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Abstract 

As low-cost drones become more accessible, they pose 
various safety, security, and privacy threats. As such, it 
becomes increasingly important to detect their presence, 
locate and track their positions, and classify their types in real 
time. In this paper, we perform time-frequency analyses of 
drone Doppler and micro-Doppler signatures to provide 
enhanced drone detection and feature extraction capabilities. 
The analyses are based on the combined use of spectrogram 
and inverse Radon transform (IRT). The paired property of 
propeller blades associated with a rotor is further utilized to 
compute the IRT product for enhanced performance. It is 
demonstrated that the IRT and IRT product images, when 
expressed in terms of the rotation frequency and blade 
position phase, provide flexibility and effectiveness for the 
presentation and estimation of these parameters.   
 

1. Introduction 

Drones, or small unmanned aerial vehicles (UAVs), are 
becoming more accessible and render increasing penetration 
into our daily life. While they have brought significant 
capabilities and potentials in enabling and enhancing 
surveillance and communication capabilities and have found 
broad applications in various commercial, homeland security, 
and military applications [1, 2], they also pose great 
challenges in detecting and preventing drones from 
unauthorized intrusions. As such, it becomes an emergent task 
to detect and classify drones in a scene with the presence of 
other targets and clutter.   

Drone Doppler signatures, particularly the micro-Doppler sig-
natures due to fast blade rotations, are considered important 
for drone detection and classifications [3-5]. The micro-
Doppler signatures, when properly processed, reveal the 
number of rotors and blades, their rotation rates, and blade 
length [6, 7]. Time-frequency (TF) analyses are effective to 
analyze time-varying Doppler and micro-Doppler signatures 
[8, 9]. The short-time Fourier transform (STFT) is a 
commonly used TF analysis methods due to its simplicity and 
robustness [3-5]. The magnitude square of STFT is referred 
to as the spectrogram. Alternative TF analysis methods are 
based on bilinear TF distributions with proper kernels or 
exploiting compressive sensing techniques [9-13].  

While TF analysis of rotating blades have been extensively 
considered for helicopters, the micro-Doppler signatures of 
drones are much more challenging to analyze because of the 
equipment of multiple rotors and more propeller blades. In 

particular, as drones have multiple rotors which generally 
rotate in different frequencies and phases, the time-varying 
micro-Doppler signatures become complicated. As a result, 
the spectrogram, or an alternative TF distribution, does not 
provide a clear representation of such micro-Doppler signa-
tures for analysis and parameter estimation. The TF signature 
analysis and recognition become even more challenging when 
the input signal-to-noise ratio (SNR) is low.  

On the other hand, the structure associated with the micro-
Doppler signatures can be utilized to enhance their characteri-
zations. First, due to the strong periodicity of the drone rotor 
rotations, the micro-Doppler signatures are characterizable 
with certain key parameters to enable inverse Radon 
transform (IRT) for enhanced feature representation and 
extraction of radar signals corresponding to drones. The IRT 
projects a sinusoidal pattern in the TF plane (TF represen-
tation of sinusoidally FM signal) to a two-dimensional (2-D) 
delta pulse in the IRT domain [14]. Second, most drone 
propellers have two or three blades that are symmetrically 
positioned with 180o or 120o phase differences. Such property 
can be used to produce IRT product for enhanced parameter 
estimation.  

In this paper, we perform TF analyses of Drone Doppler and 
micro-Doppler signatures to provide enhanced drone 
detection and feature extraction capabilities. The analyses 
utilize spectrogram analysis, inverse Radon transform, and 
fusion of blade signatures. It is demonstrated that the IRT 
images, when expressed in terms of the rotation frequency 
and blade phase, provide flexibility and effectiveness for the 
presentation and estimation of these parameters. The fusion 
of symmetrical blade signature further enhances the signature 
in low SNR scenarios.    
 

2. Signal Model 

Consider a drone that exploits 𝐷 rotors, each with 𝐾 blades. 
In the example illustrated in Fig. 1, 𝐷=4 and 𝐾=2. Consider 
one of the rotors and denote 𝐿ଵ as the distance between the 
blade roots and the center of the rotation, and 𝐿ଶ  as the 
distance between the blade tip and the center of the rotation. 
Let Δ𝐿 ൌ 𝐿ଶ െ 𝐿ଵ , and 𝐿ത ൌ ሺ𝐿ଵ ൅ 𝐿ଶሻ/2 . Then, for rotors 
with horizontal blade rotations as shown in Figs. 1 and 2, at a 
range cell where a drone is present, the slant range between 
the radar and the center of the kth blade of the 𝑑th rotor is 
given as 

𝑟ௗ,௞ሺ𝑡ሻ ൌ 𝑅଴ ൅ 𝑣𝑡 ൅ 𝐻cosሺ𝛽ሻ cosሺ𝜃ௗሻ 

൅𝐿ത cosሺ𝛽ሻ cos൫𝜙ௗ,௞ሺ𝑡ሻ൯,             (1) 



where 𝑅଴ is the initial distance between the drone center with 
the radar, 𝑣 is the radial velocity of the drone fuselage, 𝑡 is the 
slow time, H is the distance between the rotor center to the 
drone center, 𝜃ௗ is the rotor position angle, 𝛽 is the elevation 
angle of the rotor to the radar line-of-sight (LOS), and 
𝜙ௗ,௞ሺ𝑡ሻ ൌ 𝜙ௗ,௞ሺ0ሻ ൅ 𝜔ௗ𝑡 is the phase of the 𝑘th blade of the 
𝑑th rotor, with 𝜙ௗ,௞ሺ0ሻ denoting the initial rotation angle, and 
𝜔ௗ is the rotation radian frequency of the 𝑑th rotor. 

 

 
Fig. 1. Model of drone Doppler and micro-Doppler. 

 

 
Fig. 2. Top view of the system model.  

 

Accordingly, extending from model for helicopters [15], the 
slow-time data of the drone can be modeled as: 
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          ൌ 𝐴Δ𝐿෍ sinc ൤
2𝜋Δ𝐿
𝜆

cosሺ𝛽ሻ cosሺ𝜙௞ሻ൨ 
௄

௞ୀଵ
exp ൬െ𝑗

4𝜋
𝜆
𝑟ௗ,௞൰, 

                    (2)  

where 𝐴 is a scalar representing the signal strength. Consi-
dering a short coherent processing interval, the phase term 
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ఒ
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where 𝑅଴,ௗ ൌ 𝑅଴ ൅ 𝐻cosሺ𝛽ሻ cosሺ𝜃ௗሻ is the initial position of the 
dth rotor  and 𝑓஽ ൌ 2𝑣/𝜆 is the Doppler of the drone fuselage. 
The last term in Eq. (3) associated with rapidly time-varying 
range  

𝑟̃ௗ,௞ ൌ 𝐿ത cosሺ𝛽ሻ cos൫𝜙𝑑,𝑘ሺ𝑡ሻ൯                       ሺ4ሻ  

stands for the micro-Doppler signature with sinusoidal 
instantaneous frequencies.  

The instantaneous micro-Doppler frequency can be obtained 
from Eqs. (2)-(4) as 

𝑓ሚௗ,௞ ൌ െ
ଶ

ఒ
𝐿ത𝜔ௗ cosሺ𝛽ሻ sin൫𝜙𝑑,𝑘ሺ𝑡ሻ൯ .              ሺ5ሻ  

 

3. Time-Frequency Analyses of Micro-Doppler 
Signatures 

 

3.1 Short-Time Fourier Transform and Spectrogram 

STFT is a commonly used representation for the classification 
of drone and helicopter with other objects. The STFT of a 
discrete-time signal x(t) is given as 

STFTሺ𝑡, 𝑓ሻ ൌ෍ 𝑥ሺ𝑡 െ 𝑖ሻ𝑤ሺ𝑖ሻ𝑒ି
௝ଶగ௜௙
ே

ே

௜ୀଵ
,           ሺ6ሻ 

where f is the frequency index and 𝑤ሺ𝑡ሻ is a window with 
length 𝑁 . Different windows, such as the Hanning and 
Hamming, can be used to trade off between sidelobe levels 
and the mainlobe width.  The window length 𝑁  is a key 
parameter which must be properly chosen such that the 
yielding STFT has good resolutions in both time and 
frequency domains. A small value of 𝑁  yields good time 
resolution but poor frequency resolution, and a large value of 
𝑁 renders a good frequency resolution but the time resolution 
will degrade. STFT is usually expressed in terms of its 
magnitude square, referred to as spectrogram.    

Fig. 3 shows the spectrogram of four-blade drone signals 
where the input SNR is defined as the power ratio between 
the power of each blade to the noise power. The carrier 
frequency is 30 GHz, and the pulse repetition frequency is 50 
kHz. The radar cross section (RCS) of the fuselage is assumed 
to be 20 dB higher than that of a blade. The translational 
motion of the drone fuselage is compensated and the direct-
current (DC) component reflecting the fuselage reflection is 
mitigated through simple DC signal removal. As such, we 
only consider the micro-Doppler signatures. 

Fig. 3(a) shows the spectrogram of a single-rotor case for 
clear visibility of the sinusoidally time-varying micro-
Doppler signatures. The rotor has two blades that are 
separated by 180o rotating at 50 Hz (3,000 rotations per 
minute, rpm), rendering symmetrical micro-Doppler 
signatures. Fig. 3(b) shows the spectrogram when the signals 
corresponding to all four rotors are superimposed. The 
propellers rotate at 50 Hz (3,000 rpm), 55 Hz (3,300 rpm), 52 
Hz (3,120 rpm), and 58 Hz (3,480 rpm), respectively. Note 
that, when the rotors have different rotation frequencies, their 
respective peak micro-Doppler frequencies differ as well. 
With all the eight components mixed, direct recognition of the 
sinusoidal patterns becomes difficult in this figure.  Compared 
to helicopters with a single rotor [15], the micro-Doppler 
signature of drones are much more complicated. 

In Figs. 3(c) and 3(d), we show the spectrogram of the same 
four-rotor drones, but with lower input SNR levels of െ14 dB 
and െ17  dB, respectively. As the input SNR reduces, the 
micro-Doppler signatures are more difficult to be recognized 
from the spectrogram results. The time-varying micro-
Doppler signatures are no longer identifiable in Fig. 3(c), 
whereas in Fig. 3(d), no Doppler signatures can be visually 
observed.  

3.2 Inverse Radon Transform 

The IRT utilizes the clear periodicity of the spectrogram 
because of the rotor rotations. By using a sinusoidal trajectory 
in the spectrogram domain, the IRT transforms a sinusoidally  



   
(a) single-rotor (0 dB SNR)         (b) four-rotor (0 dB SNR) 

   

(c) four-rotor (െ14 dB SNR)      (d) four-rotor (െ17 dB SNR) 

Fig. 3.  Spectrogram of drone signals. 
 

varying micro-Doppler signature into a single point in the 
parameter domain. Note that this is different to conventional 
Radon transform pairs which are defined over a straight line. 

Consider a trajectory model Ω  in the spectrogram with 
instantaneous micro-Doppler frequency defined as:  

Ω: 𝑓መௗ,௞ሺ𝑡ሻ ൌ െ𝐹෠ௗ sin൫ 𝑗𝜔ෝௗ𝑡 ൅ 𝜙෠ௗ,௞ሺ0ሻ൯,                    ሺ7ሻ 

which is characterized by maximum micro-Doppler 
frequency 𝐹෠ௗ, rotation radian frequency 𝜔ෝௗ, and initial phase 
𝜙෠ௗ,௞ሺ0ሻ. Define the IRT as  

𝑋ሺ𝐹෠ௗ ,𝜔ෝௗ ,𝜙෠ௗ,௞ሺ0ሻሻൌ න |STFTሺ𝑡, 𝑓ሻ|ଶ𝑑Ω
ஐ

.           ሺ8ሻ 

Then 𝑋ሺ𝐹෠ௗ ,𝜔ෝௗ ,𝜙෠ௗ,௞ሺ0ሻሻ will render a high value when the 
parameter set ሼ𝐹෠ௗ , 𝜔ෝௗ , 𝜙෠ௗ,௞ሺ0ሻ} matches that of an actual 
blade defined in Eq. (5).   
 

3.3 Blades of Propellers in a Rotor  

In practice, a drone rotor uses two or three propeller blades 
that are equally separated by 180o or 120o. Utilizing such 
group structure, we can respectively compute the two-blade 
and three-blade IRT products as:   

   𝑋ଶ ቀ𝐹෠ௗ ,𝜔ෝௗ ,𝜙෠ௗ,௞ሺ0ሻቁ 

ൌ ሾ𝑋 ቀ𝐹෠ௗ ,𝜔ෝௗ ,𝜙෠ௗ,௞ሺ0ሻቁ ⋅ 𝑋൫𝐹෠ௗ ,𝜔ෝௗ ,𝜙෠ௗ,௞ሺ0ሻ ൅ 180୭൯ሿ
ଵ
ଶ, 

(9) 

    𝑋ଷ ቀ𝐹෠ௗ ,𝜔ෝௗ ,𝜙෠ௗ,௞ሺ0ሻቁ ൌ ሾ𝑋ሺ𝐹෠ௗ ,𝜔ෝௗ ,𝜙෠ௗ,௞ሺ0ሻሻ 

    ⋅ 𝑋൫𝐹෠ௗ ,𝜔ෝௗ ,𝜙෠ௗ,௞ሺ0ሻ ൅ 120୭൯𝑋൫𝐹෠ௗ ,𝜔ෝௗ ,𝜙෠ௗ,௞ሺ0ሻ ൅ 240୭൯ሿ
ଵ
ଷ. 

(10) 

Utilizing such group structure increases the detectability 
against noise and helps identify how many propeller blades 
are there in each rotor.  

Once these parameters are estimated from the peaks in the 
parameter domain, we can take 𝜔ෝௗ  and 𝜙෠ௗ,௞ሺ0ሻ  as the 

estimates for 𝜔ௗ and 𝜙ௗ,௞ሺ0ሻ, respectively. In addition, 𝐹෠ௗ  is 
related to  െሺ2/𝜆ሻ𝐿ത𝜔ௗ cosሺ𝛽ሻ thus can be used to estimate 
the average blade length projected in the LOS direction, 
𝐿ത cosሺ𝛽ሻ, given that 𝜔ௗ is first estimated and 𝜆 is known. 
 

4. Simulation Results 

For the visualization convenience, the IRT results will be 
illustrated with respect to the rotation frequency and the initial 
blade phase, for a specific assumed value of  𝐿ത cosሺ𝛽ሻ.  Note 
that 𝐿ത cosሺ𝛽ሻ is suited for this purpose because it is shared by 
all propeller blades whereas 𝐹෠ௗ  may vary with rotors when 
they have different rotation frequencies.  
 

4.1 Effect of Assumed 𝐿ത cosሺ𝛽ሻ Values 

In Fig. 4, we first show IRT results in dB scale with different 
assumed values of  𝐿ത cosሺ𝛽ሻ for the four-rotor results 
corresponding to the spectrogram shown in Fig. 3. The input 
SNR is 0 dB. Fig. 4(a) shows that, when 𝐿ത cosሺ𝛽ሻ is correctly 
estimated, the IRT results show clearly peaks corresponding 
to the correct rotation frequency and initial phase. On the 
other hand, Fig. 4(b) shows that, when the estimated value of 
𝐿ത cosሺ𝛽ሻ does not matches the correct one, the peak values 
are much lower (10% lower value of 𝐿ത cosሺ𝛽ሻ is used in this 
plot). Note that the same dynamic range is used in the two 
plots to clearly compare the peak levels. Therefore, correct 
values of 𝐿ത cosሺ𝛽ሻ can be estimated by seeking the highest 
peak IRT values. In the subsequent results, correct estimation 
of 𝐿ത cosሺ𝛽ሻ is assumed.  

 
             (a) correct 𝐿ത cosሺ𝛽ሻ                          (b) incorrect 𝐿ത cosሺ𝛽ሻ  
 

Fig. 4.  IRT results using correct and incorrect (10% lower) 
assumed values of 𝐿ത cosሺ𝛽ሻ. The input SNR is 0 dB. 
 

4.2 IRT and IRT Product for Weak Signals 

Fig. 5 shows the IRT and IRT product results for lower input 
SNR levels of െ14 dB and െ17 dB. For the െ14 dB input 
SNR case, compared to the spectrogram shown in Fig. 3(a) 
that cannot identify the micro-Doppler signatures, six peaks 
can be clearly identified in Fig. 5(a) from such weak signals, 
while two peak points show lower values. The IRT product 
shown in Fig. 5(b) provides improved results which enable 
accurate estimation of parameters of the rotation frequency 
and blade position phase.   

Fig. 5(c) shows the IRT results for the case with െ17 dB 
SNR. The peaks values are still observed, but there are several 
spurious peaks that make the parameter estimation difficult. 
In comparison, the IRT product depicted in Fig. 5(d) 
suppressed such spurious peaks for enhanced identification 
and parameter estimation.  



   
         (a) IRT  (െ14 dB SNR)           (b) IRT product (െ14 dB SNR) 

   
        (c) IRT  (െ17 dB SNR)           (d) IRT product (െ17 dB SNR) 

Fig. 5.  IRT and IRT products with different input SNR levels.  
 

4.3 Incorrect IRT Product Order 

When the order of IRT product does not match the number of 
propeller blades in a rotor, the IRT product shows lower peak 
values, thereby indicating invalid IRT product order.  

Fig. 6(a) shows the IRT result for െ10 input SNR case, and 
the corresponding IRT product, in an incorrect order of three, 
i.e., Eq. (10), is shown in Fig. 6(b). We use the same color 
scale in both plots. It is observed that, due to the incorrect 
IRT product order, the IRT product does not provide peaks 
with comparable peak values. Figs. 6(c) and 6(d) show the 
IRT products in the same incorrect IRT product order case for 
input SNR of െ14 dB and െ17 dB, respectively. The color 
scale respectively matches their IRT results shown in Figs. 
5(a) and 5(c). Again, we observe that no peaks with 
comparable peak values are observed in these two plots. 

 

4. Conclusion 

We have proposed drone Doppler signature analyses based on 
spectrogram followed by IRT to enable enhanced drone 
detection and feature extraction. IRT product combining the 
IRT results obtained for multiple blades in the same rotor 
further enhances the results for parameter estimation. The 
proposed analyses account for multiple rotors with different 
rotation frequencies.  
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