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ABSTRACT

In this paper, we propose a new sparse coprime array de-
sign that achieves a higher number of degrees-of-freedom for
direction-of-arrival (DOA) estimation. The proposed array
design completely avoids lag redundancies between the two
constituting subarrays of the coprime array, thus achieving
the maximum number of unique correlation lags under the
coprime array framework. As a result, given the same num-
ber of physical sensors, the proposed design resolves more
sources than other coprime array designs with enhanced DOA
estimation performance. Simulation results demonstrate the
superior performance of the proposed coprime array design.

Index Terms— Sparse arrays, coprime array, difference
co-array, direction-of-arrival estimation, compressive sens-
ing.

1. INTRODUCTION

Sparse arrays are attractive in direction-of-arrival (DOA) es-
timation due to their capability to achieve enhanced perfor-
mance without increasing the number of physical sensors [1,
2]. More specifically, by using a sparse array, in lieu of a
uniform linear one, a higher number of degrees of freedom
(DOFs) can be obtained in the context of difference co-arrays.
Among various sparse array design schemes, coprime array
is one of the desirable choices that enable systematical sparse
array design and has attracted significant interest in the recent
years [3–13].

While the earlier approaches mainly rely on the subspace-
based DOA estimation methods (such as MUSIC and ES-
PRIT) which require spatial smoothing to restore the rank
of the signal covariance matrix in the co-array context and
can only utilize consecutive lags [4, 7], many recent works
are based on sparse reconstruction so as to use all the unique
lags, whether they are consecutive or not [6, 14, 15]. Other
approaches to achieve a higher number of DOFs include the
use of wideband signals [16,17], signals with two or more fre-
quencies [18–20], higher-order statistics [21–24], and virtual
array interpolation [25–27].

For a given number of array sensors in a coprime array, the
achievable number of unique lags is determined by the level
of redundancies in the yielded difference co-array. In other
words, the number of DOFs can be improved by reducing the
number of lag redundancies. Because a coprime array uses
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two constituting uniform linear subarrays, the redundancies in
the auto-lags within each subarray cannot be avoided. There-
fore, noticing that the auto-lags is a subset of the cross-lags
between the two subarrays, the objective becomes the reduc-
tion of the cross-lags [6]. The maximum number of unique
lags is thus achieved in the context of coprime array when
cross-lag redundancies are completely eliminated.

In this paper, we examine the conditions for cross-lags to
coincide and, based on this observation, propose sparse array
designs within the coprime array framework that completely
eliminate cross-lag redundancies between constituting subar-
rays. As such, the proposed array designs achieve the highest
possible number of unique lags for a given number of physi-
cal sensors in the context of coprime arrays. Simulation ex-
amples are presented to demonstrate the effectiveness of the
proposed sparse array designs.

Notations: We use lower-case (upper-case) bold charac-
ters to denote vectors (matrices). In particular, IN and 0N

denote the N × N identity and null matrices, respectively.
(.)T and (.)H respectively denote the transpose and conjugate
transpose of a matrix or vector, vec(·) is the vectorization op-
erator that turns a matrix into a vector by stacking all columns
on top of the another, and diag(x) denotes a diagonal ma-
trix that uses the elements of x as its diagonal elements. In
addition, E[·] represents the statistical expectation operator,
whereas ⊗ denotes the Kronecker product.

2. SIGNAL MODEL

Consider a sparse sensor array consisting of Q antennas lo-
cated at p0 · λ/2, . . . , pQ−1 · λ/2, where λ is the signal
wavelength. The values of p0, · · · , pQ−1 are assumed to be
integers. Without loss of generality, the first sensor position
is considered as the reference, i.e., p0 = 0.

When K uncorrelated narrow-band far-field signals im-
pinge on the array from angles θ1, . . . , θK , the data vector
received at the antenna array is expressed as:

x(t) =
K∑

k=1

sk(t)a(θk) + n(t) = As(t) + n(t), (1)

where sk(t) denotes the baseband waveform of the kth sig-

nal, and a(θk) = [1, ejπp1 sin(θk), . . . , ejπpQ−1 sin(θk)]T is the
array steering vector corresponding to angle θk. The array
manifold matrix is given as A = [a(θ1), . . . ,a(θK)], and
s(t) = [s1(t), . . . , sK(t)]T denotes the signal vector. The ele-
ments of the noise vector n(t) ∼ CN (0Q, σ

2
nIQ) are assumed



to be independent and identically distributed (i.i.d.) complex
white Gaussian random processes.

The covariance matrix of data vector x(t) is obtained as:

Rx = E[x(t)xH(t)] = ARsA
H + σ2

nIQ, (2)

where Rs = E[s(t)sH(t)] = diag([σ2
1 , . . . , σ

2
K ]) is the

source covariance matrix with σ2
k denoting the power of the

kth source.

2.1. Difference Co-arrays

Vectorizing Rx yields

z = vec(Rx) = Ãb+ σ2
ñi, (3)

where Ã = [ã(θ1), ..., ã(θK)], ã(θk) = a∗(θk) ⊗ a(θk),

b = [σ1, ..., σK ]T, and ĩ = vec(IQ). Note that vector z
amounts to the received data from a virtual array with a much

larger aperture defined by the virtual steering matrix Ã having
the co-array lag locations. The DOFs of any sparse array con-
figuration is determined by (η+1)/2 where η is the achieved
number of correlation lags.

The entries of the covariance matrix Rx correspond to
difference correlation lags. Denote P = {p0, · · · , pQ−1} as
an integer set representing the sensor positions, the difference
co-array D containing all the possible lags are expressed as:

D = P � P =
⋃

∀pl∈P,∀pk∈P
{pl − pk}. (4)

2.2. Prototype Coprime Array

Consider a prototype coprime array [5], as illustrated in Fig.
1, which consists of a pair of uniform linear subarrays. One of
the subarrays uses M sensors with an inter-element spacing
of N · λ/2, whereas the other subarray uses N elements with
an inter-element spacing of M · λ/2. M and N are chosen
to be coprime integers. The sensor position sets S1 and S2 of
the two subarrays, described in terms of the integer multiples
of half-wavelength, are respectively expressed as:

S1 = {nM | 0 ≤ n ≤ N − 1},
S2 = {mN | 0 ≤ m ≤ M − 1}. (5)

Since the two subarrays share the first sensor at the zeroth po-
sition, the resulting Q = M +N − 1 elements of the coprime
array are positioned at:

S = S1 ∪ S2

= {nM | 0 ≤ n ≤ N − 1} ∪ {mN | 0 ≤ m ≤ M − 1}.
(6)

The difference co-array D of the coprime array having the
sensor location set S is given as:

D = S�S = (S1�S1)∪ (S1�S2)∪ (S2�S1)∪ (S2�S2).
(7)

0 Md 2Md (N-1)Md

0 Nd (M-1)Nd

. . . .

. . . .

Fig. 1. Coprime array configuration.

Here, (S1 �S1) and (S2 �S2) are referred to as the auto-lag
sets for the two subarrays, whereas (S1 � S2) and (S2 � S1)
form the cross-lag sets between the two subarrays. These sets
are respectively given as

S1 � S1 = {(n1 − n2)M} = {l1M},
S1 � S2 = {(nM −mN)},
S2 � S1 = {(mN − nM)},
S2 � S2 = {(m1 −m2)N} = {l2N},

(8)

where 0 ≤ {n, n1, n2} ≤ N−1, 0 ≤ {m,m1,m2} ≤ M−1,
−N + 1 ≤ l1 ≤ N − 1, and −M + 1 ≤ l2 ≤ M − 1.

Existing coprime array structures contain several self-lag
as well as cross-lag redundancies. The self-lag redundancies
in sets S1�S1 and S2�S2 are evident and cannot be avoided
because the two subarrays are uniform linear. On the other
hand, cross-lag redundancies arise only when overlapping el-
ements exist in sets S1�S2 and S2�S1. Note that these two
cross-lag sets are symmetrical.

3. PROPOSED ARRAY DESIGN WITH NO
CROSS-LAG REDUNDANCY

In this section, we propose a modified coprime array design to
eliminate cross-lag redundancies. We first examine the con-
ditions for cross-lag redundancies to exist in the prototype
coprime array design, and then propose sparse array designs
with no cross-lag redundancies.

3.1. Cross-lag redundancy conditions

Proposition 1: Each of the cross-lag sets S1�S2 and S2�S1

contains MN unique elements.

Proof. Because S1 �S2 and S2 �S1 are symmetric, we only
provide the proof for the former. Is it observed from Eq. (8)
set S1 � S2 has MN unique elements unless the following
relation holds for two different pairs of (m1, n1) �= (m2, n2):

n1M −m1N = n2M −m2N, (9)

or, equivalently,

(n1 − n2)M = (m1 −m2)N, (10)

where 0 ≤ {n1, n2} ≤ N−1, 0 ≤ {m1,m2} ≤ M−1. Since
M and N are coprime, the above condition is satisfied only if:
(a) n1−n2 = 0 and m1−m2 = 0. This condition contradicts
with the different pair requirement; and (b) n1 − n2 = kN
and m1 − m2 = kM where k is a positive integer. This
condition cannot be satisfied because {m1,m2} ≤ M − 1
and {n1, n2} ≤ N − 1. Therefore, S1 � S2 (and, similarly,
S2 � S1) contains MN unique elements.



Proposition 2: There are MN − M − N + 2 cross-lag re-
dundancies in the prototype coprime array.

Proof. From Eq. (8), it is observed that elements in set S1 �
S2 overlap with those in S2 � S1 if the following relation
holds for any two pairs of (m1, n1) and (m2, n2):

n1M −m1N = m2N − n2M, (11)

or, equivalently,

(n1 + n2)M = (m1 +m2)N, (12)

where 0 ≤ {n1, n2} ≤ N − 1 and 0 ≤ {m1,m2} ≤ M − 1.
Eq. (11) holds in two cases: (a) m1 = m2 = n1 = n2 = 0.
In this case, we have one redundancy between S1 � S2 and
S2 � S1 at lag 0. (b) n1 + n2 = kN and m1 + m2 = kM
where k is a positive integer. This condition is satisfied when
(n1, n2) equals to any of the N − 1 pairs of values given as
(1, N −1), (2, N −2), . . . , (N −1, 1) and (m1+m2) equals
to any of the M − 1 pairs of values (1,M − 1), (2,M −
2), . . . , (M−1, 1). Therefore, there are (N−1)(M−1)+1 =
MN −M −N +2 redundant pairs between sets S1�S2 and
S2 � S1.

Remarks: From the above two Propositions, we observe:

(a) Because each cross-lag pair has MN unique lags, and
there are MN −M −N +2 redundant entries between
them, the prototype coprime array has MN +MN −
(MN − M − N + 2) = MN + M + N − 2 unique
lags;

(b) Among these redundant entries, the lag-0 one cannot be
avoided. Therefore, for a modified coprime array, the
maximum possible number of unique lags is MN +
MN − 1 = 2MN − 1.

3.2. Proposed Coprime Array with No Cross-lag Redun-
dancies

The modified coprime array design, as shown in Fig. 2, is
implemented by changing the inter-element spacing such that
the conditions of cross-lag redundancies, described in (11)
and (12), are violated. The sensor locations of the two subar-
rays in the proposed array configuration is expressed as:

S̃1 = {nM̃ | 0 ≤ n ≤ N − 1},
S̃2 = {mÑ | 0 ≤ n ≤ M − 1},

(13)

where M̃ and Ñ are integers with M̃ ≥ M and Ñ ≥ N .
In the proposed coprime array design, at least one of the

conditions Ñ ≥ 2N − 1 and M̃ ≥ 2M − 1 is set to be true.
Here, M̃ and Ñ are coprime integers whereas the coprimarity
between M and N is no longer required. The locations of
sensors in the proposed array structure can be expressed as:

S̃ = S̃1 ∪ S̃2,

= {nM̃ | 0 ≤ n ≤ N − 1} ∪ {mÑ | 0 ≤ m ≤ M − 1}.
(14)
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0 Nd (M-1)Nd
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Fig. 2. Proposed array configuration.

Note that the total number of elements in set S̃ remains Q̃ =
M + N − 1. The difference co-array of the proposed array

having location set S̃ can be given as:

D̃ = S̃ �S̃ = (S̃1�S̃1)∪ (S̃1�S̃2)∪ (S̃2�S̃1)∪ (S̃2�S̃2),
(15)

where

S̃1 � S̃1 = {(n1 − n2)M̃d} = {l1M̃d},
S̃1 � S̃2 = {(nM̃ −mÑ)d},
S̃2 � S̃1 = {(mÑ − nM̃)d},
S̃2 � S̃2 = {(m1 −m2)Ñd} = {l2Ñd},

(16)

where 0 ≤ {n, n1, n2} ≤ N−1, 0 ≤ {m,m1,m2} ≤ M−1,
−N + 1 ≤ l1 ≤ N − 1, and −M + 1 ≤ l2 ≤ M − 1.

In the sequel, we show through three Propositions that the
proposed coprime array design completely eliminates cross-
lag redundancies and, as such, achieves 2MN − 1 unique
lags.

Proposition 3: All the self-lags are present in the cross-lag

sets, i.e., ((S̃1� S̃1)∪ (S̃2� S̃2)) ⊂ ((S̃1� S̃2)∪ (S̃2� S̃1)).

Proof. This is similar to Proposition 1 in [6] proved for a gen-
eralized oprime array structure, i.e., coprime array with com-
pressed inter-element spacing (CACIS).

Proposition 4: Each of the cross-lag sets S̃1�S̃2 and S̃2�S̃1

contains MN unique elements.

Proof. This can be proved by following the same procedure
as in Proposition 1.

Proposition 5: There is only one cross-lag redundancy in the
difference co-array of the proposed array design which exists
at the lag position 0.

Proof. From Eq. (16), we know that elements in set S̃1 � S̃2

overlap with those in S̃2 � S̃1 when the following relation is
true for any two pairs (m1, n1) and (m2, n2):

n1M̃ −m1Ñ = m2Ñ − n2M̃, (17)

or, equivalently,

(n1 + n2)M̃ = (m1 +m2)Ñ , (18)

where 0 ≤ {n1, n2} ≤ N − 1, 0 ≤ {m1,m2} ≤ M − 1.
Eqs. (17) and (18) hold in the following two cases: (a) m1 =
m2 = n1 = n2 = 0. This corresponds to the redundancy

we cannot avoid. (b) n1 + n2 = kÑ and m1 + m2 = kM̃
where k is a positive integer. At least one of these conditions
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Fig. 3. Comparison of the difference co-arrays achieved by

different sparse array configurations for M = 4 and N = 5
(× denotes a hole at the corresponding location).

will be violated in the proposed coarray design because either

Ñ ≥ 2N−1 or M̃ ≥ 2M−1 is satisfied in the proposed array

design and, as such, either 0 ≤ m1 + m2 ≤ 2M − 2 < M̃
or 0 ≤ n ≤ 2N − 2 < Ñ will hold. As a result, there is
only one cross-lag redundancy between S̃1 � S̃2 and S̃2 � S̃1

corresponding to lag 0.

From the above three Propositions, it is clear that the pro-
posed array design offers 2MN − 1 unique lags. This is the
highest number to be provided in the coprime array frame-
work.

4. SIMULATION RESULTS

In the first simulation, we consider the prototype coprime ar-
ray, the generalized coprime array (CACIS with p = 2) [6],
and the proposed array structure consisting of 8 sensors. For
all the arrays, we take M = 4 and N = 5, whereas for the

proposed array we select M̃ = M = 4 and Ñ = 2N − 1 = 9
such that M̃ and Ñ are coprime.

Fig. 3 shows the positions of the physical sensors and
the achieved co-array lags for these arrays designs. In Figs.
3(b), 3(d), and 3(f), the numbers shown below the co-array
positions denote the number of redundancies in the co-array,
whereas the numbers shown above the co-array denote the
number of cross-lag redundancies. The numbers of co-array
DOFs for these three array configurations are 14, 14, and 20,
respectively. It is observed from Fig. 3 that the only cross-
lag redundancy present in the proposed array structure exists
at lag 0, whereas all other array structures exhibit significant
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Fig. 4. DOA estimation performance of the sparse arrays un-

der consideration.

cross-lag redundancies at several lag positions. Moreover,
note that the proposed sparse array has sensors relatively more
sparsely spaced; however, the co-array lags are less sparsely
spaced compared to co-arrays of the existing sparse array de-
signs.

Figs. 4(a)–4(c) compare the estimated spectra of 17
sources uniformly distributed between −60o 60o for these
array configurations, where the LASSO method [28] is used,
and all the available cross-lags are utilized. The input signal-
to-noise ratio (SNR) is 0 dB and 500 snapshots are used. It
is clear that the first two array configurations do not provide
correct DOA estimation for all signal arrivals because of lack
of DOFs, whereas the proposed coprime array configuration
provides sufficient number of DOFs to yield accurate DOA
estimates.

In order to compare the root mean squared error (RMSE)
performance, we reduce the number of sources to 11 so that
all the three array configurations have enough DOFs to per-
form DOA estimation. It is observed in Fig. 4(d) that the
proposed array structure yields the lowest RMSE compared
to the other two array configurations.

5. CONCLUSION

We have proposed a novel coprime array design which pro-
vides increased number of DOFs compared to the prototype
coprime array by modifying the inter-element spacing of the
constituting uniform linear subarrays. It is analytically veri-
fied that the proposed coprime array design completely elim-
inates non-zero cross-lag redundancies. Simulation results
show that the proposed design provides better DOA estima-
tion performance compared to the existing sparse array de-
signs.
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