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ABSTRACT

Moving platforms enable sparse arrays to assume higher de-
grees of freedom and lead to increased number of lags. In
essence, array motion can fill the holes in the spatial auto-
correlation lags associated with a fixed platform and, there-
fore, increase the number of sources detectable by the same
physical array. In this paper, we consider coprime arrays,
and assume quasi-stationarity of the environment, where the
source locations and waveforms are assumed invariant over
array motion of half wavelength. Expressions of the synthetic
array comprising the original coprime array and its shifted
version are derived. Analysis of the difference co-array cor-
responding to the combined array positions before and after
motion is provided. It is shown that majority, if not all, of the
holes in the original array position can be filled by just a small
translation shift along the coprime array axis.

Index Terms— Sparse arrays, DOA estimation, differ-
ence co-array, coprime array, array motion.

1. INTRODUCTION

Structured sparse arrays are designed independent of the en-
vironment and only seek to increase the number of elements
in the difference co-arrays. The latter is a representation of
the spatial auto-correlation lags that can be estimated from a
given array configuration. An increase in the number of lags
leads to a corresponding increase of the number of sources
that can be estimated. As such, sparse arrays can estimate the
direction-of-arrival (DOA) of more sources than the number
of physical sensors [1–9]. This property propels a broad use
of these arrays in a variety of applications [10–17]. Compared
with the minimum redundant array (MRA) [18], the minimum
hole array (MHA) [19] and the nested array [2], the coprime
array [1] assumes a simple closed-form expression of sensor
positions and spacing. It can identify O(MN) uncorrelated
sources withO(M+N) sensors using the difference co-array.
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DOA estimation is implemented by exploiting the unique or
consecutive lags [5] in the difference co-array.

Most of the literature on coprime arrays considers a fixed
array platform. However, passive and active sensing is typ-
ically performed by a sensor array on a moving platform,
e.g., air-borne, vehicle mounted, or ship attached. When deal-
ing with an array in motion, one approach is to assume rela-
tively fast changing environment, and carry direction finding
at each array position separately. This, however, decomposes
the problem into individual DOA estimation problems that are
solved independently. On the other hand, in a slowly chang-
ing environment, we can assume that source positions, angu-
lar directions, and signal temporal structures to be invariant
within short time intervals. For a moving platform, coherent
measurements can then be collected across each time interval,
specifically at the array original and shifted positions. This,
in turn, provides an opportunity to collectively produce a dif-
ference co-array with a longer span and more contiguous as
well as unique lags.

An important work on coprime arrays on moving plat-
forms was considered in [20], where a coprime array with
co-prime integers M and N (N > M) was used to provide a
hole-free co-array over an extended synthetic aperture. It is
shown that the coprime array must move as much as Nλ/4
to produce a hole-free co-array, where λ is the signal wave-
length. A large value of N requires the signal environment to
be stationary over a long time period. This assumption may
not be valid in practical situations. In addition, a large array
shift results in high data redundancies and increased compu-
tational complexity.

In this paper, we exploit array motion to fill the holes in
the difference co-arrays which are usually generated with a
fixed array position. Unlike previous work [20], we limit
the array translation motion to only a half wavelength so that
the spatio-temporal characteristics of the environment remain
constant over the array translation motion.

The co-array corresponding to the combined positions be-
fore and after the half-wavelength array shift is of a longer
virtual aperture with a higher number of degrees of freedom
compared to those of a single array position. The paper de-



lineates this property and demonstrates through simulation a
superior array performance.

We analyze the difference co-array of the synthetic array
consisting of the original array and its shifted version for the
case where a coprime array merely moves a half wavelength
along its axis. It is shown that such motion can fill most, if
not all, of the holes, and as such significantly increases both
the contiguous and unique lags, enabling estimation of DOA
of a large number of sources.

The remainder of the paper is organized as follows. In
Section 2, the signal model and synthetic aperture processing
are summarized. Section 3 analyzes the difference co-array of
the synthetic array. In Section 4, the difference co-arrays and
spatial spectra for different values of M and N are presented
through simulations. Section 5 concludes the paper.

2. PROBLEM FORMULATION

Consider an L-sensor sparse receive array whose sensor po-
sitions are denoted as dl, l = 1, 2, · · · , L. The first sensor
is used as the reference, i.e., d1 = 0. We consider the sce-
nario that the entire array moves along the array direction at
a constant velocity v. As illustrated in Fig. 1, the black cir-
cle and red rhombus, respectively, represent the sensor po-
sitions of the original and the shifted arrays. Denote sq(t),
q = 1, · · · , Q, as the Q uncorrelated far-field sources sam-
pled at t = Ts, 2Ts, · · · , LsTs, where Ts is the sampling in-
terval and Ls is the number of snapshots. The arrival angle of
the qth source is denoted as θq . Because of the assumed small
translation motion of the array, the directions of the sources
with respect to the sensor array are considered unchanged.

The output of the receive array, at time t, is expressed as

x(t) =

Q∑
q=1

sq(t) exp(−jvtκq)a(θq) + ε(t) = As(t) + ε(t),

(1)
where a(θq) = [1, exp(−jd2κq), · · · , exp(−jdLκq]T ∈
CL×1 is the array steering vector, κq = 2π sin(θq)/λ is de-
fined for notation convenience, and (·)T denotes transpose. In
addition, s(t) = [s1(t) exp(−jvtκ1), s2(t) exp(−jvtκ2), · · ·
, sQ(t) exp(−jvtκQ)]T is the signal vector, A = [a(θ1),a(θ2)
, · · · ,a(θQ)] ∈ CL×Q is the array manifold matrix, and
ε(t) ∈ CL×1 is zero-mean complex additive white Gaussian
noise vector with covariance matrix σ2

εIL with IL denoting
the L × L identity matrix. At time t + τ , the output of the
receive array becomes

x(t+τ) =

Q∑
q=1

sq(t+τ) exp(−jvtκq) exp(−jvτκq)a(θq)

+ε(t+ τ)

= Bs(t+ τ) + ε(t+ τ). (2)

v

. . .
θ
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Fig. 1. Array configuration of a moving coprime array.

where

B = [b(θ1),b(θ1), · · · ,b(θQ)] ∈ CL×Q, (3)

with

b(θq) = exp(−jvτκq)a(θq)
= [exp(−jvτκq), exp(−j(vτ + d2)κq), · · · ,

exp(−j(vτ + dL)κq)]
T
, (4)

and

s(t+ τ) = [s1(t+ τ) exp(−jvtκ1), s2(t+ τ) exp(−jvtκ2),

· · · , sQ(t+ τ) exp(−jvtκQ)]T . (5)

For narrowband signals with carrier frequency f , sq(t +
τ) = sq(t) exp(j2πfτ). Accordingly, (2) can be rewritten as

x(t+τ) = exp(j2πfτ)Bs(t) + ε(t+ τ). (6)

By choosing vτ = d = λ/2, the steering vector at time
t+ τ becomes

b(θq) = [exp(−jdκq), exp(−j(d+ d2)κq), · · · ,

exp(−j(d+ dL)κq)]
T
. (7)

By compensating for the phase correction factor exp(j2πfτ)
using the technique described in [21], we obtain a phase syn-
chronized received signal vector as

x̃(t+τ) = x(t+τ) exp(−j2πfτ) = Bs(t) + ε̃(t+ τ), (8)

where ε̃(t+ τ) = exp(−j2πfτ)ε(t+ τ).
By combining equations (1) and (8), we obtain the output

of the synthetic array. It is expressed as

y(t) =

[
x(t)

x̃(t+τ)

]
= Ass(t) +

[
ε(t)

ε̃(t+τ)

]
∈ C2L×1,

(9)

where

As = [as(θ1),as(θ2), · · · ,as(θQ)] ∈ C2L×Q, (10)

as(θq) = [aT (θq),b
T (θq)]

T . (11)



3. DIFFERENCE CO-ARRAY

In this section, we analyze the difference co-array of the syn-
thetic array. We refer to the arrays at its original and shifted
positions as the original and shifted arrays, respectively. For
a coprime array with coprime integers M and N (M < N ),
the sensor positions are expressed as [5]

Pco = {Mnd, n ∈ [0, N − 1]} ∪ {Nmd,m ∈ [0,M − 1]} ,
(12)

whereas the sensor positions of the shifted array are expressed
as

Pcs = {(Mn+ 1)d} ∪ {(Nm+ 1)d} . (13)

Combining the sensor positions of the original and the shifted
arrays, we obtain the sensor positions of the synthetic array,

Pc = Pco ∪ Pcs. (14)

The synthetic array is illustrated in Fig. 2, where black circles
and red rhombuses represent the original and the shifted co-
prime arrays, respectively. The set formed from the difference
co-array corresponding to the synthetic array is given as

Sc = S12 ∪ S34 ∪ S13 ∪ S24 ∪ S14 ∪ S23. (15)

In the above expression, subscripts 1 and 2 refer to the two
subarrays in their original positions, whereas 3 and 4 refer
to these subarrays in the shifted positions. It is noted that
only the cross-lags in the difference co-array are considered
here since the self-lag positions form a subset of the cross-lag
positions [5].

S12 is defined as the set of cross-lags between original
subarray 1 and original subarray 2 which is given [5] as,

S12 = {Mk1 −Nk2} ∪ {Nk2 −Mk1} , (16)

where k1 ∈ [0, N − 1], k2 ∈ [0,M − 1]. Similarly,

S34 = {Mk3 −Nk4} ∪ {Nk4 −Mk3} , (17)

where k3 ∈ [0, N − 1], k4 ∈ [0,M − 1]. From (16) and (17),
it is clear that S12 ∪ S34 = S12 since S12 and S34 have the
same elements. On the other hand, S13 is defined as the set of
cross-lags between subarray 1 and subarray 3, whereas S24 is
defined as that between subarray 2 and subarray 4. They are,
respectively, given as,

S13 = {Mk1 −Mk3 − 1} ∪ {Mk3 −Mk1 + 1} , (18)
S24 = {Nk2 −Nk4 − 1} ∪ {Nk4 −Nk2 + 1} . (19)

Similarly,

S14 = {Mk1 −Nk4 − 1} ∪ {Nk4 −Mk1 + 1} , (20)
S23 = {Nk2 −Mk3 − 1} ∪ {Mk3 −Nk2 + 1} . (21)

Lemma 1: For sets S13 , S24 , S14 and S23 defined above,
S13 ∪ S24 ∪ S14 ∪ 23 = S14 ∪ S23.
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Fig. 2. The two subarrays of the synthetic coprime array.

Proof. See Reference [22].

Utilizing Lemma 1 and using the fact that S12∪S34 = S12,
the cross-lag set of the synthetic array is simplified as

Sc = S12 ∪ S14 ∪ S23. (22)

With different combinations of the subsets, it is easy to show

S14 ∪ S23 = S̃14 ∪ S̃23, (23)

where

S̃14 = {Mk1 −Nk4 − 1} ∪ {Nk2 −Mk3 − 1} , (24)

S̃23 = {Nk4 −Mk1 + 1} ∪ {Mk3 −Nk2 + 1} . (25)

Because k1, k3 ∈ [0, N − 1], k2, k4 ∈ [0,M − 1], (24) and
(25) are equivalent to the following equations.

SL12 = {Mk1 −Nk2 − 1} ∪ {Nk2 −Mk1 − 1} , (26)

SR12 = {Nk2 −Mk1 + 1} ∪ {Mk1 −Nk2 + 1} . (27)

Then,
Sc = S12 ∪ SL12 ∪ SR12. (28)

We remark that the new subsets SL12 and SR12 can be inter-
preted as the difference co-array of the original coprime array
shifted by one unit step (lag) to the left and one unit step to
the right. Accordingly, the close neighbouring holes of each
lag in the difference co-array of the original coprime array be-
come filled, which makes the number of unique lags increase.

Example 1. Assume M = 4, N = 5, then S12 = {0,±1,
· · · ,±8,±10,±11,±12,±15,±16}. There are 27 unique
lags and 6 holes locating at {±9,±13,±14}. After array mo-
tion, there are new subsets SL12 = {0,±1, · · · ,±7,−8,±9,
10,±11,−12,−13, 14, 15,−16,−17} and SR12 = {0,±1,
· · · ,±7, 8,±9,−10,±11, 12, 13,−14,−15, 16, 17}. There-
fore, Sc = {0,±1, · · · ,±17}. The difference co-array be-
comes a hole-free array, and the number of unique lags is
increased to 35 from 27.

This example shows that the new subsets SL12 and SR12 fill 6
holes in S12 by shifting a coprime array with M = 4, N = 5
by a half wavelength. Meanwhile, additional 2 lags (±17) are
obtained. It is noted that the difference co-array in this case
is a hole-free array with motion owing to the fact that all the
holes are located at the neighbouring positions of the filled
lags.



-33 -28 -23 -18 -13 -8 -3 2  7  12 17 22 27 32 
nz = 47(a)

-33 -28 -23 -18 -13 -8 -3 2  7  12 17 22 27 32 
nz = 47(b)

-33 -28 -23 -18 -13 -8 -3 2  7  12 17 22 27 32 
nz = 47(c)
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nz = 65(d)

Fig. 3. Difference co-array for M=4, N=9. (a) S12; (b) SL12;
(c) SR12; (d) Sc.(•: lags; ×: holes)

4. SIMULATION RESULTS

In this section, we analyze the difference co-arrays and spatial
spectra estimation performance for the original and synthetic
coprime array through numerical simulations.

In the first simulation, the difference co-arrays of the orig-
inal and synthetic coprime array for M=4, N=9 are analyzed
in Fig. 3. The difference co-array S12 corresponding to the
original coprime array is shown in Fig. 3 (a). There are 18
holes in the co-array before motion. After motion, the neigh-
bouring holes of each lag are filled by subsets SL12 and SR12
(see Fig. 3 (b) and Fig. 3 (c)). Fig.3 (d) depicts the difference
co-array of the synthetic array. The reason it is not filled is
that there are 3 consecutive holes in the difference co-array of
the original array out of which two holes are filled by motion.
After motion, the middle one locating at position±30 in the 3
consecutive holes is left. Even so, the number of unique lags
increases significantly with array shift.

In the second simulation, the spatial spectra estimation re-
sults using LASSO [23, 24] for different values of M and N
are shown in Fig. 4. L = 12 sensors are used for the three ar-
rays with M=4, N=9 and M=6, N=7 as well as M=5, N=8.
The numbers of unique lags increase to 65, 69 and 73 after
motion from their respective original values 47, 53 and 51,
respectively. The input signal-to-noise ratio (SNR) is 10 dB
and 2,000 snapshots are used. Q sources are uniformly dis-
tributed between −50◦ and 50◦. Different values of Q are
considered for each array. Figs. 4(a), 4(c) and 4(e) are for
the original array, whereas Figs. 4(b), 4(d), and 4(f) represent
the synthetic array. It is evident from Fig. 4 that the origi-
nal coprime array cannot identify the DOAs of all Q sources,
whereas the synthetic coprime array can resolve all sources.

5. CONCLUSIONS

In a relatively slowly changing environment, the number and
locations of sources in the field of view of a multi-antenna re-

-60 -40 -20 0 20 40 60
degree

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 s
pe

ct
ru

m

(a)

-60 -40 -20 0 20 40 60
degree

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 s
pe

ct
ru

m

(b)

-60 -40 -20 0 20 40 60
degree

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 s
pe

ct
ru

m

(c)

-60 -40 -20 0 20 40 60
degree

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 s
pe

ct
ru

m

(d)

-60 -40 -20 0 20 40 60
degree

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 s
pe

ct
ru

m

(e)

-60 -40 -20 0 20 40 60
degree

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 s
pe

ct
ru

m

(f)

Fig. 4. Spatial spectra estimation using the LASSO. (a) M=4,
N=9, Q=26 for the original array; (b) M=4, N=9, Q=26 for
the synthetic array; (c) M=6, N=7, Q=29 for the original ar-
ray; (d) M=6, N=7, Q=29 for the synthetic array; (e) M=5,
N=8, Q=31 for the original array; (f) M=5, N=8, Q=31 for
the synthetic array.

ceiver can be assumed constant over a short period of time. If
the receiver implements a sparse array, then by virtue of mo-
tion, the original and new positions of the array will together
mass a higher number of degrees of freedom than those cor-
responding to one array position. In this paper, we considered
coprime array, and analyzed the co-array of the combined ar-
ray positions. It was shown that an array motion, through a
half wavelength shift, fills most of the holes associated with
the coprime array at a fixed position. Specifically, we demon-
strated that, by shifting the physical sparse array by half wave-
length along its axis, the difference co-array of the combined
two array positions would consist of the difference co-array of
the original array and its unit-lag shifted versions in the direc-
tion and opposite to direction of motion. These additional lags
were used to improve the DOA estimation of a large number
of sources. The increased number of lags due to array mo-
tion is not confined to coprime arrays, and other sparse array
structures can similarly benefit from shifting the array by a
small displacement.
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