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Abstract—In this paper, we address the problem of instanta-
neous frequency (IF) estimation of non-linear, multi-component
frequency modulated (FM) signals in the presence of burst miss-
ing data samples, where different signal components have distinct
amplitude levels. Burst missing data induce significant artifacts
in the time-frequency (TF) representations of such signals, thus
making identification of true IFs challenging. We propose a
technique that involves local peak detection and filtering within
a window at each time instant. The threshold for each local
TF segment is adapted based on the local maximum values of
the signal within the segment. The proposed approach not only
mitigates the undesired impacts of the artifacts and cross-terms
due to burst missing data samples, but also successfully resolves
signal components with distinct amplitude levels and preserves
a high resolution of the auto-terms. The effectiveness of the
proposed method and its superiority over existing techniques
are verified through simulation results.

Index Terms—Adaptive local filtering, burst missing samples,
directional time-frequency representation, non-stationary signal.

I. INTRODUCTION

Many practical signals used in radar, sonar, biomedical
applications, and wireless communications can be modeled
as non-stationary frequency modulated (FM) signals [1], [2].
The time-frequency (TF) representation is widely accepted
as the most preferred method to analyze, characterize, and
process such signals [3], [4]. In practice, these signals often
experience missing data samples due to various reasons, such
as multipath fading, line-of-sight obstruction, and noise re-
moval. The scenario of burst missing samples emerges when
missing data occurs consecutively as a result of interference,
obstruction, or fading that last for multiple sampling intervals.
Burst missing data samples introduce artifacts that exhibit
superimposed sinc-like patterns created around the true instan-
taneous frequencies (IFs) in the TF representations (TFRs)
of such FM signals, and thus, present a more challenging
situation for signal characterization and analysis [5] compared
to the random missing sample case, in which artifacts are
uniformly distributed in the TF domain [6].

Various compressive sensing and TF kernel based ap-
proaches have been proposed that address TFR reconstruction
in the presence of random missing samples [6]–[10]. Data-
dependent TF kernels, such as the adaptive optimal kernel
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(AOK) [11], and sparse reconstruction methods, such as the
orthogonal matching pursuit (OMP) [12], are found to be
effective in the case of random missing data samples. However,
these methods alone fail to reliably reconstruct TFRs when
missing data occurs in bursts. The problem of TFR recon-
struction of mono-component non-linear FM signals in the
presence of burst missing samples is considered in [13]. In this
approach, the data interpolation/extrapolation-based missing
data iterative adaptive approach (MIAA) [14] is used in the
time-lag domain, which is stationary with respect to the lag
index. While the MIAA performs well to iteratively reconstruct
the TFR from the instantaneous autocorrelation function (IAF)
using their one-dimensional (1-D) Fourier transform rela-
tionship, this approach exhibits excessive cross-terms in the
case of multi-component FM signals in the presence of burst
missing samples. A recently developed missing data iterative
sparse reconstruction (MI-SR) approach [5], when applied in
conjunction with signal-adaptive TF kernels, provides effective
suppression of cross-terms and artifacts due to burst missing
data samples, and thus, achieving reliable TFR recovery.

In the case of multi-component FM signals with high
variation in their relative amplitude levels and in the presence
of burst missing data samples, the aforementioned methods
either fail completely to recover the weak signal compo-
nents or demonstrate excessive artifacts and spurious signal
signatures, thus misguiding identification of the true IFs. In
this scenario, a recently developed adaptive directional TF
distribution (ADTFD) [15] generally outperforms the existing
approaches in terms of resolving close signal components with
high variation in their relative amplitudes, while achieving a
high resolution of auto-term TFRs. However, ADTFD too,
suffers from problems of aliasing signal components, artifacts,
and interfering cross-terms.

Pre-processing techniques may be employed for resolution
enhancement, cross-term suppression, and de-noising of the
TFRs to improve the reliability and performance of the un-
derlying advanced methodologies in various applications such
as detection, tracking, classification, and diagnosis [16]. One
of the common techniques is to find peaks using well-known
zero-derivative method and then smoothing the entire curve
using a low-pass filter. However, doing so adversely affects
the TFR resolution. In addition, accidental zero-crossings of
the first derivative occur in noisy signals, leading to false peak
detections.

To overcome such issues, in this paper, we propose a new



technique that involves local filtering of the TFR of a multi-
component FM signal. At each time instant, peaks are first
detected locally along the frequency axis within the window
of a desired length. Then, the peaks having amplitudes higher
than the threshold, specified as a percentage of the local
maximum value, are retained, and low amplitude artifacts
are filtered out. We observe that, at each time instant, the
peaks associated with the true IFs usually assume maximum
amplitudes, whereas the peaks due to undesired artifacts have
much smaller amplitudes, within a window of an appropriate
length. With this large difference in amplitudes of the true
IFs and the artifacts in a local TF segment, by adapting the
threshold based on local maximum values of the signal within
that window, the local characteristics of the signal are well
preserved and better represented. This is particularly useful
when the signal consists of multiple close components in the
TF domain but with significant differences in their amplitude
levels. The proposed approach, referred to as adaptive local
filtering-based directional time-frequency distribution (ALF-
DTFD), offers multifold advantages, namely, effectively re-
moving cross-terms and artifacts due to burst missing samples,
hence preserving a high resolution of the true IFs, maintaining
the maximum of the distribution properties, and enhancing
feature extractions of the underlying TFRs. The proposed
technique can be successfully applied to the multi-component
FM signals having either uniform or random positions of
missing data bursts that may contain the same or different
numbers of missing data.

Notations. A lower (upper) case bold letter denotes a vector
(matrix). (·)T and (·)∗, respectively, represent transpose and
complex conjugation. Fx(·) and F−1

x (·), respectively, define
the discrete Fourier transform (DFT) and inverse DFT (IDFT)
with respect to x. dae denotes the ceiling function which
returns the least integer greater than or equal to a.

II. SIGNAL MODEL AND QUADRATIC TIME-FREQUENCY
REPRESENTATIONS

A. Signal Model

Consider a discrete-time multi-component analytic FM sig-
nal, expressed as

s[t] =
K∑
k=1

ak[t] exp(jφk[t]), t = 1, ..., T, (1)

where K is the total number of components, ak(t) and
φk(t) are, respectively, the slowly time-varying coefficient and
time-varying phase of the kth component of the signal. The
observed data contains a total number of N burst missing
data samples with N =

∑B
b=1Nb, 0 ≤ N < T, where B is

the total number of missing bursts, and Nb is the number of
missing samples in the bth burst, b = 1, ..., B. The positions of
the missing data bursts are assumed to be randomly distributed
over time and different bursts are assumed to be mutually non-
overlapping.

Let S ⊂ {1, ..., T} be the set of observed time instants with
a cardinality of |S| = T − N . As such, the observed signal,

r[t], can be expressed as the product of s[t] and an observation
mask, R[t], i.e.,

r[t] = s[t] ·R[t], (2)

where

R[t] =

{
1, if t ∈ S,
0, if t /∈ S.

(3)

It should be noted that a random missing sample scenario
could be considered as a special case of the underlying burst
missing sample scenario with B equal to N and Nb equal to
1 in the above expressions.

B. Quadratic Time-Frequency Representations

The IAF of r[t] is defined in the time-lag (t-τ ) domain as

Crr[t, τ ] = r [t+ τ ] r∗ [t− τ ] . (4)

The ambiguity function (AF) is obtained by applying a 1-D
DFT to the IAF with respect to time t, expressed as

Arr[θ, τ ] = Ft[Crr[t, τ ]] =
∑
t

Crr[t, τ ]e
−2πθt, (5)

where θ is the frequency shift.
On the other hand, the Wigner-Ville distribution (WVD) can

be obtained by taking the 1-D DFT of the IAF with respect
to τ as

Wrr[t, f ] = Fτ [Crr[t, τ ]] =
∑
τ

Crr[t, τ ]e
−4πfτ . (6)

Note that, in the above expression 4π is used instead of 2π,
because integer valued τ is considered in (4).

III. PROPOSED ADAPTIVE LOCAL FILTERING BASED
APPROACH

The WVD provides optimal representation of mono-
component linear FM signals [3]. However, it generates ex-
cessive cross-terms in the case of multi-component signals or
non-linear FM signals. It also suffers from non-local nature
and possibility of non-positive energy distribution. These
drawbacks of WVD motivated the development of reduced-
interference distributions [16], [17] that attempt to mitigate
the effects of the interfering cross-terms, while preserving the
energy of the auto-terms with a high resolution.

A. Adaptive Directional Time-Frequency Distribution
(ADTFD)

The ADTFD [15] is obtained by applying a locally adaptive
2-D smoothing kernel to the respective TF point of the under-
lying quadratic TFR. For the TFRs represented by χ[t, f ], the
corresponding ADTFD is given as

χadapt[t, f ] = χ[t, f ] ∗
t
∗
f
ψθ[t, f ], (7)

where ∗
t
∗
f

denotes 2-D convolution with respect to both time

index t and frequency index f , and ψθ[t, f ] is the double
derivative directional Gaussian filter (DD-DGF) defined as

ψθ[t, f ] =
pq

2π
e−p

2t2θ−q
2f2
θ (1− p2f2θ ), (8)



where tθ = t cos(θ) + f sin(θ), fθ = f cos(θ) − t sin(θ),
θ is the rotation angle with respect to the time axis, and p
and q are parameters that control the spread of the DD-DGF
respectively along the time and frequency axes. In order to
suppress cross-terms while preserving the resolution of auto-
terms, the direction of a smoothing kernel should remain
aligned with the major axis of auto-terms and cross-terms.
The direction of the DD-DGF is optimized locally for each TF
point by maximizing the correlation of the directional kernel
with the modulus of a underlying quadratic TFR, i.e.,

θ[t, f ] =
2π

L
argmax

l

∣∣∣∣|χ[t, f ]| ∗t ∗f ψθl [t, f ]
∣∣∣∣ , (9)

where ψθl [t, f ] is the directional Gaussian kernel rotated by
θl = 2πl/L radians along the time-axis in total L discrete
steps, l = 0, ..., L − 1. Note in the above expression that the
modulus of the χ[t, f ] is considered to avoid the oscillatory
effects of the cross-terms.

While the WVD can be used in place of χ[t, f ] in (7), in
this paper, we use the smoothed pseudo WVD (SPWVD) [18],
[19] for improved cross-term reduction. The SPWVD of the
signal s[t] is given by

χ[t, f ]=
∑
u

g[u]
∑
τ

h[τ ] s[t− u+ τ ] s∗[t− u− τ ] e−j4πfτ ,

(10)
where g[u] and h[τ ] are, respectively, time and lag smoothing
windows. The separable kernel in SPWVD facilitates indepen-
dent optimization for the time and frequency smoothing, thus
providing improved cross-terms suppression results.

B. Proposed Adaptive Local Filtering-based Directional Time-
Frequency Distribution (ALF-DTFD)

Multi-component non-linear FM signals exhibit severe
cross-terms between components. Additionally, burst missing
samples introduce significant artifacts in the TFR of these sig-
nals, thereby increasing the possibility of erroneous detection,
processing, and classification. In this section, we delineate the
proposed adaptive local filtering-based approach, referred to
as ALF-DTFD, that aims to mitigate the undesired effects of
cross-terms and artifacts from the underlying TFRs.

We begin with the ADTFD, computed using (7)–(10),
of the given multi-component FM signal. Both auto-terms
and cross-terms appear as ridges in the TF domain. Using
the operation defined in (9), the smoothing kernel of the
ADTFD provides maximum output when it is parallel to
these ridges, providing low-pass filter characteristics along
its major direction. The output of the smoothing kernel is
minimized in other directions, thus reducing the energy at TF
points where no signal components are present. We observe
that, after this operation, for each time instant, the maximum
valued peaks generally belong to the true signal signatures,
whereas the undesired artifacts assume low values within a
local TF segment enclosed in a window of an appropriate
length. The proposed ALF-DTFD technique, motivated by the
above observation, offers low computational complexity and
is found effective in suppressing cross-terms and artifacts due
to burst missing data samples, while preserving the energy of
the signal components with different amplitude levels.

Denote the column of the underlying TFR at time instant
t as a P × 1 vector x(t) = [χadapt[t, 1], ..., χadapt[t, P ]]

T,
t = 1, ..., T , with P representing the total number of
frequency-grid points. As all the steps are performed for
each time instant, we omit superscript (t) in the sequel for
notational simplicity.

Divide the vector x into M non-overlapping segments, with
Q = dP/Me being the number of elements in each segment,
i.e.,

x =
[
xT
1 ,x

T
2 , ...,x

T
M

]T
, (11)

where the mth segment, xm, is given by

xm =
[
x[(m− 1)Q+ 1], ..., x[mQ]

]T
, 1 ≤ m ≤M. (12)

If MQ > P , MQ − P zeros are appended at the end of
x, i.e., in the last segment xM . The selection of M depends
on the total number of components and their separation in
the frequency domain. For a signal with few closely spaced
components, a small value of M should be used (e.g., 1 or
2). For signals with a higher number of components, or when
they spread in the entire frequency region, a higher value of M
may be desired, without exceeding the total number of signal
components.

The peaks are detected locally within each segment xm. A
TF point is considered a peak if it has the maximum value,
and is preceded by a value lower by the specified threshold,
defined as a percentage of the maximum value. Denote xm[n]
as the nth element of xm, and Pm as the set of the detected
peaks within the segment xm. Then,

xm[n] ∈ Pm, if |xm[n]|−|xm[n−1]| ≥ ξmax |xm|, (13)

where 0 < ξ ≤ 1, and n = 2, ..., Q. The value of ξ should
be properly chosen. A small value of ξ will yield ineffective
suppression of the undesired artifacts and cross-terms from
the TF region, whereas a large value will aggressively remove
auto-terms along with cross-terms.

The retained TF points represent the detected high-energy
peaks, whereas low energy artifacts are filtered out. This is
achieved by the following thresholding,

xm[n] =

{
xm[n], if xm[n] ∈ Pm,
0, otherwise.

(14)

The entire procedure of proposed ALF-DTFD technique is
summarized in Algorithm 1.

IV. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed ALF-
DTFD approach, we consider a two-component FM signal
with different amplitudes of the components, given by

y(t) = exp(jφ1(t)) + 0.6 exp(jφ2(t)), t = 1, ..., T, (15)

where T is chosen to be 256 and the instantaneous phase laws
of these two components are respectively expressed as,

φ1(t)=0.05t+0.000001t3, φ2(t)=0.25t−0.0000005t3. (16)

Figs. 1(a)–1(e) respectively show the real part of the original
signal without missing samples, and the corresponding IAF,



Algorithm 1: ALF-DTFD algorithm

1 Compute ADTFD of the received signal, χadapt[t, f ],
using (7)–(10);

2 Initialize the total number of frequency grid points P ,
total number of samples T , number of segments M ,
and threshold parameter ξ with 0 < ξ ≤ 1;

3 for t = 1 : T do
4 Divide x = χT

adapt[t, :] into M non-overlapping
segments, x1,x2, ...,xM , each of length
Q = dP/Me;

5 for m = 1 :M do
6 Initialize the set of the detected peaks within

xm, Pm = ∅;
7 for n = 2, ..., Q do
8 if |xm[n]|− |xm[n−1]| ≥ ξmax |xm| then
9 xm[n] ∈ Pm;

10 end if
11 end for
12 foreach xm[n] ∈ xm do
13 if xm[n] /∈ Pm then
14 |xm[n]| = 0;
15 end if
16 end foreach
17 end for
18 χadapt[t, :] = x[1 : P ];
19 end for

AF, WVD, and true IFs. In Fig. 1(b), the IAF entries, related
to the time at which the two signal components intersect in
the TF region, assume maximum amplitudes. In Fig. 1(c), the
two auto-term signatures pass through the origin and the cross-
terms oscillates around the origin. The WVD depicted in Fig.
1(d) shows the excessive cross-terms even without any missing
samples, due to the bilinear nature of the underlying multi-
component FM signal. These cross-terms could be mitigated
by designing a low-pass TF kernel in the ambiguity domain
that yields maximum output in the direction parallel to the
auto-terms and small outputs everywhere else.

Fig. 2(a) shows the real part of the received signal, which
contains a total of 96 (i.e., 37.5%) missing samples. These
missing samples are clustered into 16 bursts, with each burst
having a width of 6 missing samples. Missing data positions
are marked with red dots. The corresponding IAF in Fig. 2(b)
contains burst missing entries due to burst missing data sam-
ples. Figs. 2(c) and 2(d), respectively, show the corresponding
AF and WVD, in which aliasing structures, generated due to
convolutive sinc-function-like artifact patterns, making spec-
tral estimation and analysis extremely challenging. Unlike the
random missing data case, where the artifacts are uniformly
distributed in these domains, the artifacts due to burst missing
samples exhibit strong patterns and cannot be easily mitigated
using adaptive TF kernel alone.

Figs. 3(a)–3(f) provide comparison of the TFRs obtained
using different existing approaches, applied to the received
signal shown in Fig. 2(a). The TFR in Fig. 3(a), obtained with
the MIAA method applied in the IAF domain, shows excessive
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Fig. 1 The original signal without missing samples: (a) Real part
of the signal; (b) IAF; (c) AF; (d) WVD; (e) True IFs.
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Fig. 2 The received signal with 96 (i.e., 37.5%) missing samples
clustered into 16 bursts, each having 6 missing samples: (a) Real part
of the signal; (b) IAF; (c) AF; (d) WVD.

cross-terms, similar to the WVD from Fig. 2(d). As observed
in Fig. 3(b), the sparse reconstruction based OMP technique,
when applied after MIAA, performs poorly when trying re-
cover the true signal components and suppress cross-terms.
The AOK in Fig. 3(c) performs relatively well in recovering
the strong signal component. However, aliasing at both sides
may misguide the identification of the weak signal component.
Figs. 3(d) and 3(f) show TFR reconstruction results using
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Fig. 3 The TFRs obtained using different existing approaches
applied to the received signal of Fig. 2(a): (a) MIAA applied to the
IAF; (b) OMP applied after MIAA; (c) AOK; (d) OMP applied to
the kerneled IAF obtained from the AOK; (e) ADTFD with WVD as
the underlying TFD; (f) OMP applied after the ADTFD.
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Fig. 4 The TFRs obtained by applying the proposed techniques
to the received signal of Fig. 2(a): (a) ADTFD with SPWVD as
the underlying TFD; (b) Resulting TFR after smoothing the TFR of
Fig. 4(a) using global thresholding; (c) Proposed ALF-DTFD (M=1,
Q=256, ξ=0.41).

OMP applied to the IAFs, respectively obtained from the AOK
and the ADTFD. In both cases, the OMP fails to recover
the weak signal component. The high-energy sinc-like artifact
patterns resulted from the burst missing samples, concentrated

near the strong signal component in the respective underlying
TFRs, are misguided as the second signal component in the
OMP, leading to erroneous results. As seen in Fig. 3(e),
the ADTFD, using the WVD as the underlying TFD with
p = 2 and q = 30, produces TFR reconstruction results with
better artifact suppression compared to all aforementioned
approaches. Nevertheless, the artifacts due to burst missing
samples and spurious signal signatures near the intersection
of the two components remain an issue.

In Fig. 4(a), the SPWVD is used as the underlying TFD
instead of WVD while computing ADTFD, where p = 0.3,
q = 100, h[τ ] = 128, and g[u] = 5 are assumed. As compared
to Fig. 3(e), the improvement in terms of the IF resolution and
energy concentration of the signal components, particularly
for the weak signal component and at the intersection of
the components, is clearly observed in Fig. 4(a). Fig. 4(b)
shows the resulting TFR after smoothing the TFR of Fig.
4(a) with global thresholding, in which a single threshold is
used for the entire TFR. While this approach is successful in
removing some of the artifacts, the presence of aliasing signal
components makes identification of the true IFs difficult, as
one universal threshold does not serve for alias mitigation
and auto-term preservation. Fig. 4(c) provides TFR obtained
using the proposed ALF-DTFD approach applied to the TFR
depicted in Fig. 4(a). The values of M and ξ considered
are respectively 1 and 0.41. As evident from Fig. 4(c), the
proposed approach not only removes all cross-terms and
artifacts due to burst missing data samples, but also preserves
high energy and resolution of the auto-terms. This clearly
demonstrates the superiority of the proposed technique in pre-
processing the TFRs with increased reliability.

V. CONCLUSIONS

In this paper, we have developed a novel adaptive local fil-
tering based approach for the TF analysis of multi-component
FM signals. The proposed ALF-DTFD is simple, yet effective
in removing cross-terms and undesired artifact effects due to
burst missing samples, while preserving desired signal auto-
terms in the underlying TFR of the multi-component FM
signal. When the signal has multiple components that are
closely separated or have large variations in their relative
amplitudes, the proposed approach is seen to be efficient in
resolving weak signal components while preserving a high
resolution of the true IFs. The effectiveness of the proposed
technique in providing reliable TF signature estimation is suc-
cessfully demonstrated using a challenging multi-component
signal scenario, where the other sparse reconstruction based
approaches fail to recover the weak signal component.
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