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Abstract: In over-the-horizon radar (OTHR) systems, the signal-to-clutter ratio (SCR) used for
moving target detection is very low. For slowly moving targets such as ships, the SCR is typically
from 250 dB to 260 dB and their Doppler frequencies are close to that of the clutter. For
manoeuvring targets, such as aircraft and missiles, the Doppler frequencies are time-varying when a
long integration time is considered. When a target does not move uniformly, the Fourier transform
based target detection techniques, including super-resolution spectrum techniques, may fail to work
appropriately. In such situations, the Doppler signatures are time-varying and, therefore, time–
frequency analysis techniques can be used for manoeuvring target detection. In addition, clutter
rejection is also required for target detection due to the low SCR. The existing adaptive clutter
rejection algorithms combine clutter rejection with spectrum analysis methods, which usually
assume uniformly moving target (i.e. sinusoidal Doppler signature) models. An adaptive clutter
reject algorithm is proposed together with the adaptive chirplet transform technique for
manoeuvring target detection in a multipath environment. Simulation results using a simulated
manoeuvring target signal with received raw OTHR clutter data show that targets with SCR below
250 dB can be detected by using the proposed algorithm.
1 Introduction

Over-the-horizon radar (OTHR) systems have been widely
used to detect and track targets, such as aircraft and surface
ships, in wide area surveillance at long ranges [1–5]. The
existing OTHR detection and tracking algorithms are based
on the assumption that the Doppler frequency of each target
is constant or at least approximately constant during each
dwell. Targets are detected from amplitude peaks away
from the zero frequency. The detection capability of an
algorithm depends on the SCR and the Doppler resolution
which, in turn, depends on the length of the coherent
integration time (CIT). In the existing Fourier transform
based techniques for manoeuvring target detection and
tracking, there is a trade-off between the CIT length, SCR
and the Doppler resolution. For a slowly or uniformly
moving target, such as a ship, the Fourier transform based
techniques work well, where a long CIT can be used for
clutter spread reduction. However, for a fast manoeuvring
target, such as a fast boat, aircraft or missile, in Fourier
transform based techniques a long CIT cannot be used and,
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therefore, the Doppler resolution is limited. In such
situations, time–frequency analysis becomes an important
technique for effective manoeuvring target detection and
tracking. Time–frequency analysis methods [6–10] have
found wide applications in radar [11–16]. Because the radar
return signals from manoeuvring targets have chirp-like
characteristics, a new Doppler processing method based on
the adaptive chirplet transform (ACT), instead the Fourier
transform, is proposed in this paper. With the adaptive
chirplet transform technique, the CIT can be substantially
extended and, therefore, the Doppler resolution can be
improved compared with Fourier transform based
techniques.

In an OTHR system, the detection of slow targets is often
difficult, due to clutter from the ground or ocean and the
low SCR (typically about 250 dB to 260 dB). Therefore,
clutter rejection is necessary to improve the target detect
capability. The available clutter rejection algorithms
include the Fourier transform based adaptive clutter
rejection method recently proposed by Root [2] and super-
resolution spectrum estimation algorithms, for example [17,
18]. In this paper, an adaptive clutter rejection algorithm is
proposed. After clutter rejection, the ACT is then applied to
the clutter-mitigated signal, which makes the energy of the
manoeuvring targets concentrated. By using the proposed
algorithm, the manoeuvring targets can be correctly
detected even when the SCR is below 250 dB.

2 OTHR signal model and problem description

In this Section, we first describe the OTHR signal model and
conventional OTHR processing for uniformly moving
targets, and then the problem of interest in this paper of
manoeuvring targets.
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2.1 OTHR signal model for OTHR processing

After low-pass filtering and sampling, the received signal
sðm; nÞ for a target p with ground range r is (see for example
[4, 5])

sðm;nÞ¼Ap expð j!pmTcÞexp j !p�2�Bf
dp

c
�T0

� �� �
nTs

� �

þ�n;m

ð1Þ
where n; m; T0; !p; dp; f ; B; Tc; and �n;m are the fast time
sample index, chirp pulse index, the minimum delay,
Doppler frequency shift, the two-way slant range, waveform
repetition frequency, bandwidth of radar, coherent inte-
gration time and additive noise, respectively. Ap in (1) is the
amplitude of the received signal from the target (source) or
clutter p. The power A2

p of the signal has the expression
as [19, 20]

A2
p ¼ PtGt

4�R2
t

� �

4�R2
r

� Ae

where Rt and Rr are the distances (m) of transmitter and
receiver of radar to the target, respectively, Pt is the power
(W) of antenna with gain Gt; � is the cross-section (in square
metres) of the target and Ae is the effective area of antenna
aperture. From (1), we find that the signal part in sðm; nÞ in
terms of index n is a complex sinusoidal signal. It is also a
sinusoidal function of index m if the Doppler frequency !p

does not change with m. In this case, a two-dimensional
discrete Fourier transform over m and n provides the range–
Doppler surface Sðm 0; n 0Þ: The received clutter signal is the
signal coming from the ground and surface of the sea. The
signal of clutter is spread in frequency, it does not just
appear in zero frequency. In the real OTH radar, there are
two high peaks corresponding to the Bragg lines away from
zero frequency, which make target detection more difficult.
For a particular OTHR processing algorithm, the target
detection capability depends on the SCR. Therefore, in
order to improve the target detection performance, one can
increase the range, Doppler resolution and/or the SCR. The
range resolution

Dr ¼ c

2B

depends on the bandwidth B of radar. However, the Doppler
resolution

D! ¼ 2�

Tc

depends on the CIT Tc; which is chosen at the receiver.
Targets and clutter with Doppler differences less than D!
are located in one Doppler cell. One Doppler cell is divided
into k smaller cells and the SCR is then increased by k times
if the CIT increases k times. The assumption here is that the
target moves uniformly within the CIT interval. This
assumption, however, may not hold when the CIT is long.

2.2 Problem description on manoeuvring
target detection

For a manoeuvring target, the signal Doppler frequency !p

in (1), due to the target motion or nonuniform motion of
electron density distribution in the ionosphere [17], is no
longer constant but time-varying. Consider a moving target
with initial velocity v and acceleration a in the direction of
slant range. The Doppler frequency !p in (1) is
IEE Proc.-Radar Sonar Navig., Vol. 150, No. 4, August 2003
!pðtÞ ¼
4�

l
ðv þ atÞ

The Doppler spread is

D!p ¼ 4�

l
aTc

and thus, the number of Doppler cells that the target energy
spreads over is

D!p

D!
¼ 2aT2

c

l

Therefore, when the target moves uniformly, i.e. a ¼ 0; the
target energy is always concentrated in a single Doppler
cell. It becomes different, however, when the target moves
nonuniformly, i.e. a 6¼ 0: As an example, let us assume
2a=l ¼ 1: In this case, the target energy spreads over T2

c

Doppler cells. This implies that, if the CIT Tc increases k
times, the number of Doppler cells over which the target
energy spreads increases k2 times. Therefore, in this case,
the SCR in Doppler reduces k2 times compared to that in
the uniform moving target case. This tells us that, for a
manoeuvring target, the CIT increase does not benefit the
OTHR target detection if the Fourier transform is used in
the Doppler processing. We next want to propose an
adaptive chirplet transform (ACT) in the Doppler proces-
sing that may take advantage of the long CIT no matter
whether the target moves uniformly or not.

3 Chirp signal detection and adaptive chirplet
transform

In OTHR, the received signal corresponding to a range cell
is typically a multicomponent signal with time-varying
frequency signatures corresponding to the multiple targets
with different velocities and the clutter. In this Section, we
first review the Wigner–Ville distribution (WVD) and
Radon–Wigner transform (RWT) for multiple chirp detec-
tion. We then describe the adaptive chirplet transform
method which is used in the simulation in Section 5.

3.1 Chirp signal detection using Radon–
Wigner transform

WVD of a signal sðtÞ is defined as follows [7, 8]:

Wsðt; !Þ ¼
Z1
�1

s t þ t
2

� 	
s
 t � t

2

� 	
expð�j!tÞ dt ð2Þ

where variables t and v represent the time and frequency,
respectively. WVD has the highest resolution for a single
chirp signal, but its major disadvantage is the presence of
artificial cross-terms caused by the quadratic multiplication
nature. For a signal containing multiple linear chirps, the
desired WVD auto-terms are straight lines in the Wigner
plane, while the undesired cross-terms are manifested as the
high-frequency oscillating characteristics. To suppress the
cross-terms, we consider the Radon–Wigner transform
(RWT), which takes advantage of the above oscillating
properties by integrating the WVD along lines with different
chirp rate and frequency shift combinations. A large part of
the WVD cross-terms is cancelled to each other through the
integration, and the residual part of the cross-terms can be
further reduced in the Radon–Wigner plane by noting the
fact that the RWT auto- and cross-terms have different
characteristics. Therefore, a proper mask can be applied to
the RWT to reduce the cross-terms with minimum distortion
to the auto-terms. The WVD with substantially suppressed
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cross-terms can be obtained by transforming the masked
RWT back to the Wigner plane [21]. It is proved in [21] that
the WVD auto-terms after the inverse Radon transform of
the masked coefficients are the same as those in the original
WVD. These WVD auto-terms are then used to estimate the
instantaneous Doppler frequencies of targets. For other
instantaneous Doppler frequency estimation methods, see
for example [6, 7].

For multicomponent signals with approximately equal
magnitudes, RWT filtering in the Radon–Wigner plane is
effective. However, when the magnitudes of the signal
components are significantly different, the method may not
be effective because the cross-terms between stronger signal
components may be larger than the auto-terms of weaker
components. In this case, a weaker signal may be shaded in
the presence of strong cross-terms and can hardly be
detected. In OTHR systems, the signal echo from small
targets, such as small boats, are often much weaker than that
of the clutter, even after clutter cancellation. In this case,
the method we introduced above can be used to detect the
strongest signal component and then remove it from the
original signal. This procedure is repeated until all the signal
components are detected.

3.2 Adaptive chirplet transform for high-
order time-varying frequency signals

For a long CIT, the received signal from a manoeuvring
target is no longer a linear chirp signal. When the time-
varying frequency is a higher order polynomial of time, the
signal can be expressed as a combination of several linear
chirps over different time intervals. Such a signal represen-
tation, introduced by Mann and Haykin [15], is called
chirplet transform.

The procedure of chirplet decomposition of a signal is
first to estimate the chirp rates �1; �2; . . . ; �N0

of sðtÞ over
different segments, and the respective chirps

uiðtÞ ¼ exp j
1

2
�it

2

� �� �

are then constructed. For a given frame fhkðtÞ; k 2 Zg and
N0 chirp rates, a new chirplet frame fhkðtÞ uiðtÞ; k; i 2 Zg is
obtained. Based on this chirplet frame fhkðtÞ uiðtÞg; sðtÞ is
divided as

sðtÞ ¼
XN0

i¼1

X
k

Ci;k &i hkðtÞ uiðtÞ ð3Þ

where Ci;k ¼ hsðtÞ; h0
kðtÞ uiðtÞi is the frame decomposition

and fh0
kðtÞ; k 2 Zg; is the dual frame of fhkðtÞ; k 2 Zg;

h�; �i represents the inner product, 
i are arbitrary weights
satisfying

XN0

i¼1

&i ¼ 1; 04&i41 ð4Þ

For details about (3), see [13]. To have an efficient frame
decomposition, fhkðtÞ; k 2 Zg should include functions
with different time and frequency bandwidths and centre
(mean) locations. For example, the following modulated
Gaussian functions

hkðtÞ ¼
�k

�

� 	1=4

exp ��kðt � tkÞ2 þ j �k þ
k

2
ðt � tkÞ

� �� �
ð5Þ

are usually used, where �k; �k are parameters that control
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the envelope and phase of the chirplet, and k and tk denote
the frequency and time centres, respectively.

Next, we consider how to construct the chirplet frame.
Radon–Wigner transform can be used to estimate these
chirp rates. For a given signal sðtÞ; chirp rate �1 is obtained
by searching the largest peak in the Radon–Wigner plane
after taking the RWT of the signal. We then obtain the
chirplet frame fhkðtÞu1ðtÞg by modulating the frame fhkðtÞg
in (5) with

u1ðtÞ ¼ exp j
�1

2
t2

� 	
We next estimate which element in the modified frame
fhkðtÞ u1ðtÞg optimally matches the signal sðtÞ and denote
this element as u1ðtÞhk1

ðtÞ where

hk1
ðtÞ ¼ argmin

k

sðtÞ � hsðtÞ; u1ðtÞ h0
kðtÞi

khkðtÞk
u1ðtÞ hkðtÞ

����
����

� �
ð6Þ

Define signal s1ðtÞ as

s1ðtÞ ¼ sðtÞ �
hsðtÞ; u1ðtÞ h0

k1
ðtÞi

khkðtÞk
u1ðtÞ hk1

ðtÞ ð7Þ

By repeating the same procedure of sðtÞ to s1ðtÞ; we
obtain the chirp rate �2 corresponding to the second
largest component of sðtÞ: Let

u2ðtÞ ¼ exp j
�2

2
t2

� 	
we obtain

hk2
ðtÞ ¼ argmin

k

s1ðtÞ �
hs1ðtÞ; u2ðtÞ h0

kðtÞiu2ðtÞ hkðtÞ
khkðtÞk

����
����

� �
ð8Þ

and

s2ðtÞ ¼ s1ðtÞ �
hs1ðtÞ; u2ðtÞ h0

k2
ðtÞi

khkðtÞk
u2ðtÞ hk2

ðtÞ ð9Þ

Repeating the above procedure, all signal components can
be obtained, and signal sðtÞ can be expressed as

sðtÞ ¼
P

i

siðtÞ: Based on the above decomposition, the

instantaneous frequencies of all signal components can be
obtained and then used for OTHR target detection.

One can see that the search in (6) and (8) is four-
dimensional and thus has a high computational complexity.
In order to reduce the complexity, a suboptimal adaptive
chirplet transform algorithm with two-dimensional search is
given in [14] and is summarised as follows:

Step 1: Chirp rate �1 and frequency !1 are estimated by

ð�1; !1Þ ¼ argmax
ð�;!Þ

jDsð�; !Þj ð10Þ

where Dsð�; !Þ is the RWT of sðtÞ:
Step 2: Let gðtÞ denote a match filter with centre frequency
!1: Also, denote

u1ðtÞ ¼ exp j
�1

2
t2

� 	

and

h1ðtÞ ¼ gðtÞ � ðsðtÞ u

1ðtÞÞ ð11Þ

where � is the convolution operator.
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Step 3: Coefficient C1;1 in (3) is obtained as

C1;1 ¼ hsðtÞ; h1ðtÞ u1ðtÞi ¼
Z

sðtÞ h

1ðtÞ u


1ðtÞ dt ð12Þ

Step 4: Let

s1ðtÞ ¼ C1;1 h1ðtÞ u1ðtÞ and y1ðtÞ ¼ sðtÞ � s1ðtÞ ð13Þ

Step 5: Set s ¼ y1ðtÞ:
Step 6: Stop if the energy of sðtÞ is small enough, otherwise
go to step 1.

Other adaptive chirplet transforms can be found in, for
example [9].

4 Clutter rejection

In OTHR, clutter is a multicomponent signal with much
stronger power than that of the target signal. To achieve
effective target detection, clutter rejection is necessary
before ACT is applied. A clutter rejection algorithm using
adaptive Fourier transform was proposed by Root [2]. There
are some other algorithms [18, 22], in which adaptive clutter
rejection and maximum likelihood target detection are
combined based on the sinusoidal target signal model. In
this Section, adaptive clutter rejection algorithms are
discussed, which are independent of target detection
methods and do not assume any target signal model. After
clutter rejection, time–frequency analysis can be used to
make the energy of a manoeuvring target focused.

4.1 Adaptive noise cancelling method used
for clutter rejection

To effectively suppress the clutter, we notice the fact that
the clutter has high space correlation to its neighbouring
range cells. The correlation coefficient may be as high as
0.8–0.9 [18, 22]. Therefore, the received signals at
neighbouring range cells can be used to estimate the clutter
covariance matrix of the current range cell. The idea of an
adaptive noise canceller can be used for the underlying
OTHR clutter rejection problem. An adaptive noise
canceller is a dual-input, closed-loop adaptive feedback
system [23], which makes use of the signal dðnÞ received at
the primary sensor and the signal v1ðnÞ received at a
reference sensor. The signal received dðnÞ at the primary
sensor is composed of the interested signal sðnÞ and additive
noise v0ðnÞ; i.e.

dðnÞ ¼ sðnÞ þ v0ðnÞ ð14Þ

It is assumed that the signal sðnÞ and noise v0ðnÞ are
uncorrelated to each other, and v1ðnÞ is correlated to the
noise v0ðnÞ but is uncorrelated to the signal sðnÞ: The
reference signal v1ðnÞ is used to estimated the noise
component in dðnÞ

yðnÞ ¼
XK�1

k¼0

wkðnÞ v1ðn � kÞ ð15Þ

where wkðnÞ are the adjustable tap weights of the adaptive
filter. The filter output yðnÞ is subtracted from the primary
signal dðnÞ; resulting in the following error signal:

eðnÞ ¼ dðnÞ � yðnÞ ¼ sðnÞ þ v0ðnÞ � yðnÞ ð16Þ
The error signal is used to adjust the tap weights of the
adaptive filter. The error signal eðnÞ is the overall system
output, which contains the desired signal sðnÞ with the noise
suppressed.
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In the OTHR target detection, the desired signal is the
echo from targets, whereas the undesired signal is clutter
and noise. As the OTHR signal is usually processed after
beamforming, a reference sensor receiving only the clutter
is not available. However, as we mentioned before, the
clutter in one range cell has high correlation with that of its
neighbouring range cells, whereas the target signals do not.
Therefore, the signals received at neighbouring range cells
can be used for clutter suppression, resembling the signal
received at the reference sensor in an adaptive noise
canceller.

4.2 Adaptive clutter rejection algorithm

In this Section, an adaptive signal subspace method is used
for clutter rejection. Let scðtÞ be the received signal after
range compression in the current interested range cell and
sn1

ðtÞ; . . . ; snN
ðtÞ are received signals after range com-

pression from N neighbouring range cells. Define the
following signal vectors Sc and Si constructed for the
current and the ith neighbouring range cells from the all M
samples over the CIT:

Sc ¼ ½sci
ð0Þ; sci

ð1Þ; . . . ; sci
ðM � 1Þ�T ð17Þ

Si ¼ ½sni
ð0Þ; sni

ð1Þ; . . . ; sni
ðM � 1Þ�T ð18Þ

Then, the covariance matrix of clutter and external noise can
be estimated by

R ¼

PN
i¼1

j�ij�SiS
H
i

PN
i¼1

j�ij�
ð19Þ

where

�i ¼
SH

c Si

kSckkSik
ð20Þ

is the correlation coefficient between the received signal
vectors at the current range cell and the ith neighbouring
cell, and g is a positive scalar and typically takes a value
between 1 and 2.

The introduction of term j�ij� in (19) allows the
contributions of the neighbouring range cells to be weighted
differently depending on their respective correlation coeffi-
cients with the current range cell. By doing this, the
contributions from less correlated range cells can be
effectively eliminated.

The SVD of R can be written as

R ¼ UVUH ð21Þ
where U is a unitary matrix and V is a diagonal matrix.
Columns of U are eigenvectors of R, and the elements in
the diagonal of V are the corresponding eigenvalues. As the
clutter is the dominant component in the received signal, the
eigenvectors u1; u2; . . . ; uM corresponding to the M largest
eigenvalues can be reasonably associated to the clutter. The
projection of the received signal to the orthogonal subspace
of the clutter

Sproj ¼ I �
XM
i¼1

uni
uH

ni

 !
Sc ð22Þ

results in a clutter-suppressed signal.
In (17), because the number of neighbouring range cells is

usually smaller than the dimension of the variance matrix R
to be estimated, it is rank deficient. By considering the
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existence of thermal noise, the full-rank covariance matrix
R1 of clutter and noise can be estimated as

R1 ¼ R þ �2I ð23Þ

where �2 is the noise variance, which can be roughly
estimated, and I is the identity matrix. Performing singular
value decomposition (SVD) of R1 yields

R1 ¼ U1V1UH
1 ¼

XN

i¼1

li ~uui ~uu
H
i ¼

XN

i¼1

liPi ð24Þ

where li is the ith largest eigenvalue of R1; ~uui is its
eigenvector, and Pi ¼ ~uui ~uu

H
i is the projection operator to the

subspace generated by ~uui: From (21), we know that more
clutter energy distributed in the subspace vector ~uui

corresponding to a larger eigenvalue li: The following
algorithm provides an efficient way to remove strong clutter
without any knowledge of signal

Sproj ¼
XN

i¼1

f ðliÞPiSc ð25Þ

where f ðliÞ is a weighting function that takes a smaller
value for a larger value of li: In this paper, f ðliÞ is chosen as

f ðliÞ ¼
1

li

ð26Þ

Therefore, the signal vector, after the adaptive clutter
rejection, becomes

Sproj ¼
XN

i¼1

f ðliÞPiSc ¼
XN

i¼1

1

li

PiSc ¼ R�1
1 Sc ¼ ðRþ�2IÞ�1Sc

ð27Þ

The noise variance estimate �2 controls the rejection level
against the clutter components.

5 Simulation results

In this Section, the performance of the proposed algorithms
for manoeuvring target detection is shown by some
simulation results. The signal data coming from manoeuvr-
ing targets is generated based on the signal model (1) and
then added to the raw OTHR clutter data. The radar working
frequency is 20 MHz. There are 54 range cells in the data.
The coherent integration time (CIT) is Tc ¼ 12:3 s: The
velocity and acceleration of targets in the range direction are
from 40 m/s and 3m=s2; respectively. The signal-to-clutter
ratio is about 253.5 dB.

In our simulations, the following steps are implemented.
For the received signal, matched filtering and range
compression are first implemented in the range direction.
Then, the signal subspace clutter rejection algorithm is
applied to remove the clutter where � ¼ 1 is used. Lastly,
ACT is used on the clutter-rejected signal for target
detection.

The signal waveforms before and after adaptive signal
subspace clutter rejection to the range cell that contains
target are shown in Fig. 1a. We can see that the clutter
energy is removed about 15 dB by using the signal subspace
algorithm. The results can also be verified by the results of
Fig. 1b and Fig. 1c, which are the mesh of range–Doppler
results to the data before and after clutter rejection by the
adaptive subspace clutter rejection algorithm. It is noted that
the clutter suppression at edge range cells is not as effective
296
as the other cells because less neighbouring range cells are
available for clutter subspace estimation.

The processing results with different methods are
shown in Fig. 2. The target cannot be detected from the
range–Doppler results obtained by using the Fourier
transform on the preclutter rejection data, which is shown
in Fig. 2a. Because the Fourier transform spreads the
target energy of the manoeuvring targets, as shown in
Fig. 2b, the target is still undetectable even after clutter

Fig. 1 Signal amplitude before and after clutter rejection

a Signal waveforms before and after projection
b FFT range–Doppler before projection
c FFT range–Doppler after projection
IEE Proc.-Radar Sonar Navig., Vol. 150, No. 4, August 2003



rejection and SCR enhancement. Instead of the Fourier
transform in Fig. 2b, ACT is used in Fig. 2c. The target,
however, can be easily detected now in Fig. 2c at range
2250 km with Doppler about 24 Hz. The amplitudes of
the signal in the range cell containing the target are shown
in Figs. 3a–3c for the Fourier transform without clutter
rejection, the Fourier transform with clutter rejection and
the ACT with clutter rejection, respectively. From Fig. 3a,
we can see that the clutter amplitude of the main lobe

Fig. 2 OTHR results with different processing methods

a FFT range–Doppler before projection
b FFT range–Doppler after projection
c ACT range–Doppler after projection
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around 0 Hz is about 20 dB higher than that of the
sidelobes, including the region around 25 Hz where the
target is located. In Fig. 3b, although the clutter amplitude
of the main lobe is reduced by about 15 dB and the
sidelobe is reduced about 5–10 dB, the target still cannot
be detected. But in Fig. 3c, the target energy is focused.
The amplitude of the target signal is about 4 dB higher
than that of the clutter in the target’s neighbouring
frequency bands.

Fig. 3 Processing results with different methods of the range-
containing targets

a Signal and clutter amplitude after FFT without projection
b Signal and clutter amplitude after FFT and projection
c Signal and clutter amplitude after ACT and projection
297



6 Conclusions

In this paper, an adaptive clutter rejection algorithm was
proposed for manoeuvring target detection in OTHR
systems. This algorithm can reduce clutter energy by
about 15–20 dB with negligible distortion to the waveform
of the signal returned from manoeuvring targets. An
adaptive chirplet transform algorithm was applied to the
clutter-mitigated signal for improved Doppler processing.
Simulation results showed that the proposed method
substantially enhances the target detection ability. Particu-
larly, several simulation examples showed that the proposed
method can successfully detect weak target signals where
other methods cannot be used directly with adaptive chirplet
transform for manoeuvring target detection.
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