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Abstract—In this paper, we present a novel space-time signal
subspace-based subband approach to space-time adaptive pro-
cessing (STAP) that has been shown to be an effective method to
suppress both the intersymbol interference (ISI) and the cochannel
interference (CCI) in mobile communications. We first study the
performance of STAP and make clear the conditions of perfect
processing (i.e., perfect equalization of the desired user signal
and perfect suppression of CCI signals). Based on the polyphase
representation and the subspace analysis of the signal channels,
we propose a space-time signal subspace-based subband approach
to STAP, namely, the subband STAP, which highly improves the
convergence rate without loss of the steady-state performance.
Simulation results show its effectiveness under the procedure of
signal subspace estimation and detection.

Index Terms—Mobile communications, multichannel modeling,
space-time adaptive processing (STAP), space-time signal sub-
space, subspace decomposition, subband filtering.

I. INTRODUCTION

I T is known that in land mobile communications, the trans-
mitting signals suffer from reflection and scattering by sur-

roundings, and the receiving signals suffer from fading [1], [2]
by multipath propagation. As the mobile communications are
developing toward the higher speed digital networks [7], the as-
sociated communication channels become severely frequency
selective, which makes the intersymbol interference (ISI) highly
pronounced. Additionally, due to frequency reuse and multiuser
access, cochannel user interference (CCI) signals or multiple
user access interference (MUAI) signals are present against the
desired user signal. Therefore, the system capacity and the com-
munication quality are greatly affected by both the ISI and CCI
(or MUAI) problems.

Adaptive arrays, particularly under space-time adaptive
processing (STAP), provide effective ways to suppress both the
ISI and the CCI, subsequently improving the system capacity
and the communication quality [9]–[13]. A STAP system
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is usually composed of an antenna array and a set of FIR
filters after the array elements to perform joint spatial and
temporal adaptive processing. Despite its excellent steady-state
performance, a STAP system faces the problems of a high
computational burden and a low convergence rate. These prob-
lems become particularly serious when it operates in the severe
fading environments where longer FIR filters are needed. For
example, when LMS-type algorithms are used, the convergence
rate will become extremely slow, and subsequently, a long
training sequence will be required. Furthermore, when the
batch processing-based algorithms [e.g., the sample matrix
inversion (SMI) method [14]] are employed, the long training
sequence required to estimate the correlation vector and the
computation burden of the sample matrix inversion will leave
real-time adaptation difficult or even impossible.

To ease these problems of the STAP, the authors have
proposed the subband adaptive array scheme [24], [26], which,
in essence, is an equivalent space-frequency domain approach
to STAP. The subband signal processing converts a wideband
signal processing problem into a set of parallel narrowband
problems; hence, the equivalent time delay spread between
multipath rays at each subband becomes much smaller. As a
result, the user signals are approximately equalized, and the
computational burden at each subband is greatly reduced.

By contrast, the applications of subband filtering in the tem-
poral domain, such as acoustic echo canceling (AEC) [19]–[21],
have demonstrated that decorrelating received signals by sub-
band decomposition improves the convergence rate of LMS al-
gorithm under weighted criteria.

In STAP cases, however, the signals received at different array
elements are highly correlated in both space and time. To im-
prove the convergence rate of LMS-type algorithms for the un-
derlying STAP systems, the decorrelation of the data with the
use of conventional time-domain filter banks is not efficient.
Therefore, decorrelating the signals in the joint spatial and tem-
poral domain simultaneously becomes an important issue.

In the last two decades, signal subspace-based processing has
been proposed and applied to various fields [16]. By taking ad-
vantage of the orthogonality between the signal subspace and its
complement, i.e., the noise subspace, the projection of the sig-
nals onto its associated signal subspace decorrelates the channel
signals and simultaneously compresses the computational di-
mension by eliminating the unnecessary components that be-
long only to the noise subspace. In the underlying STAP sys-
tems, the signal subspace-based approaches enable us to decor-
relate the received signals in both the space and time domains.

1053–587X/01 $10.00 © 2001 IEEE
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Such subspace projection can be realized by employing sub-
band filtering, yielding the space-time signal subspace-based
subband STAP (SSTAP).

The contributions of this paper are twofold. First, some ad-
ditional new results of STAP are presented, in which the condi-
tions of perfect processing (i.e., perfect equalization of the de-
sired user signal and perfect suppression of CCI signals) are de-
rived, and the effect of the delay of the reference signal on the
output performance is investigated. Second, a space-time signal
subspace-based subband approach to STAP is proposed, where
the polyphase representation is employed, and the convergence
rate is highly improved without loss of the steady-state perfor-
mance.

This paper is organized as follows. In Section II, after intro-
ducing the signal model, we derive the conditions of perfect
processing and the residual error power of STAP. Section III
establishes the relationship between the space-time signal sub-
space and STAP, as well as the detection of signals’ components.
In Section IV, a space-time signal subspace-based subband ap-
proach to STAP is proposed, and the convergence improvement
of LMS algorithm under the proposed approach is confirmed by
theoretical analysis. Several simulation results are presented in
Section V. Section VI concludes the paper.

II. PERFORMANCEANALYSIS OF STAP

A. Signal Model

Consider a base station using an antenna array of
elements with users. The signal of the desired

user is denoted as , whereas signals from other users are
denoted as . The array output vector is
expressed as

(1)

where

(2)

(3)

The following notations are used in (1)–(3):
Angle-of-arrival (AOA), time delay, and prop-
agation loss corresponding to theth path of
the th user.
Array steering vector corresponding to.

th information symbol of theth user.
Pulse shaping function of theth user.
Total number of multipath rays of theth user.
Symbol duration.
Array noise vector.

We make the following assumptions.

A1 The user signals are wide-sense cyclostationary when
they are sampled at fractionally spaced symbol cycle,
and are wide-sense stationary when they are sampled
at the symbol rate. A wide-sense cyclostationary signal
vector is defined by

[5], [15], where denotes conjugate
transpose, and denotes statistical expectation.

A2 The information symbols are
independent and identically distributed (i.i.d.) with

and
for and uncorrelated with the channel noise
vector, where denotes complex conjugation.

A3 All channels are linearly time-
invariant, and each of them is of a finite duration within

, where is called the channel order of the
th user.

A4 The noise vector is zero-mean and temporally and spa-
tially white with

where denotes transpose.
Denote as the sampling cycle, and let

be the factor of oversampling. Sampling at
, (1) becomes

(4)

With the exploitation of the cyclostationarity of user signals
[15], [16], [18] described in Assumption A1, the scheme of the
extended multichannel model of fractionally spaced STAP, as
illustrated in Fig. 1, can be easily established as

(5)

where

...

...

...

For each , the dimension of is , which is called
thenumber of the extended channels. The limit of the number
of the extended channels by oversampling is discussed in [8].
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For the consecutive samples during the period ofsymbols,
we form the following vectors:

...

...

...

Defining the following Sylvester convolution matrix of userin
terms of the -length impulse response of its channel

, as shown in (6) at the bottom of
the page. Then, (5) can be extended to

(7)

Furthermore, let represent the weights
at the th extended channel, and denote

(8)

(9)

Then, the output of the STAP is given by

(10)

B. Residual Error Power

Under the minimum mean square error (MMSE) criterion, the
optimum weights of the STAP are solved from

(11)

and are given by the well-known Wiener–Hopf equation

(12)

where is the training sequence of the desired user signal,
is a delay of the training signal required for the realization

of causal filtering

(13)

Fig. 1. Scheme of the fractionally spaced STAP.

is the space-time correlation matrix of the signal vector, and

(14)

is the correlation vector between the training signal and the
signal vector. From (6), (7), (14), and A2, it is evident that
is the th column of the signature matrix when

.
From (10)–(14), the residual error power of STAP under the

MMSE criterion is obtained as

(15)

where the Hermitian property of is used.
The residual error power is affected by several

parameters, such asand , etc. In Theorem 1, we prove the
relationship between and , and in Theorem 2, we
investigate the selection of and other conditions for perfect
processing of a STAP system.

Theorem 1: For a given , the residual error power is given
as

(16)

where

(17)

(18)

where is a nonzero element vector composed of
is a square matrix with the same dimension

of , and is a permutation matrix [6] that depends on the
zero-element structure of , which is denoted as (19), shown

...
...

.. .
. . .

...
(6)
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at the bottom of the page, whereand denote the identity
matrices of dimension and , respectively.

Proof: Theorem 1 can be proved directly from (15), that
is

(20)

It is clear from Theorem 1 that only a part of , i.e., ,
contributes to the residual error power of STAP. The dimen-
sion of depends on the length of nonzero elements of r.
This implies that plays an important role in the output of the
residual error power and, therefore, should be properly deter-
mined based on the channel characteristics. For example, in the
cases of or , only one weight is ac-
tive at each extended channel, and the total degrees-of-freedom
(DOF’s) of the STAP system is as little as . Therefore,
in those two cases, the output performances will degrade.

From (6), we understand that in the case of , the vector
has longest nonzero length. That is to say, when the channel

length is estimated as , we can choose as

(21)

The estimation of channel length is described in the next
section.

C. Conditions of Perfect Processing

Theorem 2: In the noise-free case, the perfect processing,
i.e., perfect equalization of the desired user and perfect suppres-
sion of undesired user signals, can be realized by STAP provided
the following.

1) is full column rank.
2) The columns of are linearly independent to the

other columns of , where

(22)

3)

column rank (23)

Proof: The first condition is common for single user cases
and the proof is given in [16] and [17]. The second condition can
be proved by counterevidence. Denoting

(24)

in the noise-free case, (7) can be written as

(25)

and the output of STAP is given by

(26)

Perfect processing implies that

(27)

or equivalently

(28)

where .

If the columns of are not linearly independent to the
other columns of , for example, the th column of
can be expressed as a linear combination of the other columns
of , then (28) cannot stand for . That is to say,
when the columns of are not linearly independent to the
other columns of , the conditions of the perfect processing
cannot be always satisfied for .

To prove the third condition, we compare the number of
the weights with the number of equations. It is seen from (28)
that there are equations, whereas
the number of the independent equations is specified by
column rank . The condition for (28) to have a unique
solution is that the number of the adjustable weights must
be greater than or equal to the number of the independent
equations, which goes to (23).

It is noteworthy that the presence of common roots in the
channels of the undesired users does not bring to STAP any
difficulties in performing perfect processing. Common roots in
the channels of the undesired signals imply that the number of
DOFs required to suppress these undesired signals is reduced.
That is to say, common roots in the channels of the undesired
users do ease the STAP processing.

(19)
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Corollary 1: If is full column rank, then
rank , and the condition of perfect pro-
cessing becomes

(29)

III. SUBSPACEANALYSIS OF STAP

In the previous section, the conditions of perfect processing
of a STAP system are derived, which specify the lower bound
of the number of taps in noise-free cases. Since such a bound
depends on the length of the channels, it is thus necessary to es-
timate the channel length. In this section, we consider the esti-
mation from the point of view of the space-time signal subspace
of the associated space-time correlation matrix and establish the
relationship between the space-time signal subspace and STAP.

A. Subspace Decomposition

Under Assumptions A2–A4, the space-time correlation ma-
trix defined by (13) can be rewritten as

(30)

where

(31)

Diag (32)

and

(33)

Equation (30) shows that the column space of is the
space-time signal subspace. By using eigendecomposition, the
space-time correlation matrix can be expressed as

(34)

where
are the eigenvalues of , the columns of
are the orthonormal eigenvectors associated with eigenvalues

, the columns of
are the orthonormal eigenvectors associated with eigenvalues

, diag , and
diag . It is seen that is

the rank of in the absence of noise. In the cases where
is of full column rank, then ,
the columns of span the space-time signal subspace, and
the columns of span the space-time noise subspace. We
assume in the sequel that is of full column rank and
that the space-time signal subspace can be estimated by the
eigendecomposition of the estimated space-time correlation
matrix. In the following, the space-time signal subspace is
abbreviated as the signal subspace, and the space-time noise
subspace is abbreviated as the noise subspace.

B. Space-Time Signal Subspace and STAP

As we discussed in Section II, is the th column
of , which means that belongs to the signal subspace.
Using the relationship

(35)

we have

(36)

which shows that the optimum weight vector is a linear combi-
nation of only the eigenvectors that span the signal subspace. In
other words, the optimum weight vector belongs to the signal
subspace.

We know that the residual error power of STAP is defined by
(15) as

(37)

Substituting (35) and (36) into (37), we have

(38)

The above equation clearly shows that only the components be-
longing to the signal subspace contribute to the residual error
power, which implies that using the projection of the received
signal vector onto the signal subspace instead of the received
signal vector itself does not degrade the output performance.
This observation result constitutes the basis of the space-time
signal subspace-based approach in the paper, which enables us
to reduce the complexity of STAP without reducing the steady-
state performance.

C. Detection of Signals’ Components in Practice

In this subsection, we investigate the channel length by de-
tecting the dimension of the signal subspace. The problem of the
signal detection based on certain theoretic information criteria
has been well explored in array signal processing. The Akaike
information criterion (AIC) is one of the commonly used cri-
teria that offers the estimated number of signals with the use of
all the eigenvalues [25]. Denotingas an estimate of the number
of signals estimated from the correlation matrix , the AIC is
given by

AIC

(39)

where is the number of the samples used to estimate the
space-time correlation matrix , i.e.,

(40)

The estimation of the dimension of the signal subspace
is determined as the value of that
minimizes the AIC. Based on the estimated , we obtain the
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lower bound for the required number of the taps of STAP as
, where denotes the smallest integer not

less than .
It is noted that the estimation of the space-time correlation

matrix and its subspaces does not require anya priori in-
formation of the signals and can be performed during the period
other than that of the training sequence being present. Moreover,
the subspace decomposition and detection can be performed by
the method of fast subspace decomposition [23] to improve the
computation speed.

IV. SIGNAL SUBSPACE-BASED SUBBAND APPROACH

A. Polyphase Representation and Subband Approach

The transform of the weight vectors of the STAP filter
is expressed as

(41)

As an implementation method of STAP filtering, by using the
generalized polyphase representation [4], [22], can be
expressed by the following polyphase representation:

(42)

with

(43)

as its polyphase components, where can be determined
by comparing (43) with (41). In (42) and (43)

sparsity factor;
number of the coefficients in each sparse subband
filter (i.e., the order of is );
transformation size, i.e., the length of the associ-
ated filterbank defined in the sequel.

These parameters link with by . There-
fore, by increasing the sparsity factorand the transform size

, we can reduce , which is the order of the FIR filter at each
subband.

The STAP output can, therefore, be written as

(44)

where and express the-transform of and ,
respectively.

In order to establish the relationship between STAP and its
subband approaches, we introduce the following full column
rank transformation matrix :

...
...

... (45)

where , and are the
submatrices of . Each submatrix is of dimension .
We define a new set of weights under the transformed scheme

by

...
... (46)

In the above transform, when , the transform is full
rank, and the STAP filtering after the transform of (46) keeps the
same performance. On the other hand, if , the transform
is rank reduced, and the performance of the STAP filter after the
transform may be inferior to that of the original STAP.

However, the reduced-rank transform can be performed
without performance loss by using the signal subspace matrix
as the transformation matrix. As shown by the results of
Section III, the optimum weight vector of STAP belongs to
the signal subspace, and only the components belonging to
the signal subspace contribute to the output signal power of
STAP. Therefore, using the signal subspace matrix as the re-
duced-rank transformation matrix loses no signal components.
To summarize, such a transform based on the signal subspace
has threefold advantages.

1) A part of the computations is reduced because of the di-
mension reduction.

2) There is no performance loss.
3) The convergence rate is improved when LMS-type algo-

rithms are used.
These properties are very important to the practical implemen-
tations of STAP systems.

Substituting (46) into (44), we have

(47)

where

(48)

are a set of filters and are termed as the generalized space-time
filterbank (GSTF), which is an extension of the conventional
subband filterbank. Equation (47) shows that space-time
adaptive filtering can be equivalently realized via subband
processing by using space-time filterbanks. The different im-
plementation schemes of (41), (42), (46), and (47) are plotted
in Fig. 2(a)–(d), respectively.
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(a)

(b)

(c)

(d)

Fig. 2. Subband realization of STAP: (a) Space-time filter. (b) Polyphase
implementation of STAP. (c) Full colomn rank transformation. (d) Subband
STAP.

B. Signal Subspace-Based Subband Approach

Using the signal subspace matrixas the transformation ma-
trix yields the signal subspace-based subband approach. To
derive the expression of the GSTF , we partition into
submatrices as follows:

...
...

... (49)

where and are the subma-
trices of , where each one is of dimension . In this
analysis, we use two taps at each subband. Similar to (47), the

-domain SSTAP output of signal subspace-based subband ap-
proach is given by

(50)

In comparison with (47), we have

(51)

(52)

and the equivalent number of the taps of each extended STAP
channel is .

Equation (50) can be cast into

(53)

where

...
...

and

Here, is the input signal vector in the subband realization,
whereas is the weight vector in the subband approach. In
the manner of temporal expression, (53) is expressed as

(54)

in which and are the inverse-transform of and
, respectively. From (49)–(54) and the definition of

in (7), we have the following relation as

(55)

C. Convergence Rate

In this subsection, the improvement of the convergence rate
under (53) over the conventional STAP scheme is investigated.
Using the LMS algorithm, the weights of STAP in (10) are up-
dated according to

(56)

where

(57)

is the error signal, is the STAP output defined in (10), and
is the common step size. The selection ofwill be discussed

in Section V. In the subband STAP, because the decorrelation is
performed simultaneously in space and time by the space-time
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subband filtering, the LMS algorithm can be employed with the
different step size at each subband, i.e.,

(58)

where has the same form as (57), whereas is defined
in (54), and the entries of the diagonal matrixrepresent the
different step sizes of the associated subbands. The reasonable
choice of is to select

(59)

which equalizes the signal power of different subbands and thus
highly reduces the spread of the nonzero eigenvalues of the as-
sociated correlation matrix.

It is well known that the convergence rate of the LMS algo-
rithm mainly depends on the eigenvalue spread of the associated
correlation matrix. Let

(60)

and

(61)

respectively, denote the weight vector and the signal vector after
subband decomposition; then, the SSTAP output becomes

(62)

and the weights are updated according to

(63)

where , and expresses Kronecker product. From
the general convergence analysis of the LMS algorithm, the con-
vergence rate of the LMS algorithm based on (63) mainly de-
pends on the eigenvalue spread of the weighted correlation ma-
trix

(64)

It is known that the zero eigenvalues of the associated corre-
lation matrix do not influence the convergence rate of the LMS
algorithm [22]. Therefore, the spread of the nonzero eigenvalues
of is emphasized. In the following, we present two theorems
to show the number of the nonzero eigenvalues ofand their
spread.

Theorem 3: The matrix has
zero eigenvalues, where .

Proof: In terms of (55) and (61), is expressed as

(65)

where and is defined in
(30). Under Assumptions A2 and A4

(66)

in which

(67)

(68)

and

(69)

where expresses an matrix with its th down
diagonal line of entries of 1s and all the other entries of 0s, i.e.,

...
...

...
...

...
. . .

...

(70)

Therefore, substituting (66) and (30) into (65), we obtain

(71)

From the basic theory of the linear algebra and (71), the rank of
the matrix is the maximum of the ranks of the two matrix
terms in the right side of (71). The ranks of those two matrix
terms are and ,
respectively. Therefore

rank (72)

From the linear algebraic theory, (72) tells that the matrix
has zero eigenvalues.

It is noted that the presence of zero eigenvalues brings an infi-
nite number of optimum solutions in terms of the Wiener–Hopf
equation (12), which, however, provide the same residual error
power.

Next, we present a theorem that determines the spread of the
nonzero eigenvalues of the subband STAP system under the as-
sumption of the noise-free environments.

Theorem 4: In the absence of noise, the eigenvalue system
of is the same as that of the associated signal correlation
matrix

(73)



YANG et al.: SIGNAL SUBSPACE-BASED SUBBAND APPROACH TO SPACE-TIME ADAPTIVE PROCESSING 409

Proof: In the absence of noise, (71) is represented as

(74)

Define

(75)

and

(76)

By using the results of (30)–(34) in the noise-free case, it is
straightforward to show that is unitary from

(77)

Therefore, can be written as

(78)

According to (59) and (75) and the definition of

(79)

let

(80)

(81)

In terms of (73), (79), (80), and (81), (78) is simplified as

(82)

It is seen from (80) that is a diagonal matrix with all the
diagonal elements greater than zero; therefore,is a special
orthogonal matrix. Since is unitary, it is clear that is also
a unitary matrix. Because the unitary or the orthogonal transfor-
mation matrix-based similarity transformation does not change
the eigenvalues, the eigenvalue system ofis the same as that
of .

From Theorem 4, we see that the spread of the nonzero eigen-
values of is the same as that of and is no longer depen-
dent on the channels. By solving the characteristic equation of

, i.e., (det (“det” denotes determinant), we
obtained that for the cases of (selection of is
restricted by the requirement of polyphase representation), all
the nonzero eigenvalues of only take value of either 1 or 2,

which means the spread is 2. It can be seen that in the presence
of noise, the spread of the nonzero eigenvalues ofwill in-
crease. In the case of high input SNR, however, the increase of
the spread of the nonzero eigenvalues of is not significant.

As we show in the sequel by numerical examples, the spread
of the nonzero eigenvalues of is greatly reduced. Hence, the
convergence rate of LMS algorithm performed by (63) under
SSTAP will be faster than that under the conventional STAP.

V. SIMULATION RESULTS

In this section, computer simulation results are presented to
demonstrate the improvement of the convergence rate of the pro-
posed signal subspace-based subband approach of STAP over
that of the conventional STAP.

A uniform circular array with three elements of identical om-
nidirectional responses is employed. The interelement spacing
is , where is the wavelength of the radio frequency. The
oversampling factor is assumed to be . The scenarios of
multiple users are considered. All the user signals are modulated
by QPSK with raised-cosine pulse shaping filtering, where the
roll-off factor is assumed to be 1.0. We assume that six rays are
being received at the array for each user with different elevation

and azimuth . Without loss of generality, the propagation loss
of the first ray of each signal is assumed to be 1, and the relative
time delay of this ray is assumed as 0.

The training sequence is assumed to be the ideal replica of the
desired user signal. The taps of the STAP filter at each extended
channel is assumed to be random integers, which
are generated as the data source of each user. The input SNR of
the first ray (for ) is 10 dB for each user signal, and the
noise power is defined as 0 dB.

We use the output residual error power, i.e.,

(83)
and

(84)

to illustrate the output performances of STAP and SSTAP, re-
spectively. In (83) and (84), we use another set of data of the
same environment to examine the residual error power of the on-
going updating weight vectors, whereis the iteration number,
and is the length of the data. We also take here. In
the simulations, the LMS algorithm is employed for both of the
STAP and the SSTAP, and the initial states of the weight vectors
are set to zero for all the cases. The maximum step size for LMS
algorithm is generally given by [3]

total input power
(85)

Here, we choose

total input power
(86)
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TABLE I
(a) PARAMETERS OF THE DESIRED USER.

(b) PARAMETERS OF THEINTERFERENCEUSER#1. (c) PARAMETERS OF THE

INTERFERENCEUSER#2

(a)

(b)

(c)

Fig. 3. Simulation results for Case 1. SSTAP1, SSTAP2, and SSTAP3 use 220,
520, and 1020 samples to estimate the signal subspace; STAP: � = 2:0124�

10 ; v = 12; SSTAP : � = 0:0008618; v = 16; SSTAP : � = 0:0020;

v = 13; SSTAP : � = 0:0024; v = 12.

For STAP, the total input power of all the taps is equal to the
trace of , whereas for SSTAP, the total input power of all
the taps equals the trace of .

In order to evaluate the effect of the accuracy of the esti-
mated signal subspace on the output performance of SSTAP,
three numbers of the samples are used for the estimation of the

Fig. 4. Eigenvalue distribution of the correlation matrices. (Top) STAP.
(Bottom) SSTAPs.

Fig. 5. Comparison of the residual error power under the different delays for
Case 1 SSTAP: � = 0:0020, andv = 0; 11;13;15; 27.
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signal subspace, namely, 220, 520, and 1020, respectively.
Therefore, we have three different estimated signal subspace.

For comparison of the performance, an equivalent number of
weights is considered. In addition, at each subband, two taps are
taken, and is selected to meet .

In the following, simulations are performed in two cases.
Case 1 considers a three-user scenario, whereas Case 2 inves-
tigates a four-user scenario.

Case 1: Three users are present: One is the desired user,
and the other two are interference users. The parameters for
those three users are randomly generated and are listed in
Table I(a)-(c), respectively. The length of the desired user
channels is approximately 8, and the longest channel length
of interference users is approximately 10. Before the weight
adaptation of SSTAP, subspace decomposition is performed by
eigendecomposition, and subsequently, AIC criterion is used to
estimate the dimension of the signal subspace. The delay of the
training sequence is chosen based on (21), i.e.,

dimension of the estimated signal subspace
number of the extended array channels

(87)

According to the estimated dimension of the signal subspace,
the full column rank matrix composed of the eigenvectors of the
signal subspace is defined, from which SSTAP is performed.
The estimated dimension of the signal subspace based on the
AIC is approximately 84, and therefore, .
From the parameters listed in Table I, the actual column rank of
the associated is calculated as .
Therefore, the estimation of the dimension of the signal sub-
space truly describes the actual length of the channels.

Fig. 3 shows the residual error power versus the number of it-
erations. In this figure, SSTAPdenotes the first type of SSTAP
in which the signal subspace is estimated by using 200 data sam-
ples, i.e., . Similarly, SSTAP is for , and
SSTAP is for . In Fig. 4, the eigenvalue distribu-
tions of the correlation matrices of the STAP and the SSTAP’s
are plotted, which clearly shows that the eigenvalue spread of
the associated correlation matrix of SSTAP under the signal sub-
space-based subband approach is highly reduced.

From Figs. 3 and 4, it is evident that 1) all the three types of
SSTAP have smaller eigenvalue spread and provide faster con-
vergence rate than that of the conventional STAP, respectively,
and 2) larger number of the samples used for the estimation of
the signal subspace yields smaller eigenvalue spread and faster
convergence rate, which is due to the fact that the larger the
number of the samples to be used, the more accurate the esti-
mated signal subspace obtained will be. In practice, the number

should be determined by considering how fast the environ-
ment is varying, as well as the computational burden the system
can support.

In order to show the efficiency of the selection of the delay
as mentioned in (87), the residual error power performances

are shown in Fig. 5 for five different under the assumption
of SSTAP , where is that selected according to (87).
The figure clearly shows that SSTAP under the selection of
according to (87) nearly output the best performance. On the

TABLE II
(a) PARAMETERS OF THEDESIRED USER. (b) PARAMETERS OF THE

INTERFERENCEUSER#1. (c) PARAMETERS OF THEINTERFERENCEUSER#2.
(d) PARAMETERS OF THEINTERFERENCEUSER#3

(a)

(b)

(c)

(d)

other hand, when we take value of or
, the output performance greatly degrades.

Case 2:Four users are present. The parameters for the four
users are listed in Table II(a)–(d), respectively, and the length
of the four user channels are assumed to be shorter than that
in Case 1. The length of the desired user channels is about 4,
whereas the longest channel length of interference users is about
7. The detected dimension of the signal subspace based on AIC
is approximately 96, and subsequently, is estimated as 16.
The result is very close to the actual dimension of

, as is calculated from Table II.

Fig. 6 plots the residual error power versus the number of it-
erations. Similar to Case 1, the delay in the training sequence
is chosen as that mentioned in (87). This figure again shows
that SSTAP outperforms the conventional STAP over the con-
vergence rate. In Fig. 6, we see that even when the number of
users is larger than that of the array elements, the extended chan-
nels achieved from oversampling provide some extra degrees of
freedom and enable the STAP and the SSTAP systems output
reasonable residual error power performance.

It is noted that in practice, the length of the training sequence
depends on the number of iterations required for convergence.
The smaller the number of iterations required for the steady
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Fig. 6. Simulation results for Case 2. SSTAP1, SSTAP2, and SSTAP3 use 220,
520, and 1020 samples to estimate the signal subspace; STAP: � = 1:9970�

10 ; v = 15; SSTAP : � = 0:00098453; v = 17; SSTAP : � = 0:0017;

v = 15; SSTAP : � = 0:0019; v = 15.

state, the shorter the training sequence. From Figs. 3 and 6, 600
symbols of the training sequence are required for the conver-
gence of the two cases of SSTAP.

VI. CONCLUSION

In this paper, we have investigated the conditions of STAP
systems to realize perfect processing in noise-free situations and
have proposed the space-time signal subspace-based subband
approach to STAP, which is based on the polyphase represen-
tation. Because of the decorrelation by the space-time signal
subspace-based subband filtering, the subband approach of
STAP greatly improves the convergence rate without reducing
the residual error power performance. Simulation results have
been presented, which well confirmed the theoretical results.
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