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Bilinear Signal Synthesis in Array Processing

Weifeng Mu, Moeness G. Amjriellow, IEEE and Yimin Zhang Senior Member, IEEE

Abstract—Multiple source signals impinging on an antenna signals at different array elements allows the implementation of
array can be separated by time—frequency synthesis techniques. t-f synthesis techniques that utilize the source spatial signatures
Averaging of the time—frequency distributions (TFDs) of the data for crossterm reduction and noise mitigation. In this paper,

across the array permits the spatial signatures of sources to play a introd hf . I thesis i t
fundamental role in improving the synthesis performance. Array we Introduce a new approach for signal synthesis in antenna

averaging introduces a weighting function in the time—frequency arrays that utilizes the spatial separation of the sources as well
domain that decreases the noise levels, reduces the interactionsas the sources’ t-f characteristics. In effect, we perform source
of the source signals, and mitigates the crossterms. This is separation, or signal recovery, based on the difference in both
achieved independent of the temporal characteristics of the source the t-f and spatial signatures of the signal arrivals. The signals

signals and without causing any smearing of the signal terms. . . . th lti-ant - dtob
The weighting function may take noninteger values, which are Impinging on the muiti-anténna receiver are assumed o be

determined by the communication channel, the source positions, localizable in the t-f domain, e.g., FM and polynomial phase
and their angular separations. Unlike the recently devised blind signals. The estimation of the signal waveforms and/or their
source separation methods using spatial TFDs, the proposed respective spatial signatures are found important applications
method does not require whitening or retrieval of the source in, for example, jammer suppression in spread spectrum
directional matrix. The paper evaluates the proposed method in L ' e
terms of performance and computations relative to the existing COMmunication systems and global positioning system (GPS)
source separation techniques based on quadratic TFDs. receivers, and various radar and sonar systems (see, for ex-
ample, [6] and [7]).

Unlike the proposed technique, the existing array signal pro-
cessing techniques for nonstationary source separation using
bilinear distributions require the construction of spatial TFD

. INTRODUCTION (STFD) matrices from the data snap shots. The elements of this

IME-FREQUENCY distributions (TFDs) have peernatrix represent the auto- and cross-TFDs of the data across the
T shown to be very useful for nonstationary signal analys®ray-: It was shown in [14]—-[16] that the formula relating the
and synthesis [1]-[5]. While TFDs have been sought out addD matrix of the sensor data to that of the sources is identical
successfully used in the areas of speech, biomedicine, tadhe relationship between the data covariance matrix and the
automotive industry, and machine monitoring, their applicource correlation matrix. Blind source separation (BSS) can
tions to sensor and spatial signal processing have not pdarefore be performed using the source t-f signatures, instead
sufficiently investigated. By properly incorporating the spatiaﬂf their correlation functions. The former is more suitable for
dimension into time—frequency signal representations, tR@nstationary signal environments. The BSS based on TFDs
bilinear and higher order forms of TFDs can be a powerful toftethod introduced in [14] first estimates the array, or the spa-
for high-resolution angle-of-arrival estimation and recove ial signature, matrix from the STFD using joint diagonalization.
of the source waveforms impinging on a multisensor receiv fen, it proceeds to use this matrix estimate to undo the mixing
specifically those of nonstationary temporal characteristics. at the array and recover the source signals.

Synthesizing the signal from bilinear distributions of the data The main difficulty of the above approach, however, is the
at a single antenna receiver is often impeded by the presefi§€d to construct the STFD matrices from auto-term points.
of high levels of noise and crossterms. These undesired terplections of cross-terms violate the diagonal structure of the
not only obscure the true signal power localization in thgeurce TFD matrix, which is a necessary condition for most
time—frequency (t-f) domain but also reduce the Symhesizg)gnd source separation methods. Even if successfully selected,
signal quality. Signal synthesis using TFDs can be imprové'ﬂ? autoterm region is often contaminated by high level of noise
using an antenna array receiver. The availability of the sour@gd intruded upon by the crossterms through the energy in their

mainlobes and/or sidelobes. The key feature of the proposed
technique is the utilization of the sources’ spatial structures to
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and improves for weakly correlated and orthogonal source spehere the superscrigt denotes transpose conjugation. More-
tial signatures. In the case of Gaussian channel and omni-direeer,é(7) is the Kronecker deltd, denotes the identity matrix,
tional uniform linear arrays, spatial averaging produceta andA denotes thé/ x L mixing matrix

weighting function whose maximum value, normalized to one,

is assigned to all source autoterms, whereas its fractional values A =Ja,...,ar] 3)

are assigned to the source crossterms, and thereby mitigating

their effects. It is shown that the extent of crossterm reductionTisie columns of matriA are the source spatial signatures (SSs)
a function of the spatial frequency separation of the sources ar are given by

does not rely on the source specific locations or their t-f char-

acteristics. However, sources positioned near the broadside will a; = [a;1,...,0; M]T (4)
generally exhibit lower interactions in the t-f domain than those
at the endfire. wherea;; is the jth component of théth SSa;. Matrix A

Unlike source separation techniques based on STFD, the merves as the transfer function between the source sigfials
posed approach does not require whitening or retrieval of thad the data(t). Furthermore, we assume that matAixis of
source directional matrix, thereby, simplifying the signal reull column rank, which implies that the SSs associated with the
covery process. Further, as a result of the averaging procesd. igources are linearly independent. To simplify the discussion,
the proposed approach, a weighting function in the t-f domainuse exchange any possible scalar factor embedded to the
constructed, which decreases the noise levels, reduces the irtetrce signal and assume thjat||32 = M. It is clear that this
actions of the source signals, and mitigates the cross-terms. Tédishange does not affect the data observed from the antenna
is achieved independent of the temporal characteristics of teay.
source signals and without causing any smearing of the signalt is evident that when. > 1, (1) represents a multicom-
auto-terms. ponent scenario due to the mixture of the signals at each sensor.

The paper is organized as follows. The signal model is préherefore, a quadratic TFD at the individual sensors would con-
sented in Section Il, and the proposed array averaging tet&in not only the autoterms of all source signals but the in-
nigue is also formulated. The effect of source angular sepataractions of the source signals as well, causing undesirable
tion on cross-term reduction is cast in Section Il using the incrossterms.
plicit beamforming properties of spatial averaging. Section Il For the purpose of subsequent derivation, we first expand (1)
also addresses the equivalent t-f weighting introduced by theing definitions (3) and express the received noise-free data
proposed technique. The complete synthesis procedure is destor
vised in Section lll, where the signals are synthesized from the

array averaged extended Wigner-Ville distribution (WVD). The () = XL: i(t) )
extended WVD [11] is used to avoid the need for extracting the Y= i Aisild)-
odd-indexed and even-indexed vectors separately via eigenanal- ‘
ysis. Numerical simulations illustrating the performance of thepecifically, the data received at sensdi: = 1,2,..., M) is
proposed method are given in Section IV. given by

Il. PROBLEM FORMULATION 0 EL: ) ©6)

Yr(t) = aixSi(t)-

A. Signal Model i=1

AssumelL source signals incident on &d-sensor array. The
propagation delay between antenna elements is assumed to be
small relative to the inverse of the transmission bandwidth & Array-Aveaged WVD
that the received signals are identical to within a complex con-The discrete form of WVD of the signalt) is given by [4}
stant. The data received across the array is, in discrete-time ex-
pression, given by the narrowband model

oo

Wyy(ta f)= Z y(t+ Dy*(t - l)e—j47rfl @)
[=—o00

x(t) = y(t) +n(t) = As(t) +n(t), t=1,...,N (1)
T where* denotes complex conjugation, ahand f represent the
where  x(t) = [21(2), - 20 ()] and  time index and the frequency index, respectively. Equation (7) is
s(t) = [s1(t),...,so(t)]" are the M x 1 data snapshot often referred to as the auto WVD of the sigpél). Similarly,

vector and thel. x 1 source signal vector at time instaht the cross WVD of any two signals (¢) andy,(t) is defined as
respectively. The superscript denotes the vector/matrix

transpose. It is assumed thgt > L. The M x 1 vectorn(t) is i i} anfl
the noise vector whose elements are modeled as stationary, W (t£) = D> wi(t+Dys(t —De™ L (8)
spatially and temporally white complex Gaussian processes I=—o0

with zero mean and variance 6%, i.e.,

" 9 IThere should be a factor of 2 in front of the summation. However, this factor
E [n(t+7)n" ()] = 0?6(1)I (2) is omitted in this and subsequent equations for simplicity.
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Substituting (6) into (7), we can express the WVD of the signélccordingly, the averaged WVIV (¢, f) could be simplified to
at thekth sensory;(t) as

W(t. f) = u [Wy(t, f) ©T]u (15)
Wy (2, f) Zzalk“ﬂv Z i(t+ 1) (t = e 74! where ® denotes the Hadamard product, or the matrix ele-
i=1s=1 I==oe ment-by-element product, and is an L x 1 vector of unit
. values, i.e.u = [1,..., ] Equation (15) is valid for every
- Z Z aiktjkWs, (£, f) ©) (¢, f) point and elucidates the averaging of the WVD across the

array. It includes all the signal autoterms and crossterms that
whereW,, ., (t, f) will herein be referred to as the auto-sensograturally appear in a typical multicomponent WVD. However,
WVD of y(t). Ws,s, (¢, f) corresponds to the auto-source ot (15), these autoterms and crossterms are weighted by
cross-source WVD, depending on whethet j, ori # j. It constant values, which are the spatial correlation coefficients
is important to note that there are two types of crosstermstitat have resulted from the inner product between the sources’
the underlying problem. The first type are the crossterms tHa$s, which are exhibited in the elements of malfrixIt is
are present in the auto-source WVD. These terms are the ifgportant to note that by the virtue of the inner product, the
sults of the interactions between the components of the sag@irce directional information carried by its respective SS is
source signal, which is the case when the source signal itselfast in W (t, f).
of multicomponents. We assume monocomponent sources fofl he diagonal elements of the math¥ (¢, f) ©T' constitute
simplicity. The other type of crossterms are found in the crosg!l the autoterms of thé source signals, whereas the off-diag-
source WVD and generated from the interactions between t@oal elements are their respective cross-terms. It is straightfor-
signal components belonging to two different sources. A variawgrd to show that for théth and thejth sources
of the two is the crossterms in the cross-sensor WVD, which re-
sults from the interactions of the signals from different array 1Bijl < 1,i#jandB; = 1,i=j (16)
elements. It is generally the collection of the above crossterms
and the source auto-terms. We note that the cross-sensor WApfjcating that the constant coefficients in (15) for the auto-
does not play a role in the analysis presented in this paper. Source WVD' are always greater than, or at least equal to, those

Averaging the auto-sensor WVDs over the array yields for the cross-source WVDs. For a large array or widely sepa-
rated sourceg/;;| < 1, leading to significant suppression of

1 &« the crossterms. This property is utilized by the array averaging
W(t, f) M Wypy (t, ) process and is shown to improve the signal synthesis perfor-
B k=1 . mance.
B 1 . ’ An interesting case arises when all SSs are orthogonal, i.e.,
_Z 2\ 1 > ainaji | Was, (t: ) Bi; = 0foranyi # j.In this casel’ becomes an identity
7’? le k=1 matrix and yields
1
=33 () Wt o) .
i=1 j=1 ZWQLSA (t, f). a7
In (10), a’a; is the inner product of the SSg anda;. For =t
i = j,aj'a; = ||laj||3 = M. Defining the spatial correlation |t should be noted tha¥/ (¢, f) in (17) is solely the summation
coefficient of the source signal autoterms. The above equation highlights
1 5 the fact that all crossterms between different source signals are
Bij = A A (11) entirely eliminated fromi¥ (¢, f), and only the autoterms are

. maintained, which is most desirable from the synthesis perspec-

(10) can be then rewritten as tive.
L L

=33 BiiWas, (. ). (12) C. Beamforming Effect

i=ti=1 In order to establish quantified analysis on the suppression ef-

The above equation shows tH&t(, f) is a linear combination fect of crossterms based on the proposed array averaging tech-
of the auto-source and cross-source WVDs of all signal arrivaf§due, we consider the special case of a Gaussian channel and
To obtain a general and compact form #6f(¢, f), we define 2 uniform linear array (ULA). With no signal scattering, the SS
the source WVD matrix that ente#d’, , (¢, f) as its ¢, j)th displays the structure
element T
a; = [l,ej“”',...,ej(M_l)““} . (18)
Wes(t, f) = [Wes, (8, )], 5 =1,...,L  (13)

and The spatial frequency of thigh sourcev; is given by

r= %AHA =18, i,i=1,...,L. (14) w; = 2%18111(91') (19)
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whered is the interelement spacing,is the wavelength, angl  averaging, and the averaged WVD has less difference to the
is the angle of arrival (AOA). From (11), we obtain WVD computed from the output of a single antenna receiver. It
is noted that the degradation of source separation performance
in the presence of closely spaced sources is typical and common
for all spatial signal processing methods because of the close
spatial signatures of the sources.

1 _ ej]\'[Aw.;j
|Bi;| = N
M (1 — edawis)

where Aw;; = w; — w; denotes the difference between th
two spatial frequencies; andw;. Equation (20) is the well-
known array factor for an M -element ULA [17] The 5patia| The incorporation of the source SSsinto WVD results in mul-
pattern represented by (20) reaches its maximum value witfiglying the original WVD with an appropriate weighting coef-
the mainlobe at\w;; = 0. The pattern has secondary maximficient to an autoterm or a crossterm. When the autoterms and
in the side lobes. The largest of those maxima occurs within thedssterms are separated in the t-f domain, a weighting coeffi-
first sidelobe and is asymptotically (for larde’) 13 dB down cient is similar to a mask function in the t-f domain. However,
from the unit value (the highest normalized sidelobe level ofulike the conventional mask functions that typically, but not
uniformly fed ULA is about-13 dB for largeM). In this regard, necessarily, assigns 1 for desired t-f regions and 0 elsewhere,
ifthe difference in the spatial frequencies of adjacent sources ##e Weights produced by the source spatial structure may as-
greater tham\Q = 27 /M, which is half of the mainlobe width, Sume any values, which are dependent on both the communi-
the suppression of crossterms could always be guaranteed b§aéion channels and source spatial locations. These weighting

D. Equivalent Time-Frequency Weighting

least 13 dB for a large value dff. From (20), we have values are high over autoterm regions and small over crossterm
regions, regardless of their specific locations in the t-f domain.
Jim |G =0, i # . (21) Itis emphasized that in our method, different weighting coeffi-
) ] ) cients can be applied to an autoterm and a crossterm separately,
Using this result, we could further rewrite (12) as even they are completely overlapping.
L It is noteworthy that there are two types of crossterms in the
lim W(t, f) = Z Wi, s, (t, f) (22) underlying problem. The first type are the crossterms that are the
M=o k=1 results of the interaction between the components of the same

which is the asymptotical form of the orthogonal scenario d ource signals. Those crossterms are not harmful to signal syn-

scribed in (17). The importance of (22) lies in the fact that b eslS an_?lhwnltﬂot ?e suapress?d in the ptrhocess of sp?tlglfav-
utilizing the array averaging approach, crossterm could be s aging. the other type ot crossterms are those generated from
pressed to any extent if there are sufficient number of array ejf¢ Interactions between two signal components beloging to two

ments. In other words, the orthogonality in SSs could be alwa gferent sources. The latter type of crossterms must be sup-

approached by increasing the array manifold. As such, in t Eessed so that the source signals can be synthesized separately.

underlying problem, the array size is cast as an important pa_Slnce the suppression of crossterms between different source

rameter influencing the performance of crossterm suppressﬁiﬂn‘f’IIS is controlled by the inner product of the source SSs
through array averaging. and is not dependent on the source temporal characteristics and

SinceM andd appear as a product in (20), then as the numb@ilg”al frequency contents, the evolved t-f mask in the under-
of the sensoiV/ increases, the sources could be more closeI ng problem only reduces the crossterms that are produced

spaced without impeding crossterm suppression. It is import m the |nteract!on of the signals of d|fferef1t sources. That is,
to note that because of the nonlinearity betweéen and A4, the array averaging process _Of the sensors’ WVDs d°.es not re-
the condition on angular separatidtf for the same level of duce the crossterms of the signal components be'oﬂg”?g to the
cross-term suppression is more relaxed when the sources e source. These crossterms are, in essence, highlighted by

near the broadside and more rigid when they are placed at IRg same coefficient that multiplies the respective source au-
endfire toterms, and their retainment is important when synthesizing

The condition for the orthogonal structure of all SSs in ulticomponent signals. In other words, unlike reduced inter-

ULA, and subsequently full crossterm suppression, could be grence distributions (RIDs) [4], [12] in which appropriate ker-

termined by simply setting (20) equal to 0. Consequently, thels_are applied fqr smoothing all crossterms, the proposed_ Syn-
obtain thesis method using array processing applies selective mitiga-

tion of crossterms, as it identifies and eliminates the “undesired”
Aw;j = im2_7r =+mAQ, m=1,2,... (23) crossterms over any t-f regions, even if they are overlapped by

the source autoterms, which is the case shown in the simula-
and (17) follows. Conversely, the worst performance corréien section. Another advantage of the proposed method over
sponds to the case in which the sources are closely spadbd,RIDs lies in the fact that the array averaging technique does
i.e., |Aw;;| < 2m/M. In this case|f;;| =~ 1, that means the not produce any smearing effect. That is, the averaging process,
received signal at different antenna sensors are highly coragart from scalar multiplication, does not alter the shapes of the
lated, and the crossterms would not encounter any significaignal autoterms in the t-f domain.
changes as a result of array averaging. In general, if all theThe averaged WVDV (¢, f) is not a valid WVD as there
sources impinging on the array are closely spaced, the souraeely exists a signal waveform that has the same WVD as
signal crossterms cannot be substantially reduced by ar#d¥(t, f). In the sense of signal synthesis or blind source
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separation, the criterion of minimum square error (MSE) &ynthesis result for (12). Denote
often applied to obtain the signglp:(t) with WVD that best

approximates the modified WVD, i.e., A 3 j2r fl
pproxi i I D <t, 2> = ; W(t, f)el (26)
2
Yopt (t) = arg HBHZ > ‘Wy(t7 =Wt f)| . (24) whereW(t, f) is defined in (12). Combining (8), we obtain
¢ f

L L
If desired, one may combine kernel smoothing and spatial p <t7 é) = Z Z[j‘ijsi (t + %) s (t — é) . 27)
smoothing. This is achieved by replacing the WVD in (13)—(17)

with another member of Cohens class of TFDs. It is evident
from above equations, however, that the extent to which tﬁ:é)

i=1 j=1

nstruct a matrixQ = [Gmy,] With

crossterms are mitigated via spatial averaging is kernel blind. R Im+n

It depends exclusively on the expressionigfwhich is deter- Gmn =P 5 M n)

mined by the spatial information of the source signals and is .

independent oW ., which is the specific t-f expression used. _ Z Zﬂ si(m)s*(n)

The integration of both spatial and t-f averaging can result in sig- pa ot e 7

nificant crossterm suppression that cannot be achieved by each H

type of averaging applied alone. =s" (n)I's(m) (28)
The above discussion is based on the noise-free assumpt{%ére T = [8,] = (I/M)AHA and s(t) =

Be.cause the noise is spatially and tgmporally white, the av Sr—(t)? L sL(t)]T. We also denot§ = [s(1), ..., s(N)]. The
aging process in the presence of noise could also provide a're

duction of the noise variance in the WVDTH (%, f) by a factor solution to the synthesis problem is equivalent to performing
of M over the WVD of the single sensor. It is the random-.

an eigendecomposition ow(t1,t2) and determining the
ness of the noise described by the noise variance, not the gllgégnvectqr correspondin_g to the Iargestgigenvalue [9], [10]-
toterm noise Wigner-Ville spectrum that remains unchanged in inceT" is complex conjugate symmetric
the array averaging, which contributes to the distortion of a syn- L
thesized signal. Therefore, the reduction of the noise variance T =CACH = Z AkaCf. (29)
amounts to increasing the synthesis robustness with respect to k=1
noise, which becomes important in the environment where the .
desired signals are submerged within the noise. Therefore, YH€"® Ax and c,. are the real-valued eigenvalues and the
benefits of the proposed method is two-fold: reduction of tH¥thonormal eigenvectors df. Inserting (29) into (28) and

signal crossterms and the additive noise level. definingU = [u,...,ur]" = C7S, we obtain
L
lll. SIGNAL SYNTHESIS Q=U"AU=> Ny (30)
A. Analogy of the Array WVD Signal Synthesis to “Weighted =
Model” Let A\; be the largest eigenvalue, and et be the respective

e(ﬁigenvector. The solution to the synthesis problem could be

The proposed array averaging technique structurely res TTsily expressed as [9], [10]

bles the “weighted model” introduced in [9] and is given by

§=e%V (31)
L L
W(t, ) => > aijWas(t f) (25)  whereg is an unknown value representing the phase ambiguity.
i=17=1 From the definition ofu,, it is evident that the synthesized
wherea, ; is the weighting factor for the signal sources’ auto- 0srignal is a linear combination of the original signal components
+ 2 si(t), k = 1,..., L. However, this is not the desired result

cross-termdV, 5, (¢, f). W(t, f) denotes the weighted t-f dis- . . L
Lo SkSUAT ST ince, in most cases, we need to synthesize each individual
tribution and is similar in structure to the array averaged WVD. : .
gnal component from the multicomponent WVD without

= ) X : S
W{(t, f) defined in (12). The key difference between (25) anﬁie interference of the other signal components. This can be

(12) is that in the underlying problem, we do not intentionally . . : ;
: . chieved by placing a mask on the desired signal autoterm
select the weight factors;; in (12). They evolve naturally from . .
and perform the synthesis process. The purpose of applying a

the inner products of the associated SSs embedded in the ma- " " . :
. . y . . mask is to reduce the crossterms and to mitigate other signals
trix of ' and are generated without any “human intervention o .
through the process of array averaging autoterms. This is necessary because it has been showr_1 that
' the existence of crossterms and the autoterms of other signal
. . may completely fail the synthesis strategy [9]. With the use
B. Signal Synthesis From Aaged WVD of averaged WVD across the antenna array, the autoterms
WVD-based signal synthesis using the MSE criterion (24e substantially enhanced with respect to both noise and

could be found in[8]-[11]. In the following, we derive the signatrossterms and, thus, can be easily identified withoutahe
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priori knowledge of the signal waveforms and signatures, evenn, which minimizes
in low SNR situations. It is noted that the construction of a

mask does not require the exact knowledge or estimation of the
signal waveforms and their WVDs. Rough bounds separating € = Z
different autoterm areas would suffice when the noise and =1

N 2

x(t) — AS(t)

H
crossterms are sufficiently suppressed. L . L .
In this paper, we utilize the method ektended discrete-time = Z x(t)— Z a;3(t) x(t)— Z a;3;(t)
Wigner distributio EDTWD), which was introduced in [11], to t=1 =1 i=1
the output of array averaged WVD. The advantage of using the (37)

EDTWD lies in the fact that it does not requiaepriori knowl-
edge of the source waveform and thereby avoids the probldat is
of matching the two “uncoupled” vectors (even-indexed and R

odd-indexed vectors). A =argmine. (38)
The overall synthesis procedure is summarized in the fol- ) o _
lowing steps. The LS estimate of the array matrix is obtained as [18]
1) Given the received data of tlih sensorz;(¢), compute the A
EDTWD A=iR"" (39)
k k . where
_ - Moy Lk _r —j2wkf
Wiriiri (tv f) = k_f_i_(%/:?)ele (t + 2) Ty (t 2) e N
o t=0,£0.5,+1 (32) R=3 s(t)s™(1) (40)
,+0.5,£1,.... —
2) Apply the averaging process, that is, summing the EDTWiSPresents the estimated signal source covariance matrix, and
across the array t = [t1,...,], with
7 S L 15 (1 (41)
Wt S) = 27 3 Wera (- (33) B = ;X( )3 (1)
k=1 =

) - is the correlation vector between the data vector received across
3) Place an appropriate t-f mask #(t, ) such thatonly the he array and theth source signad; (¢). In (37)—(41), the nota-

desired signal autoterms are retained. tion “* signifies the fact that we deal with estimated variables.
4) Take the inverse fast Fourier transform (IFFT) of the masked; is evident from the implementation of the proposed algo-
WVD W (, f) rithm that the spatial information needs to be sacrified in the
first phase to reduce crossterms and noise. The mixing mAtrix
p(t,T) = Z Wi(t, f)el? . (34) could be estimated only after the complete retrieval of the signal
f source waveforms. This is fundamentally different from other
algorithms that combine array signal processing with conven-

“wAn

5) Construct the matriQ = [¢yn] With tional bilinear distributions, e.g., the STFD, in which the mixing
matrix estimation precedes the estimation of the source signals
m+n and is provided using relationship
Dyxx(t, f) = ADg(t, f)A (42)

6) Apply eigendecomposition to the matij® + Q¥], and . . . _
obtain the maximum eigenvaluk,... and the associated whereDg(t, f) is the signal TFD matrix whose entries are the

eigenvectom. The desired signal is given by auto- and cross-TFDs of the sources, &hd (¢, f) is the data
STFD matrix. In the STFD-based source separation, the esti-
Sopt = ejd,\/m u (36) mate of A is provided using whitening, followed by joint di-

agonalization oDy (¢, f) for (¢, f € autoterm regions). This
o . estimate is then included to obtain the source signals using the

where againg is an unknown value representing the phasp?seudo-inverse oA

ambiguity. _ _ A hybrid technique based on both array averaging and
7) Repeat step 3 through 6 until all source signal§Trp can be adopted. The array averaging of WVDs is first

81(t), 32(1), ..., 51(t) are retrieved. performed to offer a good estimate of t-f signatures of source
signals through cross-term suppression properties. Once the
auto-source WVDs are determined, we could then construct the

Upon synthesizing all the source signals, the mixing, or arréyTFD matrices and recover the synthesized signal waveforms,
matrix A can be estimated through the least-square (LS) critas well as the mixing matrix based on (39).

C. Array Matrix Estimation
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D. Signal Synthesis With Overlapping T-F Signatures The computational cost for a typical STFD process is given

The procedures we have discussed is appropriate to synt@{a/So see Appendix A)
size the signal waveform whose t-f signatures are distinct. In this
case, the masked t-f region always contains the autoterm of the
desired source signal with the influence from other sources often
negligible. However, if the source t-f signatures overlap, thEhus, the array averaging technique requires higher computa-
mask is deemed to capture undesired autoterms. This problkens than the STFD based method.
cannot be mitigated by spatial averaging of TFDs and a modifi-
cation of the proposed method is in order.

Ass_ume_ that upon |mplemen'F|ng the _synthesns PrOCeSSy this section, we provide computer simulations to demon-
described in Section Ill-B, we obtain the estimate of the mixing _+o the improvement gained by the proposed technique in
matrix A. Since there are interfering signal autoterms fro%e reduction or elimination of crossterms. Specifically, we

Nsrrp = logy, N - O(N?). (49)

IV. SIMULATION RESULTS

other sourcesA should be considered different from. We

- . e
use A to construct a beamformer applied to the data recelvgé

across the array (assume the noise-free scenario). That is

2(t) = %AHx(t) - %AHAS(IE) (43)
wherez(t) = [z1(t), ..., z(¢t)] isaL x 1 vector. Clearly
L
Zk(t) = <%é£ak> Sk(t) + Z <%ék{{al> sl(t). (44)

It is expected thaf, is a perturbed version aof,. With the
approximations

1,
MakHak R Pee =1 (45)
and
L u
77 2 A~ O < L1 #k (46)

then, the WVD ofz(¢) is given by

L L
Wzkzk(t‘/ f) ~ WSkSk(t‘/f) +Z Z Bik ;kWSiS]‘(t-/ f)
i=1 (j=1,j#i)
(47)
for j # 4, BixB}, < 1. This shows that in (47), except tieh

amine the effect of array averaging on the retrieval and
paration of the nonstationary signals impinging on the mul-
tisensor array. In all the simulations presented in what follows,
we consider several signals incident on an eight-sensor ULA
(M = 8) with interelement spacing of half-wavelength. The
additive noise is zero mean, Gaussian distributed, and spatially
and temporally white. The length of the signal sequence is
set to N = 128.

Moreover, we use the same performance index applied in [14]
and [16] to evaluate the performance of the proposed technique

2

Ly = E’ (A#A) (50)

rq

where the superscript denotes the pseudo-inverse. Equation
(50) defines the interference-to-signal ratio (ISR). Thijg,
measures the ratio of the power of the interferencgtoource
signal to the power of thgth source signal. For large enough
N, we havel,,, = 0 for p # ¢q. We also apply the global rejec-
tion level to evaluate the overall performance of the proposed

method
Tpery = Z Lpq.
q#p

(51)

In the first example, three chirp signats(t), s»(¢), and
s3(t) arrive at the array with AOAs of20°, 0°, and 20, with

auto-source term, all other terms, either auto- or cross-souffe respective start and end frequencies given byr(@.9r),
terms, are significantly reduced froifi., ., (¢, f). Inthe case of (0.66r,0.26r), and (0.5,0.1r). In the t-f plane, the source
ULA, the suppression of those terms are at least 13 dB for largi@nals have parallel signatures, emulating a multipath environ-
value of M. The suppression of the autoterms other than sour@ent. The crossterm af; (¢) ands;(¢) also forms a chirp-like

k is |Bix|?, which is more than 26 dB down from tli¢h source.

crossterm structure whose frequency starts fromr @u7d ends

Therefore, the effect of the overlapping autoterms from othifith 0.3t and, therefore, lies closely to the t-f signature of
sources becomes negligible. If we apply the steps 3-8 of thet). Fig. 1 depicts the WVD of the signals at the reference
synthesis procedure of Section IlI-B using the improved WyvBensor (sensor #1) for the case of noise-free environment. It is

in (47), the synthesized signal will be enhanced.

E. Computational Cost

To compare the computational cost of the proposed meth
and STFD, we use the number of complex multiplications as t

clear that the t-f signature of all signal autoterms and crossterms
are parallel in the t-f domain. The crossterms produced from
the three source signals are even more dominant than the source
ytoterms. In the single sensor receiver, it becomes difficult to
Sjastinguish the source autoterms from the crossterms without

evaluation criterion. For the array averaged WVD, the compt'?}[‘ya priori knowledge of the sources. From the above AOAs,

tational cost is shown to be (Appendix A)
Noa = (54 L+ 4logy N) - O(N?) (48)

where the operan@(-) denotes the order of.”

we obtain

1 1 0.2236 0.1048
gAH A‘ = | 0.2236 1 0.2236 (52)
0.1048 0.2236 1
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Fig. 2. Array-averaged WVD in noise-free environment. Fig. 4. Array-averaged WVD of the corrupted signals.

The off-diagonal elements are smailt (—13 dB), compared  Upon averaging, both noise and crossterms are sufficiently
with the matrix diagonal entries, indicating that the sources spaduced to clearly manifest the individual source t-f signature,
tial signatures are weakly correlated, and the array averagingd the signals could be individually recovered if we place the
process could result in a substantial reduction in the crosstermgpropriate masks in the t-f region. Figs. 5 and 6 shows the
Fig. 2 shows the corresponding array-averaged WVD. DueW8VD of the synthesized signak(t) using the array averaging
the reduction in cross-terms by more than 13 dB, the t-f signd STFD techniques, respectively. Fig. 7 displays the real
natures of the sources are distinctively exhibited in the plotsarts of the original signaé,(¢), the STFD-recovered,(t),
Explicitly, the crossterm from; (¢) ands3(t) ceased to become and 5,(¢) synthesized by the proposed method. It is clear that
an interfering factor in identifying the adjacent signal sourdagde result from the array averaging technique is closer to the
s2(t). In effect, averaging the WVDs across the array has sigriginal signal than the recovered signal from the STFD-based
nificantly reduced the crossterms, whereas the three signals’ method. We also plot the global rejection levgl, ; versus the
toterms have remained intact. input SNR in Fig. 8. The input SNR takes values frerh0 dB

Next, we add 5 dB noise to the data at each array sensor so tba20 dB. Both the STFD-based and the array averaging-based
the input SNR is-5 dB. Figs. 3 and 4 depict both the referencetechniques are used to compute the empirigal s defined in
sensor WVD and the array-averaged WVD. Itis evident that tl{g1). Increasing the SNR certainly improves the performance
noise obscures both the signal autoterms and crossterms offtveéboth methods, and simulations show that the STFD-based
WVD at a single sensor. It is difficult, therefore, to retrieve thenethod is outperformed by the array averaging technique,
desired signal if we only synthesize from a single sensor.  which is consistent with the results given in Fig. 7.
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In the second example, we use two chirp signals with highly
overlapping autoterms. The signals are from AOAs-&#(°
and 20 with start and end frequencies of (0Q0.96r) and
(0.167,0.10r), respectively. Fig. 9 shows the WVD of the data
received at the reference sensor #1, where the input SNR is
—5dB. The two signal autoterms highly overlap. The respective
crossterm is located in the middle which also overlaps with the
autoterms. The array averaged WVD is plotted in Fig. 10. Using
the conclusions derived in Section Il, we expect that the cross
term would be suppressed by about 19 dB after the array aver-
aging process. This is supported by the plots in Fig. 10. To syn-
thesize the signal, we place the mask along each t-f signature.
Any reasonable selection of the mask inevitably includes com-
ponents from the other source. Therefore, each signal synthe-
sized following the procedures described in Section IlI-B is, in
essence, corrupted by the other signal. By further implementing
the beamformer and synthesis procedures from Section IlI-D,
we could obtain an improved signal. The WVDs of the first syn-

Fig. 7. (a) Real part of original, (t). (b) Real part from the STFD-recoveredthGSized signal before and after the beamforming process are

32(t). (c) Real part from the array averagedt).

shown in Fig. 11. The corresponding global rejection levels are
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WVD of the synthesized signal after beamforming
0.5 T T T T

calculated and equal te16.4 dB and-20.4 dB for the respec-
tive cases. Therefore, a 4-dB improvement is achieved using 0451 ]
beamforming process. It is evident from this example that tl
proposed method works well for highly overlapped signals.

0.35-

V. CONCLUSION i

A two-step synthesis technique using bilinear dlstrlbutlor°
was proposed for multisensor receivers. The first step is to ¢
erage the Wigner—Ville distributions of the sensor data acrc 02}
the array. This averaging process allows the distinction in tl
spatial structures of the sources to play a key role in improvi
their t-f representations. This improvement is manifested intl 44|
reduction of the noise floor and mitigation of cross-terms in tt
t-f domain. The second step is to apply well-known bilinear syi
thesis methods to the averaged WVD. It was shown that t | ‘ . J ‘ J J
proposed synthesis approach is fundamentally different frc ~ ° 2 “ Ome 0 10 120
the one recently devised using spatial TFDs. In the latter, the (b)
source spatial signatures need to be first estimated before the
sources could be separated. The main attraction of the propo
approach is that it naturally extends bilinear signal synthesis to
array processing. In doing so, it capitalizes on the spatial dimen-
sion to reduce the cross-terms without smearing the auto-terrh8€ number of complex multiplication involved in (A.1) is

which cannot be achieved using the t-f smoothing operation via

0151

0.051 i

1. WVD of the first synthesized signal (a) before beamforming and (b)
beamforming.

reduced interference distributions. ny =142+ +(N=1)+N+(N=1)+---+1 = N2 (A.2)
APPENDIX The EDTWD could be obtained simply by calculating the fast
COMPUTATION FOR STFD-BASED AND ARRAY Fourier transform (FFT) with respect to the parameter in
AVERAGING-BASED TECHNIQUES Wi (t, k). Assuming thatVrpr is the computation cost for a

equence of lengtte(V — 1), we haveNppr = 2N x log, 2N.

We first derive the computational requirement for a sing herefore, the computation cost required in a single EDTWD is

EDTWD counting the complex multiplications. It is clear from
(39) that for a sequencgt) (t = 0,1,..., N —1),the EDTWD
would generate &N — 1) x (2N -1 two-dimensional TFD
W,,. The computation cost is determined by constructing a
(2N — 1) x (2N — 1) matrix whose elements are given by

Ng = (2N — 1) X NFFT ~ 4N2 10g2 2N. (A3)

Other costs aré/ -7 for IFFT, L - O(N?) (according to [19])
for eigendecomposition to recover source waveforms, and

Wt k) = 2 <t—|— E) . <t B E) o2k L(L + 1)/2N + LMN + O(L?) for recovery of the mixing
2 2 matrix. The total cost is computed by summing the above

t=0,0.51,...,N—1,k=0,£1,...,+£(N —1). (A.1) results. Since the number of sampl€ds often much greater
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than other parameters, we neglect all items®¥2), yielding

Nyo =n1 +n9+ Nppr + L - O(N2)
~(1+ L +4log,2N) - O(N?)

=(5+ L +4log, N) - O(N?). (A.4)

The computation requirements of STFD could be calculateg g

in two parts [20]. The first part is related to extractions of th

t-f signature. This is achieved by computing the WVD of thell7]

data from a single reference sensor and selecting the t-f poi
that are associated with the different signal sources. Similar
EDTWD, the required cost for this procesddg, N - O(N?).

The second part involves the construction of the STFD matricegq;
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and recovery of the signal waveforms. It is straightforward to

show that the respective computation cost is the following:
« estimation of the auto correlation matri}:A/2 /2;

computation of the whitening matrix2(M?);

whitening of the datalVL M,

estimation of the STFDsir L(L — 2)/2;

joint diagonalizationO (K L?);

SeparationLM N .

The variabled., M, andN are the number of sources, sen
sors, and samples, respectively, wherEas the number of the

chosen t-f pointsar is the cost of one classical TFD. In a typ-
ical scenarioL, M, K,ar < N, Therefore, the computation

cost for STFD is

Nstrp = log, N - O(N?).
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