matrix: ;
• whitening of the data: ;
• estimation of the STFDs: ;
• joint diagonalization: ;
• Separation: .

The variables , , and are the number of sources, sen-
sors, and samples, respectively, whereasis the number of the
chosen t-f points. is the cost of one classical TFD. In a typ-
ical scenario, , Therefore, the computation
cost for STFD is

(A.5)
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